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Abstract: Chronic kidney disease (CKD) is a progressive systemic disease, which changes the func-
tion and structure of the kidneys irreversibly over months or years. The final common pathological
manifestation of chronic kidney disease is renal fibrosis and is characterized by glomerulosclero-
sis, tubular atrophy, and interstitial fibrosis. In recent years, numerous studies have reported the
therapeutic benefits of natural products against modern diseases. Substantial attention has been
focused on the biological role of polyphenols, in particular flavonoids, presenting broadly in plants
and diets, referring to thousands of plant compounds with a common basic structure. Evidence-based
pharmacological data have shown that flavonoids play an important role in preventing and managing
CKD and renal fibrosis. These compounds can prevent renal dysfunction and improve renal function
by blocking or suppressing deleterious pathways such as oxidative stress and inflammation. In this
review, we summarize the function and beneficial properties of common flavonoids for the treatment
of CKD and the relative risk factors of CKD.

Keywords: chronic kidney disease; flavonoids; oxidative stress; inflammation; nephroprotection

1. Introduction

For thousands of years, natural products have been widely used in many regions of
the world. These products have a wide range of biological activities and can be found
in almost all fruits, flowers, seeds, vegetables, and minerals. Currently, with the rapid
development of technology, natural products have gained increasing popularity in many
Western countries. Extensive experience and clinical application of many natural products
have been accumulated and combined with continuous improvements in chemical tech-
nologies and biological methods to treat diseases with little or no side effects. For instance,
the antimalarial drugs artemisinin and quinine are extracted from Artemisia annua and Cin-
chona bark [1,2]. Antimicrobial drugs such as berberine, a natural pentacyclic isoquinoline
alkaloid, are derived from the stems and roots of Berberis species [3]. Natural products have
been proven to be excellent and reliable sources for the development of new drugs.

Chronic kidney disease (CKD) has been recognized as a major and increasing health
problem worldwide. The global estimated prevalence of CKD is between 8% and 16% [4,5].
In recent decades, significant progress has been made to gain insights into the treatments
and consequences of CKD around the globe [6]. CKD is a progressive systemic disease,
which changes the function and structure of the kidneys irreversibly over months or years.
The current diagnosis of CKD relies on a chronic reduction in renal function and structural
kidney damage. The international guidelines define CKD by a glomerular filtration rate
(GFR) of less than 60 mL/min/1.73 m2, albuminuria of at least 30 mg per 24 h, or markers
of kidney damage persisting for at least 3 months [7]. Diabetes, hypertension, and obesity
are important contributors to the global burden of disease and are the most common
traditional risk factors for CKD [8]. Other causes such as glomerulonephritis, infection, and
environmental exposures are common in many developing countries [4]. CKD is associated
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with risks of adverse clinical outcomes, such as cardiovascular disease, end-stage renal
disease (ESRD), and increased mortality [9–11]. Thus, it is critical to find agents that can be
used to effectively prevent and treat CKD.

Various functional and bioactive compounds from natural products have been identi-
fied as having critical properties in the treatment of CKD [12]. Among these, polyphenolic
compounds exert multiple biological properties [13–15]. Flavonoids, a class of polyphenolic
compounds, are characterized by a C6–C3–C6 backbone structure and are the most indis-
pensable components presented in the human diet [16–18]. Flavonoids are well known
for their beneficial effects on health and many biological functions, including antioxida-
tive [19,20], antimicrobial [21,22], cardioprotective [23,24], and anticancer activities [25–27].
Specific flavonoids and a series of plant extracts containing flavonoids have been employed
in cell or animal models of kidney disease for different types of investigations [28]. The
results showed that flavonoids may have preventive effects in vitro or in vivo and provided
a potential treatment for the disease. This paper systematically reviewed the functions and
beneficial effects of flavonoids in CKD.

2. Diagnosis and Staging of CKD

Many people are asymptomatic in early-stage CKD and identified by chance through
routine screening tests with serum chemistry profiles and urine studies. However, depend-
ing on the cause of CKD, some people have symptoms directly as a result of impaired
kidney function. CKD is characterized by a reduction in nitrogenous waste excretion and
many uremic retention solutes called uremic toxins accumulated in the body. Many of those
uremic toxins contribute to inflammation, cardiovascular disease, immune dysfunction,
platelet dysfunction, and increased bleeding risk, as well as CKD progression [29,30].

Chronic kidney disease is defined as an abnormality in kidney structure or function
presenting for more than 3 months [31]. GFR is a measure of kidney function. The urine
albumin-to-creatinine ratio (ACR) is a kidney damage marker [7]. The diagnosis includes
one or more of the following: (1) GFR less than 60 mL/min/1.73 m2; (2) albuminuria
(i.e., urine albumin ≥30 mg/24 h or ACR ≥30 mg/g); (3) abnormalities in urine sediment;
(4) abnormalities detected by histology or structure damage detected by imaging; (5) ab-
normalities owing to tubular disorders; or (6) history of kidney transplantation. CKD
has five stages classified by the CGA classification (cause, GFR category, and albuminuria
category) [7]. Once CKD is diagnosed, the next step is to determine the staging, as shown
in Table 1 [7,32].

Table 1. Staging of chronic kidney disease.

GFR Category

G1 ≥90 mL/min/1.73 m2

G2 60–89 mL/min/1.73 m2

G3a 45–59 mL/min/1.73 m2

G3b 30–44 mL/min/1.73 m2

G4 15–29 mL/min/1.73 m2

G5 <15 mL/min/1.73 m2

Albuminuria Category

A1 ACR < 30 mg/g

A2 ACR 30–300 mg/g

A3 ACR > 300 mg/g
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3. Pathophysiology of CKD

There are two mechanisms for the occurrence of chronic kidney disease: an initial trig-
ger and a perpetuating mechanism [33]. Initial stimulation may be caused by inflammation,
or immune-mediated or toxic injury. This process leads to over-filtration and hypertrophy
of the nephrons, resulting in changes in the glomerular structure and podocytes, which can
damage the filtration system. Ultimately, these persistent injuries lead to nephrosclerosis
and a further decline in renal function. The final common pathological manifestation of
chronic kidney disease is renal fibrosis and is characterized by glomerulosclerosis, tubular
atrophy, and interstitial fibrosis [34].

Global glomerulosclerosis is caused by injury and dysfunction of podocytes and en-
dothelial cells, and the proliferation of smooth muscle cells and mesangial cells [35–38].
Glomerular microinflammation activates mesangial cells to proliferate and secrete several
types of inflammatory cytokines, chemokines, and adhesion molecules, and to produce an
excessive extracellular matrix (ECM), all of which participate in the process of glomeru-
losclerosis [39]. Podocyte loss results in local bulging of the glomerular basement membrane
(GBM) when glomerular pressures increase, which leaves the GBM to form a synechia
attachment with Bowman’s capsule, thus contributing to the first ‘committed step’ of
glomerulosclerosis [40,41]. Tubular epithelial cells release various bioactive molecules
including reactive oxygen species (ROS) and pro-inflammatory cytokines and chemokines
to favor the recruitment of inflammatory cells, the activation of fibroblasts, and the loss of
endothelial cells, which eventually lead to tubular atrophy, tubulointerstitial inflammation,
and fibrosis [42,43].

Emerging evidence suggests that oxidative stress and inflammation, as well as their
interaction, play pivotal roles in the pathogenesis and progression of CKD [44,45]. Inflam-
mation has a prominent role in initiating renal fibrosis. Together with the activation of resi-
dent kidney immune cells, leukocytes and fibrogenic cells including T cells, B cells, mono-
cytes/macrophages, dendritic cells, and mast cells are recruited to the glomerulus and renal
interstitium, which leads to increase production of pro-inflammatory cytokines [46–48].
Activated leukocytes generate ROS, chlorine, and nitrogen species, thus aggravating and
perpetuating oxidative stress [44,45]. With the activation of matrix-producing cells and
the release of profibrotic cytokines, an excessive ECM is accumulated, which results in the
renal structure and function gradually disappearing.

4. Flavonoids
4.1. Structure and Classification of Flavonoids

Natural compounds constitute promising candidates in the therapy of various dis-
eases. Among others, flavonoids stand out for being widely distributed in fruits, vegetables,
grains, herbs, and beverages [49]. There are now more than 8000 varieties of flavonoids
that have been structurally identified with a wide variety of biological properties [50].
Flavonoids are polyphenolic compounds synthesized in plants and as bioactive secondary
metabolites. Structurally, flavonoids have a well-known chemical structure characterized
by 15 carbon atoms (C6-C3-C6) that are arranged to form two benzene rings named A and
B. The A-ring and B-ring are linked through a three-carbon bridge that usually arises as an
oxygenated heterocyclic ring named C [51] (Figure 1). Based on the degree of saturation
and the level of oxidation of the C-ring, and different connections between the B-ring
and C-ring, flavonoids can be classified into different groups, such as flavones (e.g., api-
genin, rutin, and luteolin), flavonols (e.g., quercetin, kaempferol, myricetin, and fisetin),
flavanol (e.g., epigallocathechin), isoflavonoids (e.g., genistein and daidzein), flavanones
(e.g., naringin, naringenin, and hesperidin), and anthocyanidins (e.g., apigenidin, cyani-
din, and malvidin) [18,50]. In recent years, flavonoids have attracted people’s attention.
Epidemiological and experimental studies have pointed to the health benefits associated
with flavonoid intake [52]. Flavonoids are effective antioxidants that can protect plants
from adverse environmental conditions [53]. Therefore, flavonoids have been evaluated
for possible beneficial effects on a variety of acute and chronic human diseases. In vitro
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and in vivo studies have shown that flavonoids exert numerous benefits, such as anti-
inflammatory [54,55], antioxidant [56,57], anticardiovascular [58], neuroprotective [59,60],
and strong anticancer effects [61–63].
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4.2. Metabolism of Flavonoid

The diversity of flavonoid structures undoubtedly contributes to the highly variable
bioavailability between individuals. After absorption, flavonoids are widely metabolized
in the gastrointestinal microbial and liver metabolism. Most dietary flavonoids in nature
exist in aglycone form or are bound to glycosides. Only a few glucosides can be absorbed in
the proximal intestine. A large proportion of unabsorbed flavonoids reach the colon where
they are exposed to microbiome-mediated hydrolysis, fermentation, and catabolism into
smaller molecules such as phenolic and aromatic acids, which may become bioavailable [64].
The metabolites of flavonoids are transported to the liver via the portal vein through the
epithelium. Flavonoids undergo intrahepatic metabolisms such as methylation, sulfation, or
glucuronidation before being released into the circulation and tissue uptake [64]. However,
it is still unclear how tissues uptake flavonoid metabolites and how they are subsequently
distributed. The gut microbiome plays a critical role in flavonoid metabolism. In addition,
food composition, such as fat and protein intake, age, sex, and genotype may also affect
flavonoids’ metabolic processes and bioavailability [64–66]. The efflux of flavonoids from
the body is via the kidney, intestinal epithelium, and bile excretion [64]. Furthermore, to
improve the low biological activity of flavonoids, various processes have been employed
to optimize their absorption and bioavailability by using different delivery systems and
absorption enhancers, changing the absorption site and metabolic stability [67].

5. Bioactivities of Flavonoids in CKD
5.1. Antidiabetic Effect

Diabetes mellitus (DM) is one of the prevailing global health problems throughout
the world. It is a metabolic disorder characterized by an elevation in blood glucose due
to insufficient or inefficient insulin [68]. All cells are chronically exposed to high plasma
glucose levels and some manifest progressive dysfunction. The kidney is the most impor-
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tant target of microvascular damage in diabetes. Many flavonoids are reported to improve
hyperglycemia and increase insulin sensitivity in in vitro and in vivo studies [69,70].

Flavonoids can interact with several molecular pathways to intervene in glucose
metabolism, which is involved in glucose uptake by tissues, insulin sensitivity and secretion
from β-cells, and the inhibition of intestinal glucose absorption [71]. The antidiabetic
action of quercetin involves the reduction in lipid peroxidation, glucose absorption by
glucose transporter type 4 (GLUT4), the inhibition of insulin-dependent activation of
phosphoinositide 3-kinases (PI3K), stimulation of glucose uptake in muscle cells, and
activation of AMP-activated protein kinase (AMPK) [72–75]. Quercetin and kaempferol
could enhance insulin signaling transduction by inducing the phosphorylation of insulin
receptor (IR) and insulin receptor substrate-1 (IRS-1) [76,77]. Kaempferol improved cell
viability, decreased cell apoptosis, and promoted the secretion and synthesis of insulin
in β-cells [78]. It could also activate the AMPK signaling pathway to increase glucose
uptake [77]. Epigallocatechin gallate (EGCG) and genistein had a similar function in
activating the PI3K/protein kinase B (AKT) pathway, increasing the phosphorylation of
AMPK, and promoting GLUT4 translocation to improve glucose uptake [79,80]. Myricetin
inhibited insulin secretion by restoring IR and IRS-1 and enhancing the phosphorylation
of AKT and GLUT4 expression and translocation in high-fructose-fed rats [81,82]. Rutin
reduced glucose absorption from the small intestine by inhibiting α-glucosidases and
α-amylase involved in the digestion of carbohydrates [83]. Similar to other flavonoids,
rutin stimulated tissue glucose uptake via insulin signaling, PI3K, and mitogen-activated
protein kinase (MAPK) pathways [84]. Treatment with rutin also increased insulin levels
by stimulating β-cells to produce insulin and showed antiapoptotic activities by increasing
B-cell lymphoma 2 (Bcl-2) and decreasing the level of caspase-3 in streptozotocin (STZ)-
induced diabetic rats [85]

5.2. Antihypertensive Effects

Hypertension is one of the leading risk factors of CKD that affects > 1 billion people
worldwide. Nitric oxide (NO) from the endothelium plays a crucial role in regulating blood
pressure (BP) [86]. A reduction in NO bioavailability and an elevation in the ROS level are
key traits involved in endothelial dysfunction [87]. In addition, potassium and calcium
channels are also important in NO-mediated vasodilation [88,89]. As hypertension persists,
glomerulosclerosis occurs and, finally, causes atrophy and renal fibrosis. Efforts to improve
endothelial dysfunction and increase NO bioavailability are of great significance in the
treatment of hypertension.

The antihypertensive mechanisms of flavonoids mainly include (1) protection of
endothelial cell function [90,91]; (2) suppression of the renin–angiotensin system [92,93];
(3) antioxidant stress and anti-inflammatory effects [94,95]; (4) inhibition of sympathetic
excitation [96,97].

The antihypertensive effect of quercetin and kaempferol is due to their abilities to
improve endothelial function and modulate the renin–angiotensin–aldosterone system
(RAAS), and vascular smooth muscle cell contractility [92,98]. The ability of these com-
pounds to improve endothelial dysfunction works through enhancing relaxation and sup-
pressing contraction caused by endothelin-1 (ET-1) and increasing NO levels in plasma [99].
Quercetin also augmented NO through upregulating NO synthase activity in endothe-
lial cells and enhanced vasodilation to attenuate hypertension via ameliorating oxidative
stress [96]. EGCG and hesperetin could block voltage-operated Ca2+ channels and reduce
ROS generation [100–102]. The hesperetin metabolite hesperetin-7-O-b-D-glucuronide
(HPT7G) decreased BP by increasing the adhesion of NO synthase, reducing the levels
of nitrous oxide, and enhancing endothelium-dependent vasodilation [103]. Hesperetin
also suppressed hypertension by suppressing the RAAS and oxidant stress and blocking
voltage-gated calcium channels [93,97,102]. Genistein exerted its antihypertensive effect by
inhibiting the Ca2+-dependent non-receptor tyrosine kinase proline-rich tyrosine kinase
2 (PYK2) [104]. Luteolin ameliorated BP by signaling and activating the cyclic adenosine
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monophosphate (cAMP)/protein kinase cascade, which further activated NO synthase and
increased the concentration of endothelial NO [105]. The ability of naringenin to reduce
blood pressure was due to both membrane hyperpolarization and relaxation of vascular
smooth muscles, which was affected by calcium-activated potassium channels [106]. Grow-
ing evidence suggests that flavonoid-rich foods in cardiovascular disease might lower BP by
reducing sympathetic nervous system overactivity [96]. Vaccarin abrogated the increased
plasma renin, angiotensin II, norepinephrine, and basal sympathetic activity [107].

5.3. Anti-Inflammatory Effects

Inflammation has been recognized as a complex biological process that occurs in
response to harmful stimuli and is a major risk factor for various diseases. It is well known
that acute inflammation has physiological functions of defense and healing, but when the
inflammatory regulatory mechanism changes, this can lead to a long-term inflammatory
process, thus disturbing the homeostasis [108]. The inflammatory response involves the
recruitment of innate immune cells, which in turn produce pro-inflammatory cytokines and
chemokines that attract lymphocytes to trigger tissue damage. During the inflammatory
immune response, ROS, reactive nitrogen species, and different proteases are produced, all
of which can contribute to chronic inflammation [109]. Chronic inflammation is involved
in the development of certain diseases, such as asthma, cancer, cardiovascular disease,
diabetes, and neurodegenerative diseases.

Flavonoids have been shown to exert anti-inflammatory properties through different
mechanisms such as modulation of immune cells and inhibition of enzymes and tran-
scription factors. Studies have reported that flavonoids have an impact on immune cell
activation, maturation, and signaling transduction, which can inhibit the production and
secretion of cytokines and chemokines. Quercetin has been shown to inhibit the maturation
of dendritic cells by the downregulation of CD80, CD86, major histocompatibility complex
II (MHC-II), interleukin-6 (IL-6), and interleukin-12 (IL-12) and reducing T cell allogeneic
proliferation [110]. Flavonoids could decrease the release of pro-inflammatory cytokines
from mast cells, eosinophils, and other immune cells [111,112]. Kaempferol attenuated
tumor necrosis factor alpha (TNF-α)-induced expression of epithelial intercellular cell adhe-
sion molecule-1 (ICAM-1) and eosinophil integrin β2, and monocyte chemotactic protein-1
(MCP-1) transcription, hindering eosinophil–epithelial interaction [113]. Flavonoids from
wild blueberries also prevented monocyte adhesion to human umbilical vein endothelial
cells in a TNF-α-mediated pro-inflammatory environment [114].

Inflammation depends on a group of protein kinases such as tyrosine kinase, phospho-
inositol kinase, protein kinase C (PKC), and phosphatidylinositol kinase. The inhibition
of those enzymes by different types of flavonoids has been reported [115–117]. Several
studies have found that flavonoids can also impact arachidonic acid metabolism through
enzymes such as phospholipase A2, cyclooxygenase, and lipoxygenase, thus inhibiting
the biosynthesis of prostaglandins, thromboxanes, and leukotrienes [118–121]. Baicalein
significantly reduced the expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2),
and lipoxygenase-1 (LOX-1) to promote a neuroprotective effect [122]. Flavonoids could
also modulate protein kinases by the inhibition of transcription factors, such as nuclear
factor kappa-B (NF-κB). NF-κB regulates several cytokines, chemokines, and cell adhesion
molecules involved in inflammation [123]. For example, fisetin inhibited the renal expres-
sion of IL-6, interleukin 1 beta (IL-1β), TNF-α, and COX-2 to alleviate inflammation and
apoptosis through inhibiting NF-κB p65 and MAPK signaling pathways [124].

5.4. Antioxidant Effects

The human body maintains homeostasis through maintaining the balance between
oxidants and antioxidants through antioxidant defense systems. If the antioxidant defense
is impaired, the production of ROS increases. ROS cause oxidative stress upon reacting
with molecules such as lipids, proteins, or nucleic acids. Lipid peroxidation by ROS causes
cellular membrane damage, which eventually causes cell death [57].
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Flavonoids, which act as exogenous antioxidants by their ability to donate electrons
to peroxynitrite, hydroxyl, and peroxyl radicals, have been proven to exhibit a noticeable
positive influence in stabilizing the aforementioned radicals, reducing the levels of reactive
oxygen and other free radicals in the human body [125]. Carbohydrate fragments from
the structure of flavonoids play an important role in their antioxidant action. Aglycones
have been proven to be stronger antioxidants than glycosides [126]. The antioxidant effect
of flavonoids is achieved via direct and indirect mechanisms. The direct mechanism is
eliminating reactive oxygen species directly [127]. Indirect antioxidant effects are related
to stimulating the production or activation of antioxidant enzymes and suppressing pro-
oxidant enzymes. Flavonoids have been found to activate intracellular antioxidant signaling
pathways to accelerate the production of endogenous antioxidants such as glutathione
(GSH), superoxide dismutase (SOD), and catalase (CAT), and inhibition of ROS-generating
enzymes such as xanthine oxidase, myeloperoxidase (MDA), and nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [128,129]. Meanwhile, flavonoids could chelate
metal ions, thus reducing the formation of free radicals [130,131]. For example, quercetin
could modulate NADPH oxidase-dependent oxidative stress under different pathological
conditions [132–134]. Baicalin remarkably inhibited oxidative stress via suppressing MDA
activity and enhancing SOD and GSH activity in rats [135]. Nuclear factor erythroid 2
(Nrf2) is a transcription factor responsible for regulating the production of endogenous
antioxidants under oxidative stress [136]. Flavonoids such as quercetin, naringenin, baicalin,
and genistein have been reported to exert a protective effect in various diseases through
activation of the Nrf2 signaling pathway and diminish the spontaneous degradation of the
Nrf2 protein [137–140]. Flavonoids competitively bind with the kelch-like ECH-associated
protein 1 (KEAP1) protein in the Nrf2 binding site, resulting in Nrf2 protein translocation
into the nucleus and activation of downstream proteins [141,142].

6. Flavonoids in CKD
6.1. Flavonoids in Diabetic Nephropathy

Diabetic nephropathy (DN), the most common complication in diabetes, leads to a
deterioration of renal function and progression to ESRD [143]. DN is characterized by urine
albumin excretion, diabetic glomerular lesions, and a reduction in GFR. Accumulating
evidence has demonstrated that oxidative stress and inflammation prompted by hyper-
glycemia play paramount roles in the pathogenesis and progression of DN. Various studies
have evaluated the role of flavonoids in DN, most of them reporting a positive effect on
renal function (Table 2).

Studies have revealed that quercetin (Figure 2a) could prevent glomerular and tubular
damage in STZ-induced diabetic rats by reducing lipid peroxidation and increasing SOD
and CAT activity [144]. In high-fat-diet/STZ-induced DN rats, quercetin could attenuate
urine microalbumin excretion, the serum level of creatinine, hyperglycemia, and lipid
metabolism disorders and mitigate renal histopathological lesions through suppressing
the ROS and renal NOD-like receptor family, and the pyrin domain containing 3 (NLRP3)
inflammasome [145]. It could also reduce free radicals by decreasing the levels of MDA, IL-
1β, TNF-α, and advanced glycation end products (AGEs), and by increasing the activity of
SOD and glutathione peroxidase (GSH-Px) [146]. Quercetin also improved renal function in
rats with DN by inhibiting the overexpression of transforming growth factor beta 1 (TGF-β1)
and connective tissue growth factor (CTGF) [147]. In db/db mice, quercetin effectively
inhibited mesangial cell proliferation through reactivating the Hippo pathway [148].
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Kaempferol (Figure 2b) significantly reduced renal inflammation, fibrosis, and kidney
dysfunction in diabetic mice by regulating tumor necrosis factor receptor associated factor
6 (TRAF6) [149]. It also ameliorated renal injury and fibrosis by enhancing the release of
glucagon-like peptide-1 (GLP-1) and insulin, and by inhibiting ras homolog family member
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A (RhoA)/Rho Kinase [150]. Kaempferol reduced renal inflammation, apoptosis, and the
levels of ROS and MDA and stimulated SOD and GSH levels by the upregulation of the
Nrf2/heme oxygenase-1 (HO-1) axis [151].

Rutin (Figure 2c) administration effectively protected the kidney through influencing
matrix metalloproteinases (MMPs) and inhibiting oxidative stress and the TGF-β1/mothers
against DPP homolog (Smad)/ECM and TGF-β1/CTGF/ECM signaling pathways in STZ-
induced DN rats [152,153]. In alloxan-induced DN rats, rutin ameliorated renal fibrosis and
metabolic acidosis via reducing the metabolic acidosis-related genes aquaporin 2 (AQP2),
aquaporin 3(AQP3), and arginine vasopressin receptor 2 (V2R) [154]. Another study in
the same model showed that rutin combined with ramipril downregulated TGF-β1 and
endoplasmic reticulum stress markers glucose-regulated protein 78 (GRP78) and C/EBP-
homologous protein (CHOP) [155].

Luteolin (Figure 2d) might ameliorate glomerulosclerosis and interstitial fibrosis in
db/db mice models by inhibiting the inflammatory response and oxidative stress through
repressing signal transducer and activator of transcription 3 (STAT3) activation [156]. Lu-
teolin might protect the filtration function of the basement membrane by upregulating
podocin protein expression and delaying the apoptosis, deletion, and fusion of podocytes
under high-glucose conditions [157]. Luteolin could also increase SOD activity and HO-1
protein and decrease the MDA content to exert an antioxidant effect in diabetic nephropa-
thy [158].

Table 2. Flavonoids in diabetic nephropathy.

Animal Models Flavonoids Functions References

STZ-induced
DN rats

Quercetin
Increasing SOD and CAT activity; suppressing ROS
and the NLRP3 inflammasome; scavenging free
radicals; inhibiting TGF-β1 and CTGF

[144–147]

Kaempferol Upregulating the Nrf2/HO-1 axis [151]

Baicalin Downregulating PI3K/Akt/mTOR signaling [159]

Rutin
Inhibiting TGF-β1/Smad/ECM and
TGF-β1/CTGF/ECM signaling pathways;
influencing MMPs

[152,153]

Luteolin Upregulating Nphs2; increasing SOD/HO-1 and
decreasing MDA [157,158]

Naringenin
Downregulating TGF-β1 and IL-1β; downregulating
ER stress markers ATF4, p-PERK, p-eIF2α,
and XBP1s

[160,161]

Hesperidin Restoring the α-Klotho/FGF-23 pathway; activating
the Nrf2/ARE pathway [162,163]

STZ-induced DN mice

Kaempferol Regulating TRAF6; inhibiting RhoA/Rho Kinase [149,150]

Baicalin Restoring Klotho expression and inhibiting Klotho
hypermethylation [164]

Genistein Reducing phospho-ERK/ERK ratio [165]

Alloxan-induced
DN rats Rutin Regulating AQP2/AQP3/V2R genes;

downregulating TGF-β1, GRP78, and CHOP [154,155]

db/db mice

Quercetin Reactivating the Hippo pathway [148]

Baicalin Activating Nrf2 and inhibiting the MAPK-mediated
inflammatory signaling pathway [166]

Luteolin Repressing STAT3 activation [156]
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Baicalin (Figure 2e) ameliorated diabetic conditions in db/db mice by alleviating
oxidative stress and inflammation, and its underlying mechanisms were associated with
the activation of the Nrf2-mediated antioxidant signaling pathway and the inhibition of
the MAPK-mediated inflammatory signaling pathway [166]. Baicalin protected podocytes
by downregulating the activity of the PI3K/AKT/mammalian target of rapamycin (mTOR)
signaling pathway in STZ-induced DN rats [159]. Baicalin could also alleviate renal in-
jury in STZ-induced DN mice through restoring Klotho expression and inhibiting Klotho
hypermethylation to counter TGF-β1 signaling [164].

In summary, flavonoids have been found to counter the adverse renal effects in mice
or rats with STZ-induced diabetes, db/db mice, and alloxan-induced DN rats. Those
flavonoids regulate DN in several ways, including exerting antioxidative stress and anti-
inflammatory effects. Besides the aforementioned flavonoids, other common flavonoids
such as naringenin [160,161], hesperidin [162,163], and genistein [165] (Figure 2f–h) have
also been proven to exert protective effects in DN rat or mouse models through inhibiting
the oxidative stress pathway and pro-inflammatory factors.

6.2. Flavonoids in Hypertensive Nephropathy

Hypertensive nephropathy (HN) is the second leading cause of CKD after diabetic
nephropathy. Statistics suggest that 84% of adults with CKD and half of patients with
DM sustained hypertension [167]. Hypertension usually lasts for >10 years, and the early
clinical manifestation is nocturia which appears later than the pathological changes. The
kidneys are usually already severely damaged when renal function abnormalities are
discovered. High BP can impact each renal compartment: glomeruli, tubulointerstitium,
and vessels [168]. This disease is usually preceded by distal tubular dysfunction, followed
by glomerular dysfunction [169]. Renal tubules and glomerular filtration membranes will
be damaged in high-pressure and hyperfiltration conditions, which can lead to structural
changes in renal arterioles and hypertrophy and proliferation of smooth muscle cells [170].
With the pathological condition continuing, the renal arteriole walls are thickened, the
lumens are narrowed, the renal plasma flow further reduces, and the renal function is
damaged. The glomeruli also change from hypertrophy to focal segmental sclerosis [171].

The main treatment of hypertensive nephropathy is to effectively reduce blood pres-
sure. However, besides the antihypertensive effect, flavonoids can also act directly on
the kidneys to improve the development of renal injury (Table 3). In 2002, quercetin
was demonstrated to inhibit the development of hypertension induced in rats by chronic
inhibition of NO synthesis with L-N G-Nitro arginine methyl ester (L-NAME). Mean-
while, quercetin reduced renal hypertrophy, proteinuria, renal parenchyma, and vascular
lesions [172]. Quercetin has also been reported to significantly reduce the plasma cre-
atinine concentration and prevent vascular dysfunction in deoxycorticosterone acetate
(DOCA)-salt rats through restoring total GSH levels and improving renal glutathione S-
transferase (GST) activity to maintain the antioxidant system [173,174]. The antioxidant
effects of quercetin have also been shown in the treatment of renovascular hypertensive rats.
Quercetin regulated hypertension and proteinuria and improved endothelium-dependent
function through diminishing vascular production of the vasoconstrictor prostanoid throm-
boxane A2 (TXA2) [175]. A high dose of epicatechin (Figure 2i) and red wine polyphenols
prevented the increase in systolic blood pressure, proteinuria, and endothelial dysfunction
induced by DOCA-salt. Both can reduce NADPH oxidase activity and ET-1 levels, while
epicatechin could also increase the transcription of Nrf2 [176,177]. Oral administration of
morin (Figure 2j) reduced the raised plasma urea, uric acid, and creatinine levels in DOCA-
salt rats [178]. The administration of rutin significantly attenuated the blood pressure
along with a decrease in the plasma renin content and tissue thiobarbituric acid reactive
substances (TBARS) and an increase in GSH levels in two-kidney, one-clip rat (2K1C)
models [179]. Grape seed proanthocyanidins (GSPE) (Figure 2k) have been reported to be
antioxidant and free radical scavengers, which can improve proteinuria, renal hypertrophy,
and renal fibrosis through suppressed c-Jun N-terminal kinase (JNK) and p38 kinase path-
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ways in DOCA-salt rats [180]. GSPE also significantly reduced albuminuria, inflammatory
cell infiltration, and MCP-1 and IL-1β accumulation in the kidneys of spontaneously hy-
pertensive rats (SHRs) [181]. In fructose-fed hypertensive rats, genistein administration
led to endothelial nitric oxide synthase (eNOS) activation and NO synthesis in the kidney,
restored angiotensin-converting enzyme and PKC-βII, and preserved renal ultrastructural
integrity [182].

Table 3. Flavonoids in hypertensive nephropathy.

Animal Models Flavonoids Functions References

DOCA-salt rats

Quercetin
Restoring total GSH levels and reducing TBARS
level; restoring MDA content and SOD expression
and improving potassium depletion

[173,174]

Epicatechin Reducing NADPH oxidase activity and ET-1 levels;
increasing Nrf2 [176]

Red wine polyphenols Reducing NADPH oxidase activity and ET-1 levels [177]

Grape seed
proanthocyanidins Suppressing the JNK/p38 kinase pathway [180]

Morin Reducing plasma urea, uric acid, and
creatinine levels [178]

2K1C rats
Quercetin Restoring total GSH content and reducing the

vasoconstrictor TXA2 [175]

Rutin Decreasing tissue TBARS and increasing GSH levels [179]

L-NAME rats Quercetin Reducing renal hypertrophy, proteinuria, renal
parenchyma, and vascular lesions [172]

SHRs Grape seed
proanthocyanidins

Upregulating cofilin1 and inhibiting the
NF-κB pathway [181]

Fructose-fed
hypertensive rats Genistein Inhibiting ACE and PKC-βII and activating eNOS

and NO synthesis [182]

The prevention or amelioration of renal injury in HN by flavonoids is, in part, related
to their function in preventing hypertension. Meanwhile, flavonoids can also interfere
directly with the renal parenchyma through various mechanisms of antioxidative stress or
anti-inflammation to prevent the development of renal injury.

6.3. Flavonoids in Glomerulonephritis

Glomerulonephritis (GN) is a heterogeneous group of diseases, accounts for about
20% of CKD cases in most countries, and frequently affects young people, which is likely
to progress to ESRD [183]. The clinical presentation of glomerulonephritis is variable, in-
cluding hypertension, proteinuria, hematuria, and raised serum creatinine concentrations.
The most common glomerulonephritis types are IgA nephropathy, membranous glomeru-
lonephritis, minimal change disease, focal segmental glomerulosclerosis (FSGS), membra-
noproliferative glomerulonephritis, and rare complement-associated types of glomeru-
lonephritis such as dense deposit disease and C3 glomerulonephritis [183]. To date, a
limited number of studies have focused on flavonoids in glomerulonephritis (Table 4).

Baicalin suppressed Notch1-Snail pathway activation in podocytes and alleviated
glomerulus structural disruption and dysfunction in adriamycin (ADR)-induced nephropa-
thy [184]. Total flavonoids in Astragali Radix (AR) were reported to protect against ADR-
induced nephropathy related to the protection of renal filtration function and regulation of
blood pressure, which might involve the regulation of the immune system and RAAS [185].
Silymarin (Figure 2l) was shown to decrease plasma creatinine and urea levels and nor-
malize renal histopathology by suppressing renal MDA and GSH depletion [186]. Hyper-
oside (Figure 2m) could inhibit ADR-induced mitochondrial dysfunction and podocyte
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injury through regulating mitochondrial fission by restoring the expression of mitofusin
1 (MFN-1) [187]. EGCG (Figure 2n) was shown to significantly decrease glomerular and
tubulointerstitial injury in immune-mediated glomerulonephritis by inhibiting MAPK path-
ways and phosphorylation of extracellular signal-regulated kinase (ERK)1/2 [188]. EGCG
attenuated FSGS through the suppression of oxidant stress and cell apoptosis by inhibiting
the hypoxia inducible factor 1 subunit alpha (HIF-1α)/angiopoietin like 4 (ANGPTL4)
pathway [189]. Icariin (Figure 2o) treatment ameliorated renal damage in IgAN rats by the
inactivation of the NF-κB pathway and the NLRP3 inflammasome [190].

Table 4. Flavonoids in glomerulonephritis.

Animal Models Flavonoids Functions References

Adriamycin-induced
rat nephropathy

Baicalin Suppressing the Notch1-Snail pathway [184]

Total flavonoids in
Astragali Radix Regulating the immune system and RAAS [185]

Silymarin Suppressing renal MDA and GSH depletion [186]

Adriamycin-induced
mouse nephropathy

Hyperoside Regulating mitochondrial fission by restoring the
expression of Mfn-1 [187]

Epigallocatechin-3-
gallate

Suppressing oxidant stress and cell apoptosis;
inhibiting the HIF-1α/ANGPTL4 pathway [189]

Anti-GBM-GN in
129/svJ mice

Epigallocatechin-3-
gallate

Inhibiting MAPK pathways and phosphorylation of
ERK1/2, JNK, and p38 [188]

Bovine gamma-
globulin-induced rat
IgA nephropathy

Icariin Inhibiting the NF-κB pathway and mediating
NLRP3 inflammasome activation [190]

6.4. Flavonoids in Lupus Nephritis

Lupus nephritis (LN) is the most serious complication of systemic lupus erythematosus
(SLE) and a major cause of mortality and morbidity in SLE patients [191]. Approximately
25–50% of SLE patients suffer from LN, which is characterized by a high expression
of inflammatory cytokines, glomerulonephritis, and impaired renal function. Immune
complex deposition, inflammatory cell infiltration, and complement activation are the key
features of LN [192]. Proteinuria is one of the major clinical manifestations of LN. Podocytes
play a crucial role in glomerular filtration and renal function preservation [193]. Excessive
mesangial cell proliferation can affect podocyte function and is the main pathological
characteristic of LN. Inhibition of mesangial cell proliferation can effectively aggravate
renal damage [194]. A large proportion of patients with LN eventually progress to ESRD.
Therefore, it is urgent to elucidate the underlying mechanisms of LN and develop effective
drugs for LN therapy.

Flavonoids have shown markedly protective effects in LN (Table 5). Baicalin could
become a promising therapeutic medicine for the treatment of SLE. It has been shown
to decrease the levels of ROS and NF-κB phosphorylation with induction of Nrf2/HO-1
signaling and suppression of the NLRP3 inflammasome, which attenuated proteinuria
and impaired renal function and histopathology in lupus mice [195]. Baicalin could also
inhibit mTOR activation and Tfh cell differentiation while promoting Foxp3+ regulatory T
cell differentiation in LN [196]. Naringenin decreased the levels of anti-nuclear and anti-
dsDNA autoantibodies while increasing the percentage of Treg cells and preventing kidney
damage and fibrosis of LN [197]. Icariin reduced the serum anti-dsDNA antibody level and
immune complex deposition by suppressing the NLRP3 inflammasome, NF-κB activation,
and TNF-α and C-C motif chemokine ligand 2 (CCL2) production in MRL/lpr mice [198].
Quercetin was observed to improve podocin, proteinuria levels, and the renal ultrastructure.
It also inhibited the tissue expression of IL-6, TNF-α, TGF-β1, Bcl2 associated X (Bax), and
TBARS while significantly increasing CAT and SOD expressions in the pristane-induced
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LN mouse model [199]. In the chronic graft-versus-host disease (cGVHD) mouse model,
quercitrin (Figure 2p) ameliorated the symptoms of lupus nephritis due to the inhibition of
CD4 + T cell activation and anti-inflammatory effects on macrophages [200]. Procyanidin B2
(Figure 2q) significantly reduced renal immune complex deposition and serum anti-dsDNA
levels and inhibited NLRP3 inflammasome activation in MRL/lpr mice [201]. Apigenin
(Figure 2r) inhibited the expression of NF-κB-regulated antiapoptotic molecules to promote
the apoptosis of lupus antigen-presenting cells (APCs) and Th1, Th17, and B cells in the
lupus mouse model [202]. In the same LN model, EGCG promoted the Nrf2 antioxidant
signaling pathway while inhibiting NLRP3 inflammasome activation in the kidney [203].
Fisetin (Figure 2s) reduced the expression of pro-inflammatory cytokines IL-6, TNF-α, and
IL-1β and chemokines C-X-C motif chemokine ligand 1 (CXCL-1), C-X-C motif chemokine
ligand 2 (CXCL-2), and C-C motif chemokine ligand 3 (CCL3). Furthermore, the elevated
level of Th17 cells in the pristane-induced LN mouse model was disrupted by fisetin [204].
Astilbin (Figure 2t) could also mitigate the development of glomerulonephritis in MRL/lpr
mice by decreasing multiple cytokines and functional activated T and B cells [205].

Table 5. Flavonoids in lupus nephritis.

Animal Models Flavonoids Functions References

Pristane-induced
lupus mice

Baicalin Inducing Nrf2/HO-1 signal and NLRP3 expression [195]

Fisetin Reducing Th17 cells; inhibiting the CXCL
signaling pathway [204]

Quercetin Increasing CAT and SOD1 expressions; lowering IL-6,
TNF-α, TGF-β1, Bax, and TBARS [199]

Lupus-prone
MRL/lpr mice

Baicalin Inhibiting mTOR activation; reducing mTOR-mediated
Tfh cell expansion; increasing Tfr cells [196]

Naringenin Decreasing anti-nuclear and anti-dsDNA
autoantibodies; increasing the percentage of Treg cells [197]

Icariin Suppressing the NLRP3 inflammasome and the NF-κB
signaling pathway [198]

Procyanidin B2 Inhibiting IL-1β, IL-18, and NLRP3 inflammasome [201]

Astilbin Decreasing functional activated T and B cells [205]

Lupus-prone
SNF1 mice

Epigallocatechin-3-
gallate

Enhancing the Nrf2 antioxidant pathway and inhibiting
the NLRP3 inflammasome [203]

Apigenin
Inhibiting autoantigen-presenting and stimulatory
functions of APCs; causing apoptosis of hyperactive
lupus APCs and T and B cells

[202]

Chronic GVHD
mouse model Quercitrin Inhibiting CD4 + T cell activation [200]

7. Prospects and Conclusions

CKD is a public health epidemic associated with an increased risk of death. Flavonoids
are groups of various compounds found naturally in many plants and fruits and have
been reported to possess a wide range of health benefits. This review of recent progress
in the role and mechanisms of action of flavonoids in CKD shows that flavonoids can
attenuate kidney injury both directly and indirectly (Figure 3). Flavonoids exert significant
biological activities in CKD, such as antidiabetic, anti-inflammatory, antihypertensive, and
antioxidant effects, and alleviate renal fibrosis. These data support a role of flavonoids
as potential compounds for further studies to develop new therapeutic agents for CKD.
However, few clinical studies have been carried out, which indicates that the clinical
application of flavonoids needs further research. In addition, it is important to determine
the metabolites produced after the administration and improve the bioavailability, which
may also contribute to better effects of flavonoids.
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Abbreviations

CKD: chronic kidney disease; GFR: glomerular filtration rate; ESRD: end-stage renal
disease; ACR: albumin-to-creatinine ratio; ECM: extracellular matrix; GBM: glomerular
basement membrane; DM: diabetes mellitus; DN: diabetic nephropathy; HN: hypertensive
nephropathy; GN: glomerulonephritis; LN: lupus nephritis; GLUT-4: glucose transporter
type 4; PI3K: phosphoinositide 3-kinases; AMPK: 5′-AMP-activated protein kinase; IR:
insulin receptor; IRS-1: insulin receptor substrate-1; EGCG: epigallocatechin gallate; AKT:
protein kinase B; MAPK: mitogen-activated protein kinase; Bcl-2: B-cell lymphoma 2; STZ:
streptozotocin; NO: nitric oxide; ROS: reactive oxygen species; RAAS: renin–angiotensin–
aldosterone system; ET-1: endothelin-1; PYK2: proline-rich tyrosine kinase 2; cAMP: cyclic
adenosine monophosphate; MHC-II: major histocompatibility complex II; IL-6: interleukin-
6; IL-12: interleukin-12; TNF-α: tumor necrosis factor alpha: ICAM-1: intercellular cell
adhesion molecule-1; MCP-1: monocyte chemotactic protein-1; PKC: protein kinase C;
COX-2: cyclooxygenase-2; PGE2: prostaglandin E2; LOX-1: lipoxygenase-1; NF-κB: nuclear
factor kappa B; IL-1β: interleukin-1 beta; GSH: glutathione; SOD: superoxide dismutase;
CAT: catalase; MDA: methane dicarboxylic aldehyde; NADPH: nicotinamide adenine dinu-
cleotide phosphate; Nrf2: Nuclear factor erythroid 2; KEAP1: kelch-like ECH-associated
protein 1; NLRP3: NOD-like receptor family, pyrin domain containing 3; AGEs: advanced
glycation end products; GSH-Px: glutathione peroxidase; TGF-β1: transforming growth
factor beta 1; CTGF: connective tissue growth factor; TRAF6: tumor necrosis factor receptor
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associated factor 6; HO-1: heme oxygenase-1; GLP-1: glucagon-like peptide-1; RhoA: ras
homolog family member A; MMPs: matrix metalloproteinases; Smad: mothers against DPP
homolog; AQP2: aquaporin 2; AQP3: aquaporin 3; V2R: arginine vasopressin receptor 2;
GRP78: glucose-regulated protein 78; CHOP: C/EBP-homologous protein; STAT3: signal
transducer and activator of transcription 3; mTOR: mammalian target of rapamycin; GST:
glutathione S-transferase; TXA2: thromboxane A2; GSPE: grape seed proanthocyanidins;
JNK: c-Jun N-terminal kinase; eNOS: endothelial nitric oxide synthase; MFN-1: mitofusin 1;
ERK: extracellular signal-regulated kinase; HIF-1α: hypoxia inducible factor 1; ANGPTL4:
angiopoietin like 4; CCL2: C-C motif chemokine ligand 2; Bax: Bcl2 associated X; TBARS:
thiobarbituric acid reactive substances; APCs: antigen-presenting cells; CXCL-1: C-X-C
motif chemokine ligand 1; CXCL-2: C-X-C motif chemokine ligand 2; CCL3: C-C motif
chemokine ligand 3.
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