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Abstract

The rubber tree [Hevea brasiliensis (Willd. Ex Adr. de Juss.) Muell.-Arg] is the main source

of natural rubber in the world. However, in the Amazon region, its production is reduced by

biotic and abiotic limitations, which have prompted breeding programs in order to identify

desirable agronomic and physiological indicators. The objective of this study was to analyze

the temporal dynamics of photosynthetic responses based on the parameters of leaf gas

exchange and chlorophyll a fluorescence in 10 rubber tree clones during the immature

phase (pre-tapping) in three large-scale clone trials, during daily cycles and under two cli-

matic periods (dry and rainy) in the Caquetá region (Colombian Amazon). The variables A,

LT, ΦPSII, ETR and qP were significantly higher in the dry period, where the highest values

of PAR, AT and VPD were seen. In San Vicente del Caguán and Florencia, the highest aver-

ages were estimated for A, E and gs, as compared with Belén de los Andaquı́es. In Floren-

cia, the highest fluorescence parameters of chlorophyll a were recorded. At 9:00 h and

12:00 h, the highest means of A, E,ΦPSII and ETR were observed. The majority of the

clones displayed the highest Fv/Fm mean (0.82–0.84) in the dry period. The clones FX 4098,

FDR 4575, MDF 180, GU198 and FDR 5788 represent genotypes with the best photosyn-

thetic performance (greater photosynthetic rates and better ability of the photosynthetic

apparatus to capture, use and dissipate light energy). These desirable genotypes constitute

a promising gene pool for expanding the genetic resource of rubber trees in the Colombian

Amazon.

Introduction

The rubber tree [Hevea brasiliensis (Willd. Ex Adr. de Juss.) Muell.-Arg] is a South American

(Amazon region) native species and is the most important natural rubber source globally [1].
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Worldwide, the Asia-pacific region produces 91.2% of natural rubber, Africa produces 6.8%

and Central and South America produce 2.0% [2].

Breeding programs for this species have used domestication as the main strategy in order to

generate genotypes with high productive performance and tolerance to the principal biotic

and abiotic limitations of crops [3]. In this sense, various efforts have been made to select

more productive varieties that adapt to different agro-climatic conditions, based on the evalua-

tion of agronomic parameters related to yield, biomass production, water use efficiency and

diseases resistance [4–10].

In Colombia, in 2008, SINCHI (Amazonian Institute of Scientific Research), the University

of the Amazon and the Association of Rubber Reforesters and Cultivators of Caquetá (ASO-

HECA) began expanding the genetic resources of H. brasiliensis in Caquetá (Amazon region)

by evaluating American-origin clones in large-scale clone trials [11], in order test growth,

nutritional behavior, reaction to diseases and pests, phenology and, lastly, to assess latex pro-

duction (tapping) over a period of 5–10 years.

However, an important aspect in rubber breeding programs is the selection of genotypes

resistant to environmental variations by monitoring the physiological response of plants under

in vivo conditions and evaluating the ability of plants to survive in adverse environmental con-

ditions [12–14]. Knowledge on this response will be useful for understanding the adaptive

potential of these rubber clones in different environments, minimizing downtime and maxi-

mizing productive performance.

In the genetic breeding programs of various crops, a method of rapid and early selection of

genotypes with desirable characteristics, such as high yield or tolerance to environmental

stress, has been implemented based on the analysis of physiological characteristics [10] as

reported in Gmelina arborea Roxb. [15], Coffea spp. [16], Eucalyptus spp. [17], Pinus spp. [18]

and Populus spp. [19].

The most commonly used physiological parameters include relationships with photosynthe-

sis because of the immediate response of the photosynthetic apparatus to most biotic and abiotic

factors that can cause stress conditions [20]. According to Holá et al. [20], there are three catego-

ries of photosynthetic parameters recommended in breeding programs: 1) variables associated

with gas exchange, 2) content of photosynthetic pigments (e.g. chlorophyll a and b, carotenoids)

and 3) chlorophyll a fluorescence. Brestic et al. [21] mentioned that the gas exchange measure-

ments are supported by continuous measurements of chlorophyll fluorescence that provide

quite a precise estimation of photosynthetic performance, and chlorophyll fluorescence repre-

sents a unique tool for diagnostics of plant health status, photosynthetic performance as well as

effects of plant stress on plants and assessment of plant stress tolerance [22,23].

The photosynthesis is the key process necessary for plant production. Through the process

of photosynthesis of C3 plants is the net result of concurrent processes in which light energy is

used to produce ATP and NADPH in the light reaction [24] and subsequently, CO2 is fixed

(carboxylation) and released (photorespiration, day respiration) [25]. And the gas exchange

measurements are essential for the characterization of leaf photosynthetic properties, includ-

ing stomatal conductance, carboxylation rate, or water use efficiency [25]. Since rubber is a

perennial species that requires more than six years of growth before latex can be harvested

(unproductive period) and another seven years to assess its potential yield in the productive

period [26], it is essential to analyze this type of physiological indicator, which facilitates the

identification of the adaptive potential of new genetic materials in the face of various environ-

mental conditions and, thus, optimizes the growth phase in order to reduce the time required

to start the productive phase.

Since field conditions expose rubber trees to various environmental variations throughout

the day and at different times of the year, in this study hypothesized that these variations have
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differential effects on the photosynthetic performance of H. brasiliensis genotypes with differ-

ent adaptive capacities. To test this hypothesis, the objective of this study was to analyze the

temporal dynamics of photosynthetic responses based on the parameters of leaf gas exchange

and chlorophyll a fluorescence in nine promising American clones and the IAN 873 clone

(control) during the immature phase (pre-tapping) in large-scale clone trials as a measurement

of the clones’ specific adaptation to agro-climatic conditions in the Colombian Amazon.

Materials and methods

Study area

Experimental sites. The experiments were established in July, 2009 on threes farms

owned by rubber producers of the Association of Rubber Reforesters and Cultivators of

Caquetá (ASOHECA) in the Department of Caquetá (Colombian Amazon), on land with a

moderately undulating topography and edaphoclimatic variations. The study area was had

compact soils with very low fertility, high acidity and high aluminum contents as a result of

being abandoned pastures (> 20 years land use) with an extensive livestock farming traditional

in the region. The first experiment was established in Belén de los Andaquı́es (1˚25’28’’ north

and 75˚52’11’’ west, at an elevation of 300 m above sea level). The second experiment was

established in Florencia (1˚37’03’’ north and 75˚37’03’’ west, at an elevation of 270 m above sea

level). The third experiment was established in San Vicente del Caguán (2˚2’40.8’’ north and

74˚55’11.7’’ west, at an elevation of 344 m above sea level).

Climate. Caquetá is a humid tropical region that spans two hemispheres, with almost ver-

tical solar radiation during the entire year [27]. Caquetá has a monomodal climatic regime

[28,29], subdivided into the “ecological summer” period that corresponds to the months of

November to February (dry period) and a “ecological winter” period that corresponds to the

months of March to June (rainy period), the other months correspond to an interval close to

the average of the precipitation volumes [30].

According to the Caldas-Lang climate classification [27], Belén de los Andaquı́es and Flor-

encia have a warm-humid climate, while San Vicente del Caguán is a warm-semi-humid cli-

mate. Florencia has an average temperature of 25ºC, an average relative humidity of 84%, a

solar brightness of 1,465.4 h light and a precipitation of 3,669 mm year-1. Belén de los Anda-

quı́es has an average temperature of 25ºC, an average relative humidity of 85.7%, a solar bright-

ness of 1,462.3 h light and a rainfall of 3,471 mm year-1. San Vicente del Caguán has an

average temperature of 25.4ºC, an average relative humidity of 79%, a solar brightness of

1,552.3 h light and a rainfall of 2,503 mm year-1.

The microclimatic factors: photosynthetically active radiation (PAR), relative humidity

(RH), air temperature (AT) and vapor pressure deficit (VPD) were provided by a SINCHI

weather station (Amazonian Institute of Scientific Research) in each experimental site. The

data on an average day at 6:00, 9:00, 12:00, 15:00 and 18:000 h was calculated in two climatic

period (dry and rainy) for PAR, RH, AT and VPD (Fig 1).

Soils. Caquetá’s soils are poorly drained, very superficial and deep, with a high aluminum

saturation and low base saturation; it has a low quantity of Calcium, Magnesium, Potassium,

Phosphorus and Sodium [27]. Belén de los Andaquı́es has soils with a pH of 4.8, very acidic,

with an organic matter content of 1.07%, organic carbon content of 0.62%, median saturation

of 27.7%, and a clay texture. Florencia has soils with a pH of 4.85, very acidic, with an organic

matter content of 0.92%, organic carbon content of 0.54%, median saturation of 29.58%, and a

clay texture. San Vicente del Caguán has soils with a pH of 4.89, very acidic, with an organic

matter content of 0.91%, organic carbon content of 0.60%, median saturation of 28.75%, and a

clay-sandy loam texture.
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Plant material

The 10 rubber clones used in these trials were H. brasiliensis clones from Central and South

America (Table 1) and were chosen because of their good phytosanitary, vigor and production

characteristics, mostly achieved on an experimental scale (plant breeding) in countries such as

Brazil [31–33] and Ecuador [34]. Clone IAN 873 was chosen as the control since it is one of

the most widely planted in countries such as Colombia [35].

Experimental design and maintenance of the plots

A large-scale clonal trail (LSCT) was established in each site [36]. Each LSCT followed a ran-

domized complete block design with 10 treatments (genotypes) and four replications ran-

domly arranged in Fisher blocks, with 60 trees per replicate and per clone. The planting

Fig 1. Daily microclimatic variation in study area (Caquetá, Colombia). Data averages at Belén de los Andaquı́es, Florencia and San Vicente del Caguán in two

climatic period: dry (November 2017 to January 2018) and rainy (May to June 2018). Photosynthetically active radiation (PAR), relative humidity (RH), atmosphere

temperature (AT) and vapor pressure deficit (VPD). The values represent the mean, and the bars the standard error (n = 60).

https://doi.org/10.1371/journal.pone.0226254.g001
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distance was 7.0 m × 3.0 m, providing a density of 476 trees per hectare, for a total LSCT area

of 5.04 ha. The unit plot was 1,260 m2, corresponding to 60 trees organized in 3 rows of 20

trees. The trial was surrounded by one row of Colombian mahogany (Cariniana pyriformis
Miers) as a windbreaker barrier.

Each plot employed fertilization management with a frequency every of six months using a

compound fertilizer [N (15%), P2O5 (15%), K2O (15%), CaO (2.2%), S-SO4 (1.7%)] with a dos-

age of 150 g plant-1, a fertilizer with minor elements [N (8%), P2O5 (5%), CaO (18%), MgO

(6%), S (1.6%), B (1%), Cu (0.14%), Mo (0.005%) and Zn (2.5%)] (75 g plant-1) and organic

matter (1,000 g plant-1). Weeds were removed with mechanical controls with a frequency of

every three months. Phytosanitary controls were not carried out.

Photosynthetic and micro-environmental parameters

The photosynthetic and micro-environmental parameters at the leaf level were measured in

each site for two climatic periods: a) dry period: December 13–17, 2017 in San Vicente del

Caguán; January 12–16, 2018 in Belén de los Andaquı́es; January 16–20, 2018 in Florencia. b)

rainy period: May 10–14, 2018 in San Vicente del Caguán; May 19–24, 2018 in Belén de los

Andaquı́es; June 6–10, 2018 in Florencia.

The photosynthetic light response curves (A/PAR), leaf gas exchange, micro-environmental

parameters at the leaf level and chlorophyll a fluorescence were measured with a portable

photosynthesis system (CIRAS-3 PP Systems, USA) coupled with a chlorophyll fluorescence

module (CFM-3 PP Systems, Amsbury, MA, USA). The CO2 flow was maintained at a concen-

tration of 390 μmol mol-1, with a cuvette temperature (CT) of 27˚C, an average relative humid-

ity (RH) of 70% and a vapor pressure deficit (VPD) 2.5 kPa on average.

The photosynthetic light responses curves (A/PAR) were done per clone in order to deter-

mine the constant value of PAR to be used in all measurements with CIRAS-3 in all clones for

all three experimental sites (PAR = 1,067 μmol photons m-2 s-1). The PAR intensity was modu-

lated in decreasing order in 16 steps between 2,500 to 0 μmol photons m-2s-1, between 9:00 to

12:00 h. The parameters derived from the A/PAR curve included the maximum photosynthetic

rate at saturating light (Amax), the light compensation point (LCP), the light saturation point

Table 1. Plant material description. The ten rubber tree clones tested in Florencia, Belén de los Andaquı́es and San Vicente del Caguán, Caquetá (Colombia), 2017–

2018.

Clone Parents (Female x Male) Country of origin Year of introduction into Caquetá (Colombia)

CDC 56 MDX 91 x RRIM 614 Guatemala 2002

CDC 312 AVROS 308 x MDX 40 Guatemala 2002

GU 198 GT 711 x FX 16 Guatemala 2000

IAN 873 (control) PB 86 x FA 1717 Brazil 1964

FX 4098 PB 86 x B 110 Brazil 2000

FX 3899 P1 (polyploid) F4542 x AVROS 363 Brazil 1996

MDF 180 Primary clone Peru 2002

FDR 4575 FDR 18 x FX 3032 Brazil 2002

FDR 5597 HAR 68 x TU 42–525 Brazil 2002

FDR 5788 HAR 8 x MDF 180 Brazil 2002

AVROS: Algemene Vereniging Rubberplanters Oostkust Sumatra; B: Belterra, Brazil; CDC: Clavellinas Dothidella Cross; FB: Ford Belem; FDR: Firestone Dothidella

Resistant; FX: Ford Cross; MDF: Madre de Dios Firestone; MDX: Madre de Dios Cross; HAR: Harbel Estate (Firestone), Liberia; TU: Turrialba, Costa Rica; PB: Prang

Besar, Malaysia; GT: Gondang Tapen, Indonesia; FA: Ford Acre; F: Ford, Brasil; GU: Guatemala; IAN: Instituto Agronômico do Norte; RRIM: Rubber Research

Institute of Malaysia

https://doi.org/10.1371/journal.pone.0226254.t001
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(LSP), the dark breathing rate (Rd), and the apparent quantum efficiency (Aqe), which were fit

to the Mitscherlich Model [37].

The gas exchange variables were measured at the foliar level: net photosynthesis rate (A)

(μmol CO2 m-2 s-1), transpiration rate (E) (mmol H2O m-2 s-1), stomatal conductance (gs)
(mmol H2O m-2 s-1), concentration of intercellular CO2 (Ci) and leaf temperature (LT) [38], as

well as the micro-environmental parameters PAR, RH, VPD y AT. The measurements were

taken in a daily cycle between 6:00 h and 18:00 h at 3-hour intervals on sunny days. Two

healthy leaves with physiological maturity in foliar stage D (140–150 days old) were selected

[39], which were fully expanded and found in the middle-third of the canopy, in four trees per

clone. The chlorophyll content index (CCI) was also measured as a leaf selection criterion,

defining a range between 18 to 38 units in the central leaflet of each leaf. The CCI was mea-

sured with a chlorophyll concentration meter (MC-100, Apogee Instruments Inc., USA).

The chlorophyll a fluorescence measurement was recorded simultaneously with the same

leaves used for the gas exchange parameters. A predawn measurement (3:00 h) was taken to

ensure that the leaves were adapted to darkness. Following this period of adaptation to dark-

ness, the leaf tissue was exposed to a weak modulated pulse (0.03 μmol m-2 s-1, non-actinic) to

obtain the minimum fluorescence (Fo). A pulse of white saturating light (6,000 μmol m-2 s-1)

was then emitted for 1 s to obtain the maximum fluorescence (Fm) and, thus, calculate the

maximum photochemical efficiency of PSII (Fv/Fm) [40]. Subsequently, a pulse of actinic light

(9,000 μmol photons m-2 s-1) was used to measure the steady state fluorescence yield (Fs) and

the maximum light adapted fluorescence (Fm'). Once the actinic light was removed, the leaf

was exposed to a pulse of far red light in order to oxidize the quinone QA to the maximum and

estimate the minimum fluorescence in light-adapted leaves (Fo'), guaranteeing that the PSII

reaction centers opened again. The parameters of chlorophyll fluorescence estimated in dark-

adapted leaves were:

The efficiency of excitation energy captured by open PSII reaction centers (Fv'/Fm'), can be

used to provide an estimate of the maximum efficiency of PSII photochemistry in the light-

adapted state [23], and was calculated as:

Fv
0=Fm

0 ¼ Fm
0 � Fo

0=Fm
0 ð1Þ

The parameter qP gives an indication of the proportion of PSII reaction centers that are

already open [41]. This was calculated as:

qP ¼ ðFm
0 � FsÞ=ðFm � Fo

0Þ ð2Þ

To evaluate the changes in the apparent rate constant for excitation decay by heat loss

induced by light relative to this constant rate in the dark, the parameter NPQ was assessed

[40]. This parameter was calculated as:

NPQ ¼ ðFm � Fm
0Þ=Fm

0 ð3Þ

The parameters of chlorophyll a fluorescence estimated in light-adapted leaves in the daily

cycle (6:00 to 18:00 h) were:

The photochemical efficiency of PSII (FPSII) measures the proportion of the light that is

absorbed by chlorophyll associated with PSII and is used in photochemistry [42]; it was calcu-

lated as:

FPSII ¼ ðFm
0 � FtÞ=Fm

0 ð4Þ
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The apparent electron transport rate (ETR), which is an indicator of overall photosynthetic

capacity in vivo, was determined as follows [41]:

ETR ¼ PAR x 0:84 x 0:5 x FPSII ð5Þ

where PAR is absorbed light, and 0.50 is the factor that accounts for the partitioning of energy.

Data analysis

A mixed general linear model (MGLM) was adjusted to analyze the effect of the fixed factors

(sources of variation): climatic period, site, clone, hour and their interactions on the physiolog-

ical variables. The assumptions of the GLM (normality and homogeneity of variance) were

evaluated using an exploratory residual analysis. The nested blocks in the sites and the plots

associated with the genotypes within the blocks were included as random effects. The residual

variance was modeled to contemplate different variances (Heteroscedasticity), while the resid-

ual correlation for the successive observations (hour) carried out on the same plant was con-

templated with the models generally used for longitudinal data. Akaike (AIC), Bayesian (BIC)

and Log lik criteria were used to select the structure of residual variances and correlations [43].

The analyses were carried out using the lme function in the nlme package [44] in R language

software, version 3.4.1 [45], and the interface in InfoStat v. 2017 [46]. Differences between

mean variables in all fixed factors were analyzed with Fisher’s LSD post-hoc test at a signifi-

cance of α = 0.05. The coefficients of correlation (Pearson’s test) between the physiological var-

iables were estimated for each of the periods.

To explore the relationships between the physiological variables and the microclimatic

parameters associated with 10 rubber tree clones, a Co-Inertia analysis was carried out on the

covariance matrix [47]. A Monte Carlo test was carried out to determine the significance of

the Co-Inertia values, using ADE-4 [48], included in the R 3.4.1 package [45].

Results

Diurnal changes in the microclimatic factors

According to Fig 1, the PAR (682 μmol photon m-2 s-1), AT (28ºC) and VPD (1.0 kPa) were

always highest in the dry period. The highest values of PAR and AT were observed from 9:00

to 12:00 h in San Vicente del Caguán (1,600 μmol photon m-2 s-1 and 32ºC, respectively). In

Belén de los Andaquı́es and Florencia, the highest PAR values were recorded at 12:00 h with

1,434 and 1,274 μmol photon m-2 s-1, respectively. The higher VPD values were observed from

12:00 to 15:00 h (1.6 kPa) in San Vicente del Caguán and Belén de los Andaquı́es. The RH
acted contrary to the PAR, with the minimum values generally at 12:00 and 15:00 h, below

60%; San Vicente del Caguán recorded the lowest values in this period climatic.

Meanwhile, the rainy period reached the maximum RH, with average of 86%, but had the

lowest values of AT (26ºC), PAR (558 μmol photon m-2 s-1) and DPV (0.43 kPa). The maxi-

mum RH values were recorded at 6:00 and 18:00 h in Florencia, above 95%, and the lowest

value was in Belén de los Andaquı́es and San Vicente del Caguán at 12:00 and 15:00 h with

75%.

Photosynthetic light response

Significant differences in the photosynthetic response to light were observed between the 10

clones (Table 2). Clone CDC 56 presented the highest Amax, while clone FDR 5788 had a

21.9% lower CO2 assimilation rate. However, this higher carbon fixation was not always

related to greater efficiency of the photosynthetic apparatus (Aqe), as occurred in clone GU
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198. Clone FDR 5597 had the highest LCP value, double that registered for clone FDR 4575,

which had the lowest value. The LSP in most of the clones was above 1,000 μmol photons

m-2s-1, where clone FDR 5597 had the highest value, while GU 198 presented the lowest satura-

tion point. As for Rd, clone FDR 4575 presented the lowest value in this process, while clone

FX 3899 P1 had 63% higher substrate consumption.

Foliar micro-environmental parameters

The micro-environmental parameters measured at the foliar level showed that in dry period

recorded the highest average values of PAR (258 μmol m-2 s-1), AT (33ºC) and VPD (2.6 kPa).

The rainy period recorded the highest average values of RH, with 50%. The maximum values

of PAR (560 μmol m-2 s-1), RH (54%) and AT (32ºC) were obtained in San Vicente del Caguán

in both climatic periods, while the VPD (2.9 kPa) was higher in Belén de los Andaquı́es in the

dry period. At the three sites, the maximum PAR (480 μmol m-2 s-1) occurred at midday in the

dry period, as compared with the rainy period (430 μmol m-2 s-1). This diurnal pattern for

maximum values at midday was also observed for VPD and AT.

Gas exchange and chlorophyll fluorescence a
Significant effects were observed from all of the principal effects on the gas exchange variables

(with the exception of LT) and the fluorescence parameters of chlorophyll a (Table 3). There

were significant differences in the higher order interaction for all the gas exchange variables,

with the exception of the FPSII and ETR variables. The parameters Fv/Fm, Fv'/Fm' and qP
showed significant differences between the periods, between the sites and in the interaction

between both factors. qP presented significant differences in the interaction between the fac-

tors period, site and clone.

Most of the photosynthetic parameters were significantly higher in the rainy period, except

for A, LT, FPSII, ETR and qP, with higher means in the dry period (Table 4). In San Vicente del

Caguán and Florencia, the highest averages were estimated for A, E and gs, as compared with

Belén de los Andaquı́es (Table 4). In Florencia, the highest fluorescence parameters of chloro-

phyll a were recorded.

Table 2. Parameters derived from the photosynthetic light (A/PAR) response curves of 10 rubber tree (Hevea brasiliensis) clones in Colombian amazon. Amax,

light-saturated net carbon assimilation rate; LCP, light compensation point; LSP, light saturation point; Rd, dark respiration rate; Aqe, quantum efficiency. Data are shown

as mean value ± SE (n = 4).

Clone Amax
(μmol m-2 s-1)

LCP
(μmol m-2 s-1)

LSP
(μmol m-2 s-1)

Rd
(μmol m-2 s-1)

Aqe
a

(μmol CO2 μmol photons-1)

CDC 312 12.89 ± 0.44bbc 94.52 ± 9.50 a 1160.52 ± 28.76 c -2.92 ± 0.35 a 2.2 ± 0.2 c

CDC 56 15.03 ± 0.25 a 74.13 ± 4.62 b 1225.41 ± 13.19 b -2.47 ± 0.19 a 2.1 ± 0.1 c

FDR 4575 14.97 ± 0.35 a 52.91 ± 7.03 c 1054.02 ± 19.62 e -1.99 ± 0.32 b 2.4 ± 0.2 c

FDR 5597 13.11 ± 0.51 b 109.23 ± 10.28 a 1321.11 ± 30.87 a -3.04 ± 0.34 a 1.9 ± 0.2 c

FDR 5788 11.73 ± 0.18 c 96.10 ± 4.29 a 1097.21 ± 12.85 d -2.94 ± 0.16 a 2.3 ± 0.1 c

FX 3899 P1 13.62 ± 0.42 b 91.67 ± 8.77 a 1138.30 ± 25.96 c -3.15 ± 0.37 a 2.2 ± 0.2 c

FX 4098 13.09 ± 0.39 b 60.09 ± 8.19 c 854.08 ± 25.21 f -2.54 ± 0.43 b 3.0 ± 0.3 b

GU 198 12.67 ± 0.26 b 53.23 ± 5.60 c 772.79 ± 16.85 h -2.33 ± 0.30 b 3.2 ± 0.3 a

IAN 873 12.75 ± 0.34 b 93.64 ± 7.35 a 1140.27 ± 22.05 c -2.91 ± 0.28 a 2.2 ± 0.2 c

MDF 180 12.95 ± 0.15 b 55.98 ± 3.30 c 908.79 ± 9.59 g -2.15 ± 0.16 b 2.7 ± 0.1 b

a1x10-3

bStandard error
cValues in each column followed by the same letter do not differ statistically (Fisher’s LSD test, p< 0.05)

https://doi.org/10.1371/journal.pone.0226254.t002
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Overall, the means of A, E, gs,FPSII and ETR were significantly higher in the clones CDC

312, FDR 4575, FDR 5788, FX 4098, GU 198 and the IAN 873 control (Table 4). The clones

with lower averages in parameters A, E and gs were FX 3899 P1 and FDR 5597. At 9:00 and

12:00 h, the highest averages of A, E, FPSII and ETR were seen (Table 4). The means of gs and

Ci were significantly higher at 6:00 h. At 12:00 h the highest average for LT was observed.

As shown in Fig 2, A showed an increase between 9:00 and 12:00 h, followed by a progres-

sive decline towards sunset. This pattern only differed in clones CDC 312, FX 4098 and GU

198 in Belén de los Andaquı́es in the rainy season, where the peaks occurred between 12:00

and 15:00 h (Fig 2B). In the rainy period in San Vicente del Caguán, it was observed that clones

FX 4098, CDC 312, MDF 180, FDR 5597 and FX 3899 P1 recorded the lowest A average at

9:00 h (Fig 2F).

According to Fig 3, independent of the period, all rubber clones had the highest average Fv/
Fm (0.82–0.84) in Belén de los Andaquı́es and Florencia (Fig 3A and 3B), as compared with

San Vicente del Caguán (0.77–0.79) (Fig 3C). When including the effect of the period, it was

observed that most of the clones had the highest average of Fv/Fm (0.82–0.84) in the dry period

of Belén de los Andaquı́es and Florencia. However, in the rainy period of San Vicente del

Caguán, all clones presented means significantly similar to those observed in the other two

sites.

Pearson correlation

The Pearson’s correlation analysis showed a positive correlation between A and the parameters

E and gs in both periods, and between E and gs, while the correlation of Ci with these parame-

ters was negative (except with E in the dry period) (Table 5). LT presented a negative correla-

tion with A, E and gs in both periods and showed a positive correlation with FPSII, ETR, Fv/Fm
and Fv'/Fm' in the dry period, but a negative correlation in the rainy season with FPSII and ETR

Table 3. Analysis of variance of the fixed effects. Period (P), site (S) clone (C), hour (H), and their interactions, on the net CO2 assimilation rate (A), transpiration rate

(E), stomatal conductance (gs), intercellular CO2 concentration (Ci), leaf temperature (LT), photochemical efficiency of PSII (FPSII), electron transport rate (ETR), maxi-

mum photochemical efficiency of PSII (Fv/Fm), efficiency of excitation energy captured by open PSII reaction centers (Fv'/Fm'), photochemical quenching coefficient (qP),

and non-photochemical quenching (NPQ).

Variables F based P values

A E gs Ci LT FPSII ETR Fv/Fm Fv'/Fm' qP NPQ
P <0.0001 0.0001 <0.0001 <0.0001 0.1645 0.0097 0.0009 <0.0001 <0.0001 <0.0001 0.5387

S 0.0004 0.0003 0.0009 0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0102 0.5893

C <0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 0.1284 0.4457 0.0567 0.6490

H <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - - - -

P x S 0.0012 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0220 0.2861

P x C <0.0001 <0.0001 <0.0001 0.2292 <0.0001 0.0052 0.0064 0.1705 0.0750 0.0017 0.1034

P x H <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - - - -

S x C <0.0001 <0.0001 <0.0001 0.0079 <0.0001 <0.0001 <0.0001 0.1507 0.2941 0.3902 0.8141

S x H <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - - - -

C x H <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0531 0.0473 - - - -

P x S x C <0.0001 <0.0001 <0.0001 0.0280 <0.0001 0.0008 0.0009 0.0420 0.0732 0.0021 0.8236

P x S x H <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 - - - -

P x C x H 0.0057 0.1495 0.0025 <0.0001 <0.0001 0.1438 0.1550 - - - -

S x C x H <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0003 0.0002 - - - -

P x S x C x H 0.0089 0.0271 0.0124 <0.0001 <0.0001 0.0670 0.0668 - - - -

- Does not apply

https://doi.org/10.1371/journal.pone.0226254.t003
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and a positive correlation in both periods with Ci (Table 5).FPSII and ETR had a positive corre-

lation with each other and with the parameters Fv/Fm and Fv'/Fm' in the two periods (Table 5).

In the dry period, A and E presented a negative correlation with FPSII, ETR, Fv/Fm and Fv'/Fm'
(Table 5).

Co-Inertia analysis

The Montecarlo test of the Co-Inertia analysis was very significant (p< 0.01), which means

the co-structure described by axes 1 and 2 was similar to the structures described in the indi-

vidual analysis (principal component analysis) of each group of variables (micro-

Fig 2. Daily net CO2 assimilation rate (A) in 10 rubber tree (Hevea brasiliensis) clones under two climatic periods at three sites in Caquetá (Colombia). (A), (C)

and (E), dry period; (B), (D) and (F), rainy period; (A) and (B), Belén de los Andaquı́es; (C) and (D), Florencia; (E) and (F), San Vicente del Caguán. Means for the dry

and rainy periods followed by an inverted triangle and for the clones followed by an asterisk (�) for each time of day were significantly different according to Fisher’s

LSD test, (p< 0.05). Bars represent the standard error of the mean; n = 4.

https://doi.org/10.1371/journal.pone.0226254.g002
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Fig 3. Maximum photochemical efficiency of PSII (Fv/Fm) in 10 rubber tree (Hevea brasiliensis) clones under two

climatic periods at three sites in Caquetá (Colombia). Measurements carried out in leaves adapted to darkness (predawn,

3:00 h). (A), Belén de los Andaquı́es; (B), Florencia; (C), San Vicente del Caguán. Means for the Belén de los Andaquı́es,

Florencia and San Vicente del Caguán sites followed by an inverted triangle and for the dry and rainy periods followed by
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environmental and photosynthesis). The first two axes of the Co-Inertia analysis explained

98.52% and 0.92% of the total variability, which indicates that the studied variables were suffi-

cient to explain the ordination observed in the evaluated clones (Fig 4).

According to Fig 4, the intensity of the relationship between the studied groups of variables

was different in the different clones. The strongest relationship was observed in the clones

with the highest gas exchange values and the lowest micro-environmental parameters. The

clones with better photosynthetic performance (desirable genotypes: FDR 5788, GU 198 and

FX 4098) were located to the right of the ordination axis 1, which demonstrated greater photo-

synthetic rates (A) and a better ability in the photosynthetic apparatus (PSII) to capture and

use light energy (Fv/Fm, Fv'/Fm' and qP). The FX 3899 P1 and FDR 5597 clones were mainly

grouped towards the left of the ordination axis 1, with the lowest photosynthetic performance

and the highest values for the micro-environmental parameters (except the RH). The MDF

180 clone, with the best photosynthetic capacity to dissipate light energy (highest value of

NPQ) (Table 4), was located on the positive extreme of axis 2 of the ordination plane.

an asterisk (�) for each clone were significantly different according to Fisher’s LSD test, (p< 0.05). Bars represent the

standard error of the mean; n = 4.

https://doi.org/10.1371/journal.pone.0226254.g003

Table 5. Pearson’s correlation coefficients for leaf gas exchange and fluorescence parameters of chlorophyll a
measured in 10 rubber tree (Hevea brasiliensis) clones in the Colombian Amazon. Dry period (below the diagonal)

and rainy period (above the diagonal).

Parameters A E gs Ci LT FPSII ETR Fv/Fm Fv'/Fm' qP NPQ
A . . . 0.92 �� 0.85 �� -0.53

��

-0.61
��

0.66 �� 0.67 �� 0.33 �� 0.33 �� 0.04 ns 0.00 ns

E 0.89 �� . . . 0.95 �� -0.37
��

-0.67
��

0.61 �� 0.61 �� 0.30 �� 0.30 �� -0.01

ns

0.01 ns

gs 0.83 �� 0.93 �� . . . -0.23
��

-0.73
��

0.60 �� 0.60 �� 0.23�� 0.22 �� -0.07

ns

0.03 ns

Ci -0.53
��

0.93 �� -0.12ns . . . 0.18 � -0.47
��

-0.47
��

-0.50
��

-0.48
��

-0.01

ns

-0.06

ns

LT -0.61
��

-0.63
��

-0.72 �� 0.21 �� . . . -0.44
��

-0.43
��

-0.17

ns

-0.16

ns

-0.01

ns

-0.05

ns

FPSII -0.25
��

-0.19 � -0.12

ns

0.42 �� 0.43 �� . . . 1.00 �� 0.34 �� 0.34 �� -0.08

ns

0.00 ns

ETR -0.25
��

-0.19 � -0.12

ns

0.42 �� 0.43 �� 1.00 �� . . . 0.35 �� 0.34 �� -0.09

ns

0.00 ns

Fv/Fm -0.54
��

-0.46
��

-0.32 �� 0.57 �� 0.39 �� 0.84 �� 0.84 �� . . . 0.95 �� -0.05

ns

0.01 ns

Fv´/Fm´ -0.54
��

-0.47
��

-0.33 �� 0.56 �� 0.39 �� 0.83 �� 0.83 �� 0.99 �� . . . 0.03 ns -0.25
��

qP 0.03 ns 0.04 ns 0.01 ns 0.10 ns 0.09 ns 0.13 ns 0.13 ns 0.10 ns 0.09 ns . . . -0.35
��

NPQ 0.11 ns 0.20 � 0.17 ns 0.00 ns -0.04

ns

0.08 ns 0.08 ns -0.00

ns

-0.06

ns

0.14 ns . . .

Net CO2 assimilation rate (A), transpiration rate (E), stomatal conductance (gs), intercellular CO2 concentration (Ci),
leaf temperature (LT), photochemical efficiency of PSII (FPSII), electron transport rate (ETR), maximum

photochemical efficiency of PSII (Fv/Fm), efficiency of excitation energy captured by open PSII reaction centers (Fv'/
Fm'), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ).

�p< 0.05; significant

��p< 0.01, very significant

ns, not significant.

https://doi.org/10.1371/journal.pone.0226254.t005
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Discussion

Although the Amazon region has rainfall throughout the year, it also has seasonality in its pre-

cipitation and radiation [49]. In the present study, not only were there differences in the

microclimatic parameters PAR, AT, VPD and RH between the dry and rainy periods, but there

was also a significant variation in the physiological response between both periods for all the

Fig 4. Results of the Co-Inertia analysis between the foliar micro-environmental parameters and photosynthesis

variables in 10 Hevea brasiliensis clones. (A) a factorial co-Inertia plane for the clones. (B) and (C) the projection of the

micro-environmental and photosynthesis vectors, respectively, in the factorial co-Inertia plane. The arrow head represents

the position of the clones for the photosynthesis variables, and the other extreme shows the micro-environmental

parameters. The bigger the arrow is, the less of a relationship there was between the micro-environmental parameters and

photosynthesis.

https://doi.org/10.1371/journal.pone.0226254.g004
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studied sites. According to Renninger and Phillips [49] and Zhang et al. [50], in the Amazon,

environmental radiation is the most important limiting factor for the rubber plant since, in the

rainy season, cloudiness is greater and the amount of light (‘sun flecks’) that can be used for

photosynthesis is limited [51]. In the present study, this condition was evidenced by a lower A
in the rainy season. However, in the rainy period, the gs and E were higher, which favored sto-

matal opening as a result of higher RH values and lower values of AT and VPD [52]. Likewise,

the positive correlation observed between A and gs and the daytime pattern of these parameters

in both periods suggest that both processes lead to a higher photosynthetic performance in the

morning hours, where there is greater stomatal openings, favoring higher assimilation rates of

CO2 [53]. Light is one of the most important environmental factors that influence both A and

gs, and the variation in light energy received by the plant can create rapid and extreme fluctua-

tions in leaf temperature and leaf–air vapour pressure deficit to which stomata will respond in

conjunction with other environmental cues [54]. In this study, a decreasing pattern for gs at

midday in both seasons was observed. In citrus and many other species, stomata closure has

been observed in plants around midday, the time when reached the highest VPD and tempera-

ture, which generates a reduction in stomata conductance (gs) and thus a characteristic

decrease in CO2 assimilation [51].

Several studies have also reported an increase in photosynthesis in the dry period in the

Amazon region because water is not a limiting factor, but light is [55–57]. Although the dry

evapotranspiration period is greater because of an increase in radiation and temperature [49],

a partial closure of the stomata would be expected because of a higher VPD [52,58] as com-

pared with the rainy period, possibly because of the deep root system of rubber trees, com-

bined with the hydraulic redistribution of the roots [59,60].

In the present study, the variations observed in the photosynthetic responses to light in the

different rubber clones responded to the intraspecific genetic variability of this species, where

these genotypes showed a greater photosynthetic capacity (higher values in Amax, LCP, LSP y

Rd) with respect to other clones analyzed in similar studies [8,61].

These variations also showed the diurnal behavior of the clones in the different areas, where

they evidenced a diurnal behavior for the net photosynthetic rate (A) in the different periods

and sites, with GU 198 and FX 4098 recording higher A values between 9:00 and 12:00 h

(higher PAR). These two clones, despite not reporting the highest Amax, showed high efficiency

in the quantum conversion (Aqe), low light compensation points (PCL) and a higher Amax with

a lower PAR, as compared with the other clones. According to Gunasekera et al. [61], in terms

of increasing productivity in H. brasiliensis, a low PCL value is important since it keeps the

photosynthetic rate (A) positive even when the light intensity is low and, therefore, continues

the accumulation of dry matter under these conditions.

Clones FX 4098, CDC 312, FDR 4575, FDR 5788 and GU 198 recorded the highest average

values of A, E, gs, J andFPSII in both climatic periods during the diurnal cycle, reflecting a greater

physiological capacity of the plants to maintain the photosynthetic apparatus and express better

photosynthetic performance against changes and limitations of the underlying environmental

conditions [62]. This behavior is useful for the selection of promising genotypes because clones

that present a better adaptation in their photosynthetic apparatus to environmental stress factors

will express higher growth rates and greater production potential in the field [10,20,26].

In rubber, photosynthetic rates and efficient water use are physiological variables that have

been associated with high-performance clones [9]. Ahmad et al. [10] found that parameters

such as A, E, gs and stomata characteristics have a positive correlation with latex performance,

making they important parameters for the selection of new clones.

The decrease in the Fv/Fm and Fv'/Fm' in the dry period was possibly related to reversible

changes in the electron transport flow and heat dissipation used by the photosynthetic
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apparatus to adjust the quantum efficiency of the PSII and, thus, avoid damage at the level

of the photosynthetic system [58], which could explain the negative correlation of these param-

eters with A in the dry period. However, the values recorded for Fv/Fm did not indicate photo-

inhibition in any of the sites or periods since the values were above 0.78 [40]. FPSII is the

proportion of absorbed energy being used in photochemistry, and qP gives an indication of

the proportion of PSII reaction centers that are open [22]. In this study, FPSII, J and qP were

higher in both seasons and three LSCT, indicating the rubber’s clones had a high photo-

chemical capacity and a greater efficiency at transferring light energy from the light-harvesting

complex to PSII. Also, NPQ indicates that high levels of light energy that could exceed photo-

synthetic capability will be transformed into thermal dissipation [63], were lower indicate that

dissipation of light energy were used in photochemical processes.

Conclusions

The results of the present study show a significant effect of the phenotypic variation of H. bra-
siliensis on the photosynthetic behavior of rubber, and this, in turn, is directly influenced by

the daily and seasonal micro-environmental variations characteristic of the Colombian Ama-

zon. The best photosynthetic performance was observed in the dry period, between 9:00 and

12:00 h, in Florencia and San Vicente del Caguán.

These results lead to the conclusion that the evaluation of the temporal dynamics of the

parameters of gaseous exchange and fluorescence of chlorophyll a in the rubber clones ana-

lyzed in the present study identifies the unproductive phase of the rubber crop, the potential

physiological adaptation of these genotypes in the face of different agro-climatic conditions in

the Colombian Amazon and, therefore, highlights the greater production potential that these

materials may express differentially in the final phase of the productive evaluation.

The clones FX 4098, FDR 4575, MDF 180, GU198 and FDR 5788 are the genotypes with

the best photosynthetic performance and the best phenotypic plasticity in the different periods

and locations that were studied. These desirable genotypes constitute a promising gene pool

for expanding the genetic resources of rubber trees in the Colombian Amazon region.
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