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Abstract: The present study investigates telomere length (TL) in dividing chorionic cytotrophoblast
cells from karyotypically normal and abnormal first trimester miscarriages and ongoing pregnancies.
Using Q-FISH, we measured relative TLs in the metaphase chromosomes of 61 chorionic villous
samples. Relative TLs did not differ between karyotypically normal samples from miscarriages and
those from ongoing pregnancies (p = 0.3739). However, among the karyotypically abnormal samples,
relative TLs were significantly higher in ongoing pregnancies than in miscarriages (p < 0.0001). Rela-
tive TLs were also significantly higher in chorion samples from karyotypically abnormal ongoing
pregnancies than in those from karyotypically normal ones (p = 0.0018) in contrast to miscarriages,
where relative TL values were higher in the karyotypically normal samples (p = 0.002). In the
karyotypically abnormal chorionic cytotrophoblast, the TL variance was significantly lower than
in any other group (p < 0.05). Assessed by TL ratios between sister chromatids, interchromatid TL
asymmetry demonstrated similar patterns across all of the chorion samples (p = 0.22) but signifi-
cantly exceeded that in PHA-stimulated lymphocytes (p < 0.0001, p = 0.0003). The longer telomere
was predominantly present in the hydroxymethylated sister chromatid in chromosomes featuring
hemihydroxymethylation (containing 5-hydroxymethylcytosine in only one sister chromatid)—a
typical sign of chorionic cytotrophoblast cells. Our results suggest that the phenomena of interchro-
matid TL asymmetry and its association to 5hmC patterns in chorionic cytotrophoblast, which are
potentially linked to telomere lengthening through recombination, are inherent to the development
programme. The TL differences in chorionic cytotrophoblast that are associated with karyotype and
embryo viability seem to be determined by heredity rather than telomere elongation mechanisms.
The inheritance of long telomeres by a karyotypically abnormal embryo promotes his development,
whereas TL in karyotypically normal first-trimester embryos does not seem to have a considerable
impact on developmental capacity.

Keywords: telomeres; chorionic cytotrophoblast; pregnancy; miscarriage; telomere length; 5-hydroxy-
methylcytosine; epigenetics; heredity

1. Introduction

Telomeres are dynamic nucleoprotein structures consisting of DNA tandem repeats
5′-TTAGGG-3′, shelterin proteins and telomere repeat-containing RNA (TERRA) [1–5].
Telomeres cap the ends of linear chromosomes, protecting them from degradation by
endonucleases and end-to-end fusions [6–8]. Telomere length (TL) in a chromosome is de-
termined by the number of tandemly repeated hexanucleotides and depends on the balance
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between the mechanisms of telomere attrition and lengthening. Telomeres shorten with
each cell division cycle because of the incomplete DNA replication of linear chromosomes
by DNA polymerase [9]. Apart from mitotic activity, telomere shortening may be caused by
several other factors, including DNA damage, inflammation and oxidative stress [10–12].
Telomere lengthening mechanisms include telomerase enzymatic activity [13] and the
recombination-based alternative lengthening of telomeres (ALT) [14–16]. In the absence of
telomere-lengthening mechanisms, a cell that has undergone a certain number of replication
rounds or adverse exposures enters senescence frequently accompanying by chromosomal
instability and chromothripsis [17,18] and, eventually, apoptosis. Therefore, adequate
telomere length regulation is the sine qua non of a cell’s normal functioning.

Substantial evidence has been found to support the association of anomalous telom-
ere length changes in humans with the development of various pathological conditions,
including cancer [19–22], cardiovascular diseases [23,24], diabetes mellitus [25] and neu-
rodegenerative disorders [26,27]. Studies also confirm the role of telomeres in the realisation
of the reproductive function. Both maternal and paternal telomere shortening may con-
tribute to idiopathic recurrent pregnancy loss [28]. Shortened telomeres in sperm are
sometimes observed in cases of idiopathic male infertility [29]. Shorter telomeres in oocytes
and blastomeres are associated with the development of oocyte aneuploidy [30]. Women
of advanced maternal age with shorter telomeres run a higher risk of conceiving a child
trisomic for chromosome 21 than their counterparts with longer telomeres [31].

During embryogenesis, cells of the embryo and extraembryonic membranes undergo
intensive divisions to gradually form and supply all types of body cells and tissues. There-
fore, maintaining a certain telomere length at this stage is a necessary prerequisite to
the embryo’s normal development. Few studies investigate cause-and-effect relations be-
tween telomere length alterations and post-implantation human embryonic development
disorders. Most of them deal with placental telomere shortening in stillbirths, placental
dysfunction in preeclampsia and intrauterine growth restriction—in other words, disorders
of advanced gestational age [32–34]. By contrast, the present study focuses on investigat-
ing TL in the first trimester of gestation—a period marked by a robust natural negative
selection of embryos with both anomalous and normal karyotypes, which results in 15%
of pregnancies ending in miscarriage. We assessed TLs in chorion from first-trimester
miscarriages and ongoing pregnancies, factoring in the presence of chromosome abnormal-
ities. Furthermore, considering the role of epigenetic mechanisms in telomere regulation,
we investigated whether TL is linked to chromosome hydroxymethylation patterns.

2. Results
2.1. Approach Applicability to Telomere Length Analysis in Chorionic Cytotrophoblast Cells

We assessed TL on metaphase chromosomes using Q-FISH, i.e., by measuring flu-
orescent signal intensity after hybridisation with telomere region-specific DNA probes.
The choice of the method was determined by such benefits as its high resolving power
and single-cell, individual chromosome, and sister chromatid analysis capabilities. The
metaphase plates were obtained from spontaneously dividing chorionic cytotrophoblast
cells, which represent the closest possible reflection of in vivo processes. As a result,
the applied approach enabled us to rule out deceased cells and those entering apoptosis
from the analysis and investigate TL only in viable cells on the same cell cycle stage—the
mitosis metaphase.

To mitigate the impact of chromosome condensation levels, which vary across the
metaphase plates on the preparation, on measurement results, we calculated relative TLs.
To that end, we divided absolute telomere fluorescence values on each metaphase plate
to the fluorescence level of the reference region—in our case, the subtelomeric region of
the short arm of chromosome 16 (16p), which is characterised by an exceptionally low, if
at all present, interindividual variability. The Kruskal–Wallis test showed no significant
difference (p = 0.21) in 16p subtelomere’s fluorescence intensity for the metaphases from
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chorionic cytotrophoblast cells in karyotypically normal and abnormal miscarriages and
ongoing pregnancies (Figure 1).
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Figure 1. Column bar charts of 16p subtelomeric fluorescence intensity in the metaphase chromo-
somes from chorionic cytotrophoblast cells in karyotypically normal and abnormal miscarriages and
ongoing pregnancies. The Kruskal–Wallis test showed no significant difference among the groups
(p = 0.21).

Metaphase plates in cytogenetic preparations from spontaneously dividing cells vary
considerably in quality and information value: some experience random chromosome
losses, while others feature overlapping chromosomes. To eliminate the impact of these
factors, we measured telomere fluorescence signals on the same easily-identified chromo-
some in every metaphase plate—chromosome 16. The prominent feature of chromosome
16 homologues is a large heterochromatic region in 16q. The reliable identification of
chromosome 16 was also enabled by FISH signal in 16p subtelomeric region.

We performed correlation analysis to ensure that the relative TL in chromosome
16 reflects the mean relative TL in all chromosomes on a metaphase plate. The analysis
employed the following algorithm: In 107 metaphase plates, we measured the intensity of
telomeric DNA probe fluorescent signal on the short and on the long arm of each chromatid
in every chromosome (four measurements on each chromosome). Then, we added up the
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obtained values and divided the sum by the number of chromosomes, thus determining the
mean value for each metaphase plate. We also calculated the mean fluorescence intensity
for the reference DNA probe on each metaphase plate. Next, we calculated the fluorescence
intensity of the DNA probes to 16p subtelomeric region on each chromatid (two mea-
surements for each chromosome). In the cells disomic for chromosome 16, we performed
calculations on two chromosome 16 homologues, and in those trisomic for chromosome 16,
on three homologues. For each metaphase plate, we calculated a ratio between the mean
telomeric DNA probe fluorescence intensity and the mean 16p subtelomeric DNA probe
fluorescence intensity. We performed a regression analysis of the correlation between the
values calculated for chromosome 16 homologues and those for the entire chromosome
set of a metaphase plate. The Spearman rank correlation test showed a strong positive
correlation between these parameters (ρ = 0.915, p < 0.0001) (Figure 2), attesting to the
possibility of using the mean relative fluorescence intensity of telomeric DNA probes in
chromosome 16 homologues for TL assessment of the whole chromosome set in a cell.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 15 
 

 

We performed correlation analysis to ensure that the relative TL in chromosome 16 
reflects the mean relative TL in all chromosomes on a metaphase plate. The analysis em-
ployed the following algorithm: In 107 metaphase plates, we measured the intensity of 
telomeric DNA probe fluorescent signal on the short and on the long arm of each chroma-
tid in every chromosome (four measurements on each chromosome). Then, we added up 
the obtained values and divided the sum by the number of chromosomes, thus determin-
ing the mean value for each metaphase plate. We also calculated the mean fluorescence 
intensity for the reference DNA probe on each metaphase plate. Next, we calculated the 
fluorescence intensity of the DNA probes to 16p subtelomeric region on each chromatid 
(two measurements for each chromosome). In the cells disomic for chromosome 16, we 
performed calculations on two chromosome 16 homologues, and in those trisomic for 
chromosome 16, on three homologues. For each metaphase plate, we calculated a ratio 
between the mean telomeric DNA probe fluorescence intensity and the mean 16p subtelo-
meric DNA probe fluorescence intensity. We performed a regression analysis of the cor-
relation between the values calculated for chromosome 16 homologues and those for the 
entire chromosome set of a metaphase plate. The Spearman rank correlation test showed 
a strong positive correlation between these parameters (ρ = 0.915, p < 0.0001) (Figure 2), 
attesting to the possibility of using the mean relative fluorescence intensity of telomeric 
DNA probes in chromosome 16 homologues for TL assessment of the whole chromosome 
set in a cell. 

 
Figure 2. The correlation between the mean relative telomere length (TL) of chromosome 16 homo-
logues and that of other chromosomes in the same metaphase assessed in 107 metaphases across 10 
chorionic cytotrophoblast samples (Spearman test, ρ = 0.915; p < 0.0001). 

2.2. A Comparison of Telomere Lengths in Chorionic Cytotrophoblast from Karyotypically 
Normal and Abnormal Miscarriages and Ongoing Pregnancies 

Our study enrolled chorion samples from first-trimester miscarriages and ongoing 
pregnancies. Both groups contained karyotypically normal and abnormal samples. For 
inter-group comparison, we evaluated mean relative TLs of chromosome 16 homologues 
in 12 metaphase plates in each sample totaling to 6236 values across the groups (Figure 
3). 

Figure 2. The correlation between the mean relative telomere length (TL) of chromosome 16 homo-
logues and that of other chromosomes in the same metaphase assessed in 107 metaphases across
10 chorionic cytotrophoblast samples (Spearman test, ρ = 0.915; p < 0.0001).

2.2. A Comparison of Telomere Lengths in Chorionic Cytotrophoblast from Karyotypically Normal
and Abnormal Miscarriages and Ongoing Pregnancies

Our study enrolled chorion samples from first-trimester miscarriages and ongoing
pregnancies. Both groups contained karyotypically normal and abnormal samples. For
inter-group comparison, we evaluated mean relative TLs of chromosome 16 homologues
in 12 metaphase plates in each sample totaling to 6236 values across the groups (Figure 3).
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Figure 3. Telomere detection in the metaphase chromosomes from chorionic cytotrophoblast cells in karyotypically normal
(A,B) and abnormal (C,D) miscarriages (B,D) and ongoing pregnancies (A,C). Telomeres were detected through fluorescent
in situ hybridisation (FISH) with telomeric DNA probes, and the chromosomes were stained with DAPI.

The karyotypically abnormal chorion samples from miscarriages comprised vary-
ing numerical chromosomal abnormalities, including trisomy 21, trisomy 16, trisomy 9,
monosomy X, double trisomy 15 and 16 and triploidy. Meanwhile, the karyotypically
abnormal chorion samples from ongoing pregnancies were all trisomic for chromosome
21. Therefore, to verify whether the comparison between the groups is reasonable, we first
compared mean relative TLs measured in the trisomy 21 samples to those measured in the
samples with other karyotype abnormalities within the group of karyotypically abnormal
miscarriages. The Mann–Whitney U test showed no significance (p = 0.15).

We compared mean relative TLs between the karyotypically normal samples from
miscarriages and ongoing pregnancies. The Mann–Whitney U test showed no significance
(p = 0.3739) (Figure 4). However, among the karyotypically abnormal chorion samples,
mean relative TLs appeared to be significantly higher in ongoing pregnancies compared to
miscarriages (p < 0.0001) (Figure 4). Moreover, when comparing mean relative TLs between
chorion samples from karyotypically normal and abnormal ongoing pregnancies, we
revealed significantly higher values in the abnormal karyotype cases (p = 0.0018) (Figure 4).
In miscarriages, we observed the opposite picture: Mean relative TL values were higher in
the karyotypically normal chorion samples (p = 0.002) (Figure 4). Therefore, our findings
suggest a link between the mean relative TL in metaphase chromosomes from chorionic
cytotrophoblast and both developmental capacity and normal/abnormal karyotype of
the embryo.
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Whitney U test) are framed.

Further on, considering that TL may vary across individuals, we assessed its interindi-
vidual variability. Using Levene’s test, we compared variances of the mean relative TLs
calculated for each sample among the groups. The variances did not differ across the
three groups of samples: karyotypically normal chorionic cytotrophoblast from miscar-
riages, karyotypically normal chorionic cytotrophoblast from ongoing pregnancies and
karyotypically abnormal chorionic cytotrophoblast from ongoing pregnancies (p = 0.92 for
karyotypically normal miscarriages and ongoing pregnancies; p = 0.14 for karyotypically
normal and abnormal ongoing pregnancies). However, in all three groups, the variance
was significantly higher than in karyotypically abnormal chorionic cytotrophoblast from
miscarriages (p < 0.05) (Figure 5). Consequently, in all of the groups except the chorionic cy-
totrophoblast from karyotypically abnormal miscarriages, mean relative TLs varied widely.
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Figure 5. Interindividual variability of mean relative telomere lengths (TLs) in metaphase chromo-
somes from chorionic cytotrophoblast in karyotypically normal and abnormal miscarriages and
ongoing pregnancies. In karyotypically abnormal chorionic cytotrophoblast the TL variance is
significantly lower than in other groups under study (p < 0.05).

2.3. Interchromatid Telomere Length Asymmetry in Chorionic Cytotrophoblast and
Adult Lymphocytes

A fascinating phenomenon drew our attention as we assessed TLs in chorionic metaphase
chromosomes: the size of telomeric FISH signals differed between sister chromatids.

To investigate interchromatid telomere differences among the examined groups,
we calculated TL ratios between sister chromatids in chromosome 16 by dividing the
higher telomere fluorescence intensity by the lower. Two values were calculated for each
chromosome 16: the ratio of TLs in the sister chromatids in the short chromosome arms
and that in the long chromosome arms. A total of 669 and 870 values were obtained for
chorion samples of karyotypically normal and abnormal miscarriages, respectively, and
553 and 998 values for chorion samples of karyotypically normal and abnormal ongoing
pregnancies, respectively. The D’Agostino and Pearson omnibus normality test showed
that values in all of the groups were not normally distributed. Using the Kruskal–Wallis
test, we compared the obtained values, which reflected an interchromatid TL asymmetry,
in all of the examined groups without any significant difference between them (p = 0.22).

TL asymmetry in the mother and daughter chromatids could manifest a recombination-
based mechanism of telomere lengthening ALT during active mitotic divisions of chorionic
cytotrophoblast cells. Therefore, we deemed it rational to compare interchromatid TL
ratios measured in spontaneous mitoses in each group of the chorion samples to those
measured in PHA-stimulated lymphocytes (a total of 449 values). The Mann–Whitney U
test showed higher interchromatid TL ratios in all four of the examined groups of chorion
samples compared with those in PHA-stimulated lymphocytes (p < 0.0001 for comparison
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with karyotypically normal and abnormal miscarriages and karyotypically abnormal
ongoing pregnancies and p = 0.0003 for comparison with karyotypically normal ongoing
pregnancies), thereby suggesting a more pronounced interchromatid TL asymmetry in the
chorionic cytotrophoblast (Figure 6).
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Figure 6. Column bar charts of telomere length (TL) ratios between the sister chromatids of chro-
mosomes 16 in the chorionic cytotrophoblast from miscarriages and ongoing pregnancies and in
PHA-stimulated peripheral blood lymphocytes of healthy adults. TL ratios do not differ among
karyotypically normal and abnormal chorionic cytotrophoblast samples from miscarriages and ongo-
ing pregnancies (the Kruskal–Wallis test, p = 0.22). Still, they are significantly higher than those in
PHA-stimulated lymphocytes (the Mann–Whitney U test, p < 0.0001, p = 0.0003).

2.4. Interchromatid Telomere Length Asymmetry in Chorionic Cytotrophoblast Is Linked to DNA
Hydroxymethylation Pattern

TL regulation is considerably influenced by epigenetic mechanisms [35–38]. In contrast
to the well-researched regulation of telomeres by DNA methylation, the link between
TL and 5-hydroxymethylcytosine (5hmC), an oxidative derivative of 5-methylcytosine,
remains much less elucidated. Recent studies have demonstrated inter-chromosome and
inter-cell variability of 5hmC patterns in cultured [39–41] and noncultured human cells,
including the chorionic cytotrophoblast [42]. One intriguing feature of this variability is
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the asymmetrical pattern of hydroxymethylation in some metaphase chromosomes with
5hmC in only one sister chromatid—hemihydroxymethylation [39–42].

Considering chromosome hemihydroxymethylation and the discovery of interchro-
matid TL asymmetry in the present study, we investigated the possible link between these
phenomena. We performed immunocytochemical detection of 5hmC on the metaphase
preparations analysed for TLs. Then, we identified hemihydroxymethylated chromosomes
and calculated the TL ratios between sister chromatids by dividing the telomere fluo-
rescence in the 5hmC-positive (5hmC+) chromatid by the telomere fluorescence in the
5hmC-negative (5hmC-) chromatid (Figure 7). A total of 2288 values were obtained across
the examined groups: 238 and 1110 in the karyotypically normal and abnormal ongoing
pregnancies, respectively, and 494 and 446 in the karyotypically normal and abnormal
miscarriages. The D’Agostino and Pearson omnibus normality test showed an abnormal
distribution of values in all of the groups (p < 0.0001). The Kruskal–Wallis test showed no
statistically significant difference among the groups (p = 0.68), and in further calculations,
all of the 2288 obtained values were treated as a single sample.
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on karyogram (C): those demonstrating the asymmetrical pattern of hydroxymethylation with 5hmC in only one sister
chromatid—hemihydroxymethylation.

The median value for TL ratios between 5hmC+ and 5hmC-sister chromatids was
1.029. The one-sample Wilcoxon signed-rank test showed that it significantly exceeded
“1.0” (p < 0.0001), which is the expected value for the ratio of equal TLs in 5hmC+ and
5hmC- sister chromatids. Therefore, in hemihydroxymethylated chromosomes, 5hmC+
sister chromatid predominantly contains longer telomere than 5hmC- one.

3. Discussion

In the first trimester of gestation, human embryo development is marked by an
intensive growth of extraembryonic tissues, including chorion, which plays a crucial role in
facilitating maternal–foetal interactions. The proliferative capacity of chorionic cells, such
as that of any other mammalian cells, is determined by TL. It is evident that mitotically
active cells require telomere lengthening to ensure normal growth and functioning of
extraembryonic tissues throughout the pregnancy. The ample available evidence suggests
the presence of telomerase in extraembryonic tissues and a physiological decrease in its
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activity in the placenta as the pregnancy progresses [43–45]. However, normal telomerase
expression and activity in placental tissues is too low to maintain telomere homeostasis
for the entire gestation period. The alternative mechanism of telomere elongation–ALT–
which is based on recombination, has not been directly observed in gestational tissues [46].
Nevertheless, in first-trimester trophoblasts, a higher TERRA expression than in matched
somatic cells from cord blood coincides with extremely low telomerase levels, suggesting a
possible ALT role [47]. Interchromatid TL asymmetry detected in metaphase chromosomes
from chorionic cytotrophoblast cells in the present study also indirectly suggests that
telomere lengthening may involve recombination between the homologous regions of
telomeric DNA. A lower level of interchromatid telomere asymmetry in lymphocytes
as compared with that in chorionic cytotrophoblast cells (Figure 6) attests to a potential
association of this phenomenon with cell proliferative activity.

The obtained results also demonstrate a relationship between interchromatid TL
asymmetry and chromosome 5hmC patterns: the longer telomere was predominantly
present in the hydroxymethylated sister chromatid, while the non-hydroxymethylated
sister chromatid mostly featured a shorter telomere. Recent studies on mouse embry-
onic stem cells, human blood cells and head and neck squamous cell carcinomas have
demonstrated the role of TET hydroxylases and 5hmC in the maintenance of telomere
homeostasis, including that occurring through telomere recombination [48–51]. In our
recent study on chromosomes from human cytotrophoblast cells, an immense hetero-
geneity of 5hmC patterns has been demonstrated: different types of chromosomal 5hmC
accumulation—hydroxymethylation, hemihydroxymethylation and nonhydroxymethy-
lation with no specificity of each accumulation type to any particular chromosome in a
given metaphase plate [42]. In combination with the findings of the present study, the
abovementioned results may suggest that, firstly, 5hmC marks the sister chromatid with
a longer telomere that may further serve as a template for telomere elongation through
ALT, and secondly, that it potentiates a recombination process through establishing specific
chromatin states. Judging by the “chaotic” distribution of hemihydroxymethylated chro-
mosomes, any chromosome in a given metaphase plate could be marked with 5hmC for
telomere recombination. Coupled with high mitotic activity, this would ensure the mainte-
nance of TLs across the tissue, even if the process did not involve every chromosome after
each replication cycle. Considering the susceptibility of 5hmC patterns to environmental
stimuli [52], the detected relationship between interchromatid TL asymmetry and chro-
mosome hydroxymethylation patterns may also suggest a possible pathway to telomere
regulation by external factors including adaptive response to stress [53].

Interchromatid telomere asymmetry discovered in the present study and its link to
5hmC patterns were typical for cycling chorionic cytotrophoblast cells both in ongoing
and arrested pregnancies and did not depend on the presence of karyotype abnormali-
ties. Therefore, these phenomena, which are potentially associated with ALT, could be
integral to the development programme. However, when comparing TLs in chorionic
cytotrophoblasts from karyotypically normal and abnormal miscarriages and ongoing
pregnancies, we detected differences between the groups (Figure 4) and a pronounced
interindividual TL variability (Figure 5). These findings may be explained by a leading role
for heredity, not the mechanisms of telomere elongation, in determining TL in chorionic cy-
totrophoblast. The heritability of TLs has been already demonstrated on the lymphocytes of
monozygotic and dizygotic twins [54–56], fibroblasts and amniocytes [55] and zygotes [57].
Consequently, TL is likely to be already determined when an organism starts its devel-
opment. Further on, embryos undergo robust negative selection resulting in the arrest of
those with low developmental capacity. Having found longer telomeres in karyotypically
abnormal chorionic cytotrophoblast from ongoing pregnancies compared with those from
miscarriages, we may assume that TL strongly impacts the viability of karyotypically ab-
normal embryos. Furthermore, telomeres were longer in karyotypically abnormal chorion
from ongoing pregnancies than in karyotypically normal matched samples (Figure 4), and
the lower limit of TL variability in the former group was higher than in other investigated



Int. J. Mol. Sci. 2021, 22, 6622 11 of 15

groups (Figure 5). The inheritance of longer telomeres may promote the development
of a karyotypically abnormal embryo, while a combination of shorter telomeres with a
chromosomal pathology, even one compatible with life, leads to early miscarriage. These
suggestions provide further support to a study by Huleyuk and colleagues, demonstrating
short telomeres in spontaneously eliminated aneuploid embryos [58], and the discovery
of longer telomeres in newborns with trisomy 21 compared with karyotypically normal
ones [59,60]. In karyotypically normal pregnancies, by contrast, TL does not seem to
considerably affect developmental capacity and is obviously not among major contributors
to sporadic euploid pregnancy loss as we observed, similar to TL itself and its variation
range in the karyotypically normal chorionic cytotrophoblast from miscarriages and that
from ongoing pregnancies (Figures 4 and 5).

The limitations of the present study related to the using of metaphase Q-FISH for TL
analysis should be noted. The analysis was performed exclusively on the direct prepara-
tions of metaphase plates from chorionic villi, i.e., on spontaneously dividing cells. On
the one hand, this approach enabled us to investigate TL only in proliferating chorionic
cytotrophoblast cells, which closely reflects the situation in vivo, and made possible the
analysis of TLs in individual chromosomes and sister chromatids. On the other hand, the
number of obtained metaphases on the direct preparation is relatively low, which restricts
the sample size. Manual evaluation of fluorescence signals on metaphase chromosomes
allows accurate analysis and exclusion of background noise, but also restricts the possible
number of measurements. Finally, due to Q-FISH resolution limits, signals at telomeric
repeats below the threshold for the PNA probe hybridisation can be missed.

To conclude, our results suggest that interchromatid TL asymmetry and its association
to 5hmC patterns in chorionic cytotrophoblast—two phenomena potentially linked to
the ALT—are integral to the development programme. The central role in determining
TL belongs to heredity. The inheritance of long telomeres by a karyotypically abnormal
embryo promotes his development. By contrast, in karyotypically normal first-trimester
embryos, TL does not seem to have a considerable impact on developmental capacity. Our
results contribute to the knowledge of telomere biology in human embryogenesis and open
new directions for investigating 5hmC regulation of telomere lengthening.

4. Materials and Methods
4.1. Sample Collection

The chorionic villi were obtained at the D.O. Ott Research Institute of Obstetrics,
Gynecology and Reproductology from 61 patients: those who were diagnosed with first-
trimester missed abortion and underwent dilation and curettage (n = 28, the miscarriage
group) and those with ongoing first-trimester pregnancy who underwent chorionic villus
sampling (CVS) for prenatal genetic diagnosis (n = 33, the ongoing pregnancy group).
The chorionic villi were dissected under the Leica M125 stereomicroscope and rinsed from
blood clots in 0.9% NaCl.

The miscarriage group included 14 karyotypically normal and 14 karyotypically
abnormal samples. The latter included trisomy 16 (n = 6), trisomy 21 (n = 3), trisomy
9 (n = 1), monosomy X (n = 1), double trisomy 15 and 16 (n = 1) and triploidy (n = 2).
The ongoing pregnancy group included 12 karyotypically normal (the indications for the
CVS were monogenic diseases) and 21 karyotypically abnormal samples (the indications
for the CVS were ultrasonic and biochemical chromosomal pathology markers). All of the
karyotypically abnormal samples were trisomic for chromosome 21.

The peripheral blood lymphocytes were obtained from 11 adult, karyotypically nor-
mal volunteers.

4.2. Chromosome Preparation

Metaphase chromosomes from the chorionic cytotrophoblast were prepared by the
direct technique (without culturing) according to a protocol with modifications described
previously [61].
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Metaphase chromosomes from the lymphocytes were prepared after the culturing of
blood samples for 72 h at +37 ◦C, with phytohemagglutinin (PHA) (M021, PanEco, Moscow,
Russia) added into the culture medium. Metaphase harvesting, hypotonic treatment,
fixation and chromosome spreading on the slides were performed according to the standard
techniques with minor modifications previously used in our laboratory [62].

4.3. Fluorescence In Situ Hybridisation (FISH)

Telomeric regions were detected on the chromosome preparation slides through fluo-
rescence in situ hybridisation (FISH) with telomeric probes (K532611-8, DAKO, Glostrup,
Denmark). All of the procedures were performed in line with the manufacturer’s recom-
mendations, with minor modifications described previously [57].

After the photoimaging, 16p subtelomeric region (the reference region for TL mea-
surements in our study) was detected on the same metaphase preparations through FISH
with a TelVysion SpectrumGreen 16p DNA probe (05J03-016, Abbott Laboratories, Chicago,
IL, USA).

4.4. Immunodetection of 5-Hydroxymethylcytosine (5hmC)

5hmC was detected on the metaphase chromosome preparations through immunoflu-
orescence with primary antibodies against 5hmC (39769, Active Motif, Carlsbad, CA, USA)
and secondary goat anti-rabbit Alexa Fluor 488 (A11008, Life Technologies, Carlsbad, CA,
USA) antibodies according to the protocol used in earlier studies [63,64]. The DNA denatu-
ration step was excluded from the immunofluorescence protocol because it was carried out
earlier during FISH procedures.

4.5. Image Acquisition and Evaluation of Telomeric and Subtelomeric FISH-Signal Intensity

The fluorescence images of metaphases after FISH and 5hmC immunodetection were
recorded using the Leica DM 2500 microscope, the Leica DFC345 FX camera and the Leica
Application SuiteV.3.8.0 software. The following acquisition options were used for the
images of chromosomes after hybridisation with telomeric DNA probes: exposure time—
1.8 s, gain—x6, gamma—3.44; after hybridisation with the 16p DNA probe: exposure
time—2.0 s, gain—x2, gamma—2.0.

The telomeric and subtelomeric FISH-signal size and intensity were evaluated on
the digital photoimages using the Image J 1.49v software. The fluorescence intensity was
measured in relation to the signal area using the Freehand Selection tool through manual
selection of each signal area.

4.6. Statistical Analysis

Statistical analysis was carried out with GraphPad Prism (Version 6.01, GraphPad
Software Inc., San Diego, CA, USA). Normality was checked using the D’Agostino–Pearson
omnibus normality test. The inter-group comparisons were carried out using the Mann–
Whitney U test and the Kruskal–Wallis test. The variances were compared in IBM SPSS
Statistics (Version 23, IBM, Armonk, NY, USA) using Levene’s test. The α-level was set
at 0.05.
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