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Editorial on the Research Topic

HIV and Cancer Immunotherapy: Similar Challenges and Converging Approaches

INTRODUCTION

Although modern anti-retroviral therapy (ART) permits near-normal life expectancies by
suppressing viral replication to clinically undetectable levels in people living with HIV (PLWH) (1),
sustained treatment is complicated by complex pharmacological (i.e., adverse events, adherence,
resistance) and societal issues (i.e., stigma, cost burden, medical access). Furthermore, ART
is incapable of eliminating the latent viral reservoir, which is responsible for recrudescence
when therapy is interrupted (2–5). Viral persistence is facilitated by a variety of mechanisms
such as the exhaustion of HIV-specific cytolytic T-cells (CTLs) driven by chronic inflammation
(6–8); epigenetic modifications to dampen the expression of viral proteins allowing evasion of
immunosurveillance (9, 10); the localization of infected cells within immune privileged anatomical
sites (11–13); and the survival of long-lived, virus-harboring cells allowing reservoir expansion via
homeostatic proliferation (14, 15). Although formidable challenges exist for completing eradicating
HIV from infected individuals (a “cure”), there is growing enthusiasm that novel immunotherapy
approaches might eventually result in durable control of replication-competent HIV in absence of
any therapy (a “remission”). Much of this enthusiasm comes from dramatic progress made in using
immunotherapy to treating cancer. This editorial summarizes how the 13 review articles included
in this special issue highlight key parallels between HIV and tumor persistence as well as how these
similarities inform the development of novel immunotherapy-based strategies toward an HIV cure.

THE PERSISTENCE OF MEMORY

In both HIV and cancer, subsequent pathology arises from a relatively rare, yet difficult to
distinguish and persistent subset of cells. In the non-human primate model of HIV infection,
the persistent viral reservoir is established within 4–9 days post-infection (16); similarly, very
early ART initiation does not induce viral remission in PLWH (17). In a meta-analysis of
human cohorts, Etemad et al. propose that preferential infection of transitional memory (TTM)
CD4+ T-cells, as opposed to longer-lived central memory or naïve cells, is a key predictor for
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post-treatment control (18) despite weak HIV-specific CD8+

T-cell responses. Intriguingly, Goonetilleke et al. hypothesize
that the generation of the long-lived reservoir, particularly in
central memory (TCM) and stem-cell memory (TSCM) CD4+

T-cells, can be blunted by inhibiting the IL-7 signaling axis,
thereby disrupting the transition and maintenance of CD127+

memory subsets from highly-infected effector CD4+ T-cells (18).
Gavegnano et al. explore the use of Jak inhibitors in inhibiting
the activity of the anti-apoptotic Bcl-2 protein to reduce cellular
lifespans (19, 20). By blocking the formation and maintenance
of the viral reservoir in long-lived memory subsets, the authors
proposed that a reduction in viral burden will facilitate HIV
remission as mimicked in post-treatment controllers.

ESCAPE THROUGH EDITING

Once the viral reservoir is established, HIV-specific CD8+ T-
cells are required for viral suppression (21, 22); however, in most
infected people, HIV-specific CTLs are incapable of eliminating
infected cells (23) indicative of failure in immune surveillance
independent of mutational escape or dysfunction (24). This
incomplete elimination permits subsequent equilibrium phase
sculpting of reservoir-harboring cells by immune pressures,
which in cancer models has been termed “immunoediting”
(25). Analogous to “antigen loss” in tumors models, Huang
et al. explore the novel concept that during ART cells
harboring replication-competent virus undergo clonal expansion
with subsequent immunoediting; thereby decreasing CTL
susceptibility by selecting for BCL-2 expression (26) and
integration sites favoring cell division (27, 28). As HIV infection
impacts on cellular metabolism and oxidative stress (29, 30),
immunoediting may also select for an altered cellular lipid
antigen composition that, as summarized by Tiwary et al.,
in oncology models impinges on chronic inflammation by
modulating the macrophage M1 to M2 balance (31) and impairs
antigen processing in dendritic cells (32); specifically, CD1d
antigen loading for natural killer T-cells (NKT) (33). As a model
comparison (Mota and Jones) examine how HTLV-1 generates
malignant “repliclones” by an interplay of host- and viral-
mediated immunoediting. Therefore, these articles support the
notion that HIV CTL escape might be more complex than viral
epitope mutations, but rather involve the progressive selection of
immunoedited, infected cells resistant to immune surveillance.

WHO WATCHES THE WATCHMEN?

Effective immunosurveillance of HIV-infected cells remains
problematic as CTLs exhibit exhausted effector functions arising
from chronic inflammation and antigen persistence during the
natural course of infection and residual inflammation, driven
by microbial translocation in the gut, despite suppressive ART
(34, 35). Structural defects in gut integrity cause by HIV further
impacts the microbiota distribution (36), which given its ability
in cancer models to modulate toxicity (37) and therapy efficacy
(38, 39), may represent an attractive therapeutic avenue as
proposed by Herrera et al.. In some respects, as describe by

Dhodapkar and Dhodapkar, ART-suppressed HIV mirrors pre-
clinical malignancy, a prolonged state characterized by early-
onset of T-cell exhaustion coupled with the depletion of stem
cell memory (40). However, unlike antigen-rich tumor models,
curative HIV therapies require that latent virus be reactivated
to render infected cells immunogenic and cleared by potent
anti-HIV CTLs (“kick and kill”) (10, 41). Given their capacity
to promote tumor clearance, as detailed by Puronen et al.,
many immunotherapies are being investigated in HIV cure
studies to induce T-cell activation and restore CTL functionality,
such anti-PD-1 and anti-CTLA-4 check point inhibitors (CPI)
(42–44), and IL-7 and IL-15 cytokine therapy (45, 46). Given
emerging data concerning the importance of innate natural killer
(NK) cells in the control of HIV and cancers (47, 48), Lucar
et al., discuss immunotherapies targeting NKG2a and killer-
cell immunoglobulin-like receptors (KIRs) as novel strategies to
determine whether dysfunction NK cell states can be rescued.
Curative strategies centered around CPIs have revolutionized
the treatment of certain refractory cancers by reinvigorating
the host immune response; yet, in PWLH it remains to
be seen whether antigen burden is a critical determinant
of response.

IN CASE OF EMERGENCY—BREAK GLASS

Beyond these strategies, which may above prove too toxic,
fail to penetrate tissue, or lack desire specificity, alternative
curative approaches utilize adoptive T-cell therapy to redirect
CTL responses. Kim et al. describe the re-emergence of chimeric
antigen receptor (CAR) T-cells as an attractive immunotherapy
strategy given its progressive re-engineering in oncology settings
to improve safety, expression, and persistence (49). Although
CAR T-cells have attained remarkable remission rates for
CD19+ B-cell acute lymphoblastic leukemia (50), significant
relapse rates are associated with diminished persistence upon
antigen loss/escape, the suppressive tumor microenvironment,
and impaired tumor penetration (51). These issue impacting
tumor relapse are directly analogous to HIV models vis-á-
vis ART-mediated aviremia, the expansion of regulatory T-cells
(TREGs) (52, 53), and the exclusion of CTLs from secondary
lymphoid tissue (13, 54). Possible strategies to surmount these
issues include engineering CAR T-cells to express 4-1BB co-
stimulatory domains allowing oxidative metabolism (55); secrete
cytokines, such as IL-12 or IL-18 (56, 57); and up-regulate the
chemokine receptor CXCR5 to promote homing to the lymphoid
B-cell follicle (58) as explored by Mylvaganam et al.. Seemingly,
CAR T-cells for HIV applications should be directed against
viral proteins to minimize safety concerns and given the lack
of reliable biomarkers to identify latently-infected cells. Ergo,
CAR T-cells will likely require co-administration with potent
latency reactivating agents to promote therapy persistence and
reveal cellular targets for clearance. Such combination therapies
would benefit from positron emission tomography (PET)-based
imaging, as reviewed by Henrich et al., to observe the total-body
viral antigen distribution (59, 60) and to gain insights concerning
the potential for efficacy in difficult to sample tissues (61, 62).
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SUMMARY

Models of cancer and HIV persistence share an interesting
paradox: responses promoting self-tolerance when exposed
to sustained inflammatory stimuli permit pathological
dissemination and escape from immune surveillance. This
similarity would suggest common curative approaches via the
targeting of immunosuppressive pathways. However, a key
distinction is that in cancer the self-immunogen is pervasive;
whereas, in ART-treated HIV infection chronic antigenic
stimulation arises largely from gut microbial translocation,
not from viral proteins. This different in antigen source may
represent a key obstacle when translating therapies between
cancer and HIV models (63). In designing immunotherapy

strategies, it is also important to consider that adverse event
outcomes between these models have substantially different
tolerances, as HIV is a manageable chronic disease and cancers
are invariably fatal. Future trials will be necessary to determine
whether these mechanistic insights regarding escape and
exhaustion can be successfully adapted to facilitate long-term,
ART-free HIV remission.
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