
Periodic chronic myelogenous leukemia
(PCML) is a dynamic hematopoietic dis-
ease which causes oscillations of circu-
lating leukocytes, platelets and reticu-
locytes. Mathematical modeling is an
invaluable tool to help in predicting he-
matopoiesis behavior. In this paper we
modify the existing models based on
improving the parameters of the mod-
el. Also more parameters are estimated
regarding the proposed model. It is our
major intention to construct a physio-
logical model which can map major iden-
tified mechanisms of leukopoiesis to pro-
vide a deeper insight into this complex
biological process. In the proposed mod-
el the leukocytes line has been modeled
more precisely. In fact, precursor cells
have been considered as two separate
groups: proliferating precursor cells and
non-proliferating precursor cells. As
a result, more parameters have appeared
in the model and identifying the new
parameters has resulted in a better fit
of clinical data and the data extracted
from the model for both platelets and
leukocytes. That is, the new model des-
cribes the leukocytes and platelets of the
system in a way that is closer to clinical
data, so the proposed model can be more
useful for predicting the behavior of
leukocytes and platelets for PCML dis-
ease. Compared with the previous works,
it is shown that the new model has
a better fit of the quantitative data on
leukocytes and platelets.
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Introduction

Leukemia is a kind of white blood cell cancer. It may be categorized based
on the characteristics of the disease (acute or chronic). A patient with acute
leukemia usually dies within several months, while a patient with chronic
leukemia may live for years.

The diagnosis of chronic myelogenous leukemia (CML) is usually based
on detection of the Philadelphia chromosome. This abnormality arises as the
result of a problem in cell division within the bone marrow. It is a type of translo-
cation, meaning that genetic material from two different chromosomes switch-
es places. In this particular abnormality, chromosomes 9 and 22 are involved.
CML arises in a bone marrow stem cell that is the precursor to all the types
of blood cells (white blood cells, red blood cells and platelets). This hypothe-
sis is derived from two pieces of evidence. First, in CML the Philadelphia chro-
mosome is found in all of the hematopoietic lineages which come from the
hematopoietic stem cell. Second, periodic oscillations are observed in three
types of blood cells in one rare sort of CML, which leads to the mentioned
hypothesis.

To provide a quantitative basis for prediction of behavior of stem cells and
blood cells under hematopoietic diseases, several models have been devel-
oped. To our knowledge, Mackey, in 1978 [1] proposed the first model of
hematopoietic stem cell dynamics, which has been developed by many authors,
including Haurie and Mackey [2], who focused on some hematological diseases
which originate from stem cells and specified differentiation and maturation
processes in hematopoiesis, Bernard and Mackey [3], who concentrated on
the production and oscillations of white blood cells, observed in patients with
cyclic neutropenia, and Pujo-Menjouet and Mackey [4], who focused on appli-
cations of the model proposed in [3] to chronic myelogenous leukemia. Coljin
and Mackey [5, 6] extracted a global model of the hematopoietic system that
concentrates on either stem cell dynamics or the leukocyte, erythrocyte and
platelet cell lines. Foley and Mackey [7] proposed a delay differential equation
model for the regulation of neutrophil production under the effects of G-CSF.
Models in the form of partial differential equations have been proposed by
Scholz, Engel and Loeffler [8] that simulate the damage caused by cytotoxic
drugs on the stem cells and leukocytes. The hematopoietic system has also
been formulated as partial differential equations (PDE) by Ostby et al. [9] and
ordinary differential equations (ODE) by Panetta et al. [10], Friberg et al. [11],
Scholz et al. [8] and Shochat et al. [12].

Recently, a description of dynamics of chronic and acute myeloid leukemias
was proposed by Adimy et al. [13, 14]. In [13], a compartmental model with dis-
crete delays was suggested. The conditions for local stability of steady states
and for Hopf bifurcation due to delay parameters were also given. In [14], a mod-
el with distributed delays was considered.

DOI: 10.5114/wo.2013.33778

Original paper



7744 współczesna onkologia/contemporary oncology

The goal of this paper is to identify some unknown para-
meters of the model and improve the discrepancy between
the model and clinical data.

The model of the hematopoietic system

Differential equations (partial, ordinary or delay), sto-
chastic processes, Boolean networks, etc. are some math-
ematical tools used in hematological modeling. The desired
level of description of the model often determines the math-
ematical tools. Since delays arise in biological systems bec -
ause of properties inherent to the different processes (time
lag due to maturation, transmission of an impulse, etc.), delay
differential equations are of great importance in describing
biological systems such as the hematopoietic system. 

Previously, leukocyte [15], erythrocyte [16] and platelet
[17] models have been proposed separately. Mackey in [18]
connected all these three distinct models. The model
describes four distinct compartments: the hematopoietic stem
cells (HSC) and the circulating leukocytes, platelets and ery-
throcytes. The stem cells are pluripotential as well as self-
renewing, and are differentiable into the leukocytes, ery-
throcytes or platelets. Fig. 1 shows the full model of the system
represented by Colijn and Macky [18]. The model considers
the hematopoietic system as a set of compartments: the
pluripotential, non-proliferating stem cells, leukocytes, ery-
throcytes and platelets are denoted by Q, N, R and P in unit
of cells/kg, respectively. KN(N), KR(R) and KP(P) represent the
differentiation rate of HSC into these three lines in units of
days–1, respectively. These differentiation rates are a monot-
one decreasing function of the numbers of circulating cells
of the relevant type (negative feedback). More discussion of
the forms of KN(N), KR(R) and KP(P) will follow [18]. 

A portion of non-proliferating stem cells differentiates into
leukocyte, erythrocyte and platelet cell lines at the rate of
KN(N), KR(R) and KP(P), respectively. The remaining portion
proliferates at the rate of β (Q) (in units of days–1). In the pro-
liferation compartment the cells divide taking a time of τs
(units of days). So, in the equation describing Q, the num-
ber of cells passing the proliferation phase is twice the num-
ber of those entering this phase a time τs ago. But the cells
traversing the proliferation compartment are not quite
twice those entering, because some random losses occur at
a rate of γs (in units of days–1) over the proliferating time. So,
the number of non-proliferating cells entering per unit time
from the proliferation compartment is 2e–γsτsβ (Q(t – τs). In
this paper the notation Xτ is used for X (t – τ) hereinafter. Thus,
the delay differential equation describing Q is (1).

In each leukocyte, erythrocyte and platelet cell line there
is a dimensionless amplification parameter AN, AR and AP,
respectively, which represents several stages of cell divisions.

We use the equations related to red blood cells and
platelets without any changes from [18], but for the leuko-
cyte line we take some ideas from the model represented
by Foley and Mackey [19], which is mainly about modeling
the effects of G-CSF on leukocytes and stem cells. We con-
sider the proliferative and non-proliferative population of pre-
cursor cells of leukocytes separately. This separation leads
to some parameters being added to the model. We assume
that all these new parameters are fixed and find their best
values so that the model has a better fit of the quantitative
data on leukocytes and platelets. Fig. 2 provides an overview
of the modified model structure.

FFiigg..  11.. A graphical representation of the full model of hematopo-
iesis including the HSC and three differentiated cell lines (leuko-
cytes, erythrocytes and platelets) extracted from Mackey and
Coljin 2005
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FFiigg..  22..  A graphical representation of the full model of hematopo-
iesis including the HSC and three differentiated cell lines (leuko-
cytes, erythrocytes and platelets) modifying the model of leuco-
cyte line 
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In the leukocyte line, the upper box and lower box are the
compartment of proliferating precursor cells and non-pro-
liferating precursor cells, respectively. The leukocytes which
enter the circulating leukocyte compartment after amplifi-
cation and maturation are denoted by N. They are randomly
lost at a rate γN due to apoptosis. ϒNN is the rate of random
loss of non-proliferating precursor cells while γNP represents
the rate of random loss of proliferating precursor cells. We
assumed that the parameters γN, AN, KN, γNN and γNP are inde-
pendent of G-CSF. τNN is non-proliferative neutrophil pre-

cursors maturation time and τNP is proliferative neutrophil
precursors maturation time. The equation governing the
leukocytes is then
dN
dt

= – γNN + ANKN (NτNP) QτNP e
–γNP τNP –γNN τ

–
n 

with τ–n satisfying τNN = Vnτ–n. Vn is the velocity that cells
in the non-proliferating precursor compartment age with. An
increase in Vn leads to decreased transit time τNN. 

TTaabbllee  11..  Estimation of parameters of the model

PPaarraammeetteerr  nnaammee EEssttiimmaatteedd  vvaalluuee UUnniitt

γNN 0.26 days–1

τNN 3.27 days

γNP 0.25 days–1

τNP 1.2 days

vn 6 –

θ2 0.31

AN 953690 –

AP 46.97 × 104 –

TTaabbllee  22..  Comparison of the least square value for leukocyte and
platelet data between existing model and improved one

LLeeaasstt  ssqquuaarree  vvaalluuee  LLeeaasstt  ssqquuaarree  vvaalluuee
ffoorr  lleeuukkooccyytteess ffoorr  ppllaatteelleettss

Mackey’s model 4.80 × 1010 1.93 × 1011

Our model 3.88 × 1010 1.69 × 1011

TTaabbllee  33.. Comparison of the difference of the mean values for leu-
kocyte and platelet data between Mackey's work and our research

DDiiffffeerreennccee  ooff  mmeeaann  DDiiffffeerreennccee  ooff  mmeeaann
vvaalluueess  ooff  mmooddeell  ddaattaa  vvaalluueess  ooff  mmooddeell  ddaattaa

aanndd  rreeaall  ddaattaa  aanndd  rreeaall  ddaattaa
ffoorr  lleeuukkooccyytteess ffoorr  ppllaatteelleettss

Mackey’s model 3.44 × 109 1.47 × 1010

Our model 0.1 × 109 1.15 × 1010
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FFiigg..  33.. Data fitting based on Coljin and Mackey (2005)



Simulation and fitting

We extracted clinical data for platelets and leukocytes
from [20] and tried to find the parameters of the leukocyte
line such that the model fits real data more precisely. We have
used B. Ermentrout’s implementation of the Marquar-
dt-Levenberg method, described by Press et al. [21]. Our

N
method to do so is minimizing the function x2 = Σ(ys – yi)2

i = 1

where yi are the observed data points and ys are the simu-
lated data points. We use MATLAB software for all of our cal-
culations. In this paper, hereinafter LS represents the least

N

square value Σ(ys – yi)2. Considering proliferating and non-pro-
i = 1

liferating precursor compartments in the leukocyte line and
estimating the parameters γNN, τNN, τNP and Vn displayed 
in Table 1 improves the LS value for both platelets and 
leukocytes data in comparison with Mackey's (2005) work
(Table 2 and Table 3). 

Results

• Although the parameters γNN, γNP, τNN and τNP are just
involved in leukocyte dynamics, a change in their value
affects the count of both leukocytes and platelets. 

• High values of τNP (proliferative neutrophil precursors mat-
uration time) cause a decrease in the mean value of the
leukocytes.

• Variation in the parameter Vn has the least effect on the
model in comparison with the other parameters.

• The dynamics of the system are more sensitive to vari-
ations in τNP in comparison with τNN. Looking at equ. (2)
more precisely supports this fact. As can be observed the
parameter KN depends on τNP in the mentioned equation.

The lower the value of the parameter τNP, the higher the mean
value of the leukocytes is. 
• The higher the value of the parameter θ2 is, the more the

amount of the peak and the mean value of N and P are.
• The parameters τNP and θ2 affect the shape of the model

at its first and last oscillates. 
In conclusions, this article identifies some parameters of

the hematopoietic system so that the model has a better fit
of the quantitative data on leukocytes and platelets in com-
parison with fitness done by the others. The effects of men-
tioned parameters on behavior of leukocytes and platelets
are also investigated.

Discussion

The major intention of this paper is to construct a phys-
iological model which can map major identified mechanisms

7766 współczesna onkologia/contemporary oncology

llee
uu

kkoo
ccyy

ttee

15

10

5

0
0 50 100 150 200 250 300 350 400 450 

least square value = 3.88 × 1010; mean values difference = 0.1 × 109

tt  ((ddaayy))

A

ppll
aatt

eell
eett

10

8

6

4

2

0

×1010

0 50 100 150 200 250 300 350 400 450 

least square value = 1.69 × 1011; mean values difference = 1.15 × 1010

tt  ((ddaayy))

B

FFiigg..  44..  Data fitting based on modified model 

×109



7777Parameter identification of hematopoiesis mathematical model – periodic chronic myelogenous leukemia

of leukopoiesis to provide a deeper insight into this complex
biological process. A new model of leukopoiesis has been pro-
posed. In fact, precursor cells of the leukocyte line have been
considered as two separate groups: proliferating precursor
cells and non-proliferating precursor cells. As a result, more
parameters have appeared in the model and identifying the
new parameters has resulted in a better fit of clinical data
and the data extracted from the model for both platelets and
leukocytes. Using the new model can lead to better predic-
tion of the behavior of leukocytes and platelets for PCML dis-
ease.
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