
“Deficiency” of Mitochondria in Muscle Does Not Cause
Insulin Resistance
John O. Holloszy

Based on evidence that patients with type 2 diabetes (T2DM),
obese insulin-resistant individuals, and lean insulin-resistant
offspring of parents with T2DM have ;30% less mitochondria
in their muscles than lean control subjects, it appears to be
widely accepted that mitochondrial “deficiency” is responsible
for insulin resistance. The proposed mechanism for this effect
is an impaired ability to oxidize fat, resulting in lipid accumu-
lation in muscle. The purpose of this counterpoint article is to
review the evidence against the mitochondrial deficiency con-
cept. This evidence includes the findings that 1) development
of insulin resistance in laboratory rodents fed high-fat diets
occurs despite a concomitant increase in muscle mitochon-
dria; 2) mitochondrial deficiency severe enough to impair fat
oxidation in resting muscle causes an increase, not a decrease,
in insulin action; and 3) most of the studies comparing fat
oxidation in insulin-sensitive and insulin-resistant individuals
have shown that fat oxidation is higher in T2DM patients and
obese insulin-resistant individuals than in insulin-sensitive
control subjects. In conclusion, it seems clear, based on this
evidence, that the 30% reduction in muscle content of mito-
chondria in patients with T2DM is not responsible for insulin
resistance. Diabetes 62:1036–1040, 2013

I
n a series of studies, Kelley and colleagues (1–4)
measured the levels of activity of mitochondrial
marker enzymes in skeletal muscles from patients
with T2DM or obese insulin-resistant individuals and

found that they were lower than in normal, healthy indi-
viduals of the same age. In these studies, the enzymes that
were measured were citrate synthase (1,3), cytochrome
oxidase (2,3), NADH2 oxidoreductase (1,3), carnitine pal-
mitoyl transferase (2), and succinate dehydrogenase (4).
The activities of these enzymes were 20–40% lower in the
diabetic patients than in normal control subjects. The mi-
tochondria in diabetic muscle were also smaller than
normal (1). They referred to these findings as “mitochon-
drial dysfunction,” although no measurements of function
were made; and although this phenomenon is sometimes
referred to as mitochondrial dysfunction, studies in which
mitochondrial function was evaluated found that the
remaining mitochondria in diabetic muscle have normal
function (5–7). There is evidence suggesting that accu-
mulation of lipids in muscle plays a role in mediating in-
sulin resistance, and Kelley and colleagues hypothesized
that the reduction in muscle mitochondria in T2DM im-
pairs the ability of muscle to oxidize fatty acids, resulting

in muscle lipid accumulation and, as a result, insulin re-
sistance.

These articles were followed by publication of a number
of studies showing that patients with T2DM, obese insulin-
resistant individuals, and lean insulin-resistant offspring
of diabetic parents have a ;30% reduction in muscle mi-
tochondrial content (8–11), suggesting that the only
abnormality is a ;30% decrease in size or number of mi-
tochondria. The mechanism responsible for the reduction
in mitochondrial content of diabetic skeletal muscle is not
known. One possibility that has been suggested is that the
decrease in mitochondria is due to impaired insulin action
(12). A second is that it is mediated by oxidative stress
(13). A third is that it is due to low physical activity. Another
possibility is that it is genetically determined, i.e., that it is
a genetic trait that is linked to the genetic predisposition to
develop insulin resistance and T2DM. This third possibility
is suggested by the findings that reversal of T2DM by weight
loss does not result in normalization of muscle mitochon-
drial content (14), and that some lean offspring of diabetic
parents are insulin resistant and have a reduced muscle
content of mitochondria (10).

As a result of the many studies showing that T2DM
patients, insulin-resistant obese people, and insulin re-
sistant offspring of diabetic parents generally have a ;30%
reduction in muscle mitochondria, the hypothesis that in-
sulin resistance is mediated by a deficiency of muscle
mitochondria appears to have gained considerable ac-
ceptance (15,16). Assuming that mitochondrial deficiency
causes insulin resistance because these two phenomena
occur together, i.e., with this, therefore, because of this,
is a logical fallacy. Correlation provides no information
regarding causality. This raises the question, is there any
scientific evidence in support of the hypothesis? As re-
viewed in the three following sections, the answer is no,
the available experimental evidence shows that a decrease
in muscle mitochondria does not cause insulin resistance.

DOES A REDUCTION IN MITOCHONDRIA PRECEDE THE

DEVELOPMENT OF INSULIN RESISTANCE?

If mitochondrial deficiency causes insulin resistance it
must occur before the onset of the insulin resistance. It
does not seem possible to answer the question of whether
or not mitochondrial deficiency precedes insulin resist-
ance in humans, because T2DM patients and obese insulin
resistant individuals are insulin resistant for many years
before they are diagnosed. Therefore, available evidence
comes from studies on laboratory rodents, which develop
muscle insulin resistance within a few weeks after being
started on a high-fat diet. If the high-fat diet is continued,
the rodents become obese and develop the rodent equiv-
alent of the visceral obesity/metabolic syndrome and/or
T2DM (17,18). In a number of early studies, high-fat diets
were found to induce an increase in the levels of mito-
chondrial marker enzymes, such as betahydroxybutyrate
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dehydrogenase and citrate synthase in muscle (19,20).
More recently, it was found that feeding rats high-fat diets
(21,22) or intermittently increasing plasma fatty acids to
high levels (23) induces an increase in mitochondrial bio-
genesis in skeletal muscle. This is evidenced by increases
in mitochondrial enzyme proteins, in the capacity to oxi-
dize fatty acids, and in mitochondrial DNA copy number.
This increase in mitochondria occurs concomitantly with
development of muscle insulin resistance. The increase in
mitochondria appears to be an early, transient event that is
lost as the insulin resistance and obesity progress (24).

The fatty acid-induced increase in muscle mitochondria
appears to be mediated by the nuclear receptor peroxi-
some proliferator–activated receptor-b (PPAR-b; also re-
ferred to as PPAR-d). PPAR-b is activated by fatty acids,
which are its natural, endogenous ligands. PPAR-b is
a transcription factor for the genes encoding the enzymes
of the mitochondrial fatty acid oxidation pathway. Pre-
vious studies had shown that overexpression or activation
of PPAR-b in muscle induces an increase in mitochondrial
biogenesis (25,26). The investigators who performed these
studies concluded that the increase in mitochondrial
biogenesis was mediated directly by PPAR-b, because
overexpression of PPAR-b in muscle did not result in an
increase in peroxisome proliferator–activated receptor
g coactivator-1a (PGC-1a) mRNA. However, this did not
seem possible, because PPAR-b regulates expression of
only a subset of mitochondrial proteins and, therefore,
cannot mediate mitochondrial biogenesis, which requires the
coordinated activation of numerous transcription factors,
a process that is mediated by the transcription coactivator
PGC-1a (27). It seemed probable, therefore, that an in-
crease in PPAR-b induces an increase in mitochondria by
mediating a posttranscriptional increase in PGC-1a pro-
tein. This turned out to be the case, as both overexpression
of PPAR-b or activation of PPAR-b by raising plasma fatty
acids resulted in an increase in PGC-1a (22).

In light of these findings, it seems clear that mitochon-
drial deficiency is not necessary for the development of
insulin resistance and that, at least in the fat-fed rat model,
insulin resistance develops despite an increase in muscle
mitochondria. That insulin resistance is also not due to
mitochondrial deficiency in humans is evidenced by the
finding that insulin-resistant Asian Indians with T2DM have
a muscle mitochondrial capacity for oxidative metabolism
similar to that of nondiabetic Indians and higher than
that of healthy North Americans of Northern European
ancestry (28).

DOES A REDUCTION IN MUSCLE MITOCHONDRIA CAUSE

INSULIN RESISTANCE?

Various transgenic models have been used to test the hy-
pothesis that a deficiency of mitochondria causes muscle
insulin resistance. Wredenberg et al. (29) studied trans-
genic mice in which mitochondrial transcription factor
A (Tfam) was knocked out in skeletal muscle. Tfam is a
transcription factor that mediates transcription of genes
encoded in the mitochondrial genome, which includes
a number of key mitochondrial respiratory chain proteins.
There was a progressive, severe deterioration of respira-
tory chain function in the muscles of the Tfam knockout
mice. However, rather than causing insulin resistance,
the marked decrease in mitochondrial oxidative capacity
resulted in increases in insulin action and glucose toler-
ance, as well as enhanced basal and insulin-stimulated

2-deoxyglucose uptake in isolated muscles. In another
study, Pospisilik et al. (30) examined the effect of deletion
of mitochondrial apoptosis-inducing factor, which is re-
quired for maintenance of a functional mitochondrial
respiratory chain. Skeletal muscle apoptosis-inducing
factor knockout mice had reduced levels of mitochondrial
respiratory chain protein complexes I and IV with an as-
sociated decrease in the capacity for substrate oxidation.
This reduction in mitochondrial respiratory capacity
resulted in improved insulin sensitivity and glucose toler-
ance, and enhanced insulin-stimulated muscle glucose
transport activity. In a third study, Kelly and colleagues
(31) generated mice that had combined deficiency of
PGC-1a and PGC-1b in skeletal muscle. These totally PGC-
1a–deficient mice had markedly reduced levels of mito-
chondrial enzymes and ;90% decrease in the capacity of
muscle to oxidize fat (31). This severe mitochondrial de-
ficiency resulted in an improvement in glucose tolerance.

In an earlier study by our group, we generated trans-
genic mice that expressed uncoupling protein-1 (UCP-1) in
their skeletal muscles (32). The original purpose of this
study was to determine the effect of a modest reduction
of steady-state ATP concentration on mitochondrial bio-
genesis. However, the amount of UCP-1 expressed in the
muscles of the transgenic mice was too high and resulted
in disruption of mitochondrial structure (Fig. 1), and caused
large decreases in the levels of key mitochondrial enzyme
proteins. The mechanism by which a high content of UCP-1
damages muscle mitochondria is not known. Despite the
severe reduction in mitochondrial function, and the asso-
ciated accumulation of large amounts of intramuscular lipid
(Fig. 1), there were large increases in basal and insulin-
stimulated muscle glucose transport activity (32).

In 2010, Kelley and colleagues (33) published an article
in which they concluded that insulin resistance in T2DM
is mediated by a deficiency of the electron transport chain
(ETC) enzymes with no deficiency of the citrate cycle or
fatty acid oxidation pathway enzymes. They postulated that
this results in an imbalance between the ETC and the
citrate cycle and fatty acid oxidation pathways, and that

FIG 1. Electron microscopic images of muscle from wild-type mice
(A and C) and from muscles of mice with severely disrupted mito-
chondria caused by high overexpression of uncoupling protein 1
(UCP-H) (B, low magnification; D, high magnification). *Large lipid
droplets surrounding abnormal mitochondria. Reprinted with permis-
sion from Han et al. (32).
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this imbalance causes insulin resistance. This claim is
puzzling, both because their initial reports that T2DM
patients have “mitochondrial dysfunction” were largely
based on the finding of decreases in citrate synthase (1,3),
and carnitine palmityl transferase (2), and because the
studies by Pospisilik et al. (30) and Wredenberg et al. (29)
had shown that severe ETC enzyme deficiency results in
improved insulin action.

To further test the hypothesis that a selective decrease
in components of the mitochondrial ETC, that results in an
imbalance between the ETC and the fatty acid oxidation
pathway and citric acid cycle is responsible for insulin
resistance, rats were made severely iron deficient by
means of an iron-deficient diet (34). Iron deficiency results
in decreases in the iron-containing mitochondrial re-
spiratory chain proteins without affecting the noniron-
containing enzymes of the fatty acid oxidation pathway
and citrate cycle (35). Some of the iron-deficient rats were
fed a high-fat diet. Iron deficiency resulted in large
decreases in iron-containing mitochondrial respiratory
chain proteins in muscle (34). Citrate synthase and long-
chain fatty acyl-CoA dehydrogenase, used as markers for
the citrate cycle and fatty acid oxidation pathways, were
unaffected by the iron deficiency. Oleate oxidation by
muscle homogenates was increased by high-fat feeding
and markedly decreased by iron deficiency despite a high-
fat diet. The high-fat diet also increased long-chain acyl-
CoA dehydrogenase expression. As a result, there was
a ;fivefold increase in the ratio of long-chain acyl-CoA
dehydrogenase to cytochrome c, indicating a large imbal-
ance between the fatty acid oxidation pathway and re-
spiratory chain. The high-fat diet resulted in severe muscle
insulin resistance. The iron deficiency completely pro-
tected against the high-fat diet–induced insulin resistance,
and also resulted in a higher insulin-stimulated muscle
glucose transport activity compared with animals in the
low-fat diet, normal iron group (34).

These studies on rodents showing that mitochondrial
deficiency/dysfunction causes improvements in insulin
action and glucose tolerance raise the question, why are
T2DM patients insulin resistant despite a reduction in
muscle mitochondria? The answer to this question relates
to the severity of the mitochondrial deficiency. The hy-
pothesis that was tested in the studies on rodents reviewed
above was, does mitochondrial deficiency/dysfunction se-
vere enough to limit fat oxidation in resting muscle cause
insulin resistance? To test this hypothesis, an extremely
severe reduction in functional mitochondria is necessary.
The rate of substrate oxidation is determined by the
demand for energy and is regulated by the rate of ATP
breakdown/ADP production. The energy requirement of
resting muscle is determined by housekeeping functions
such as maintenance of electrochemical gradients and
protein synthesis and is very low relative to the maximum
capacity for substrate oxidation. Therefore, a very severe
reduction in functional mitochondria is necessary in order
to result in limitation of resting substrate oxidation in
resting muscle. In the various animal models in which
mitochondrial deficiency/dysfunction resulted in improved
insulin action and glucose tolerance, substrate oxidative
capacity was so low that it resulted in a decrease in steady-
state ATP concentration and an increase in AMP (Fig. 2).
The increase in AMP resulted in activation of AMP kinase,
which directly stimulates glucose transport and also in-
duces an increase in the GLUT4 (Fig. 2), thus inducing an
increase in insulin responsiveness (29,32,34). The increase

in AMP kinase activity explains the improvement in insu-
lin action, glucose tolerance, and muscle glucose uptake
in rodent muscle with severe mitochondrial deficiency/
dysfunction.

In contrast to the rodent models of mitochondrial
deficiency/dysfunction and improved insulin action in
which the decrease in muscle respiratory capacity is so
severe they can’t exercise, T2DM patients, despite a low
VO2max of ;26 mL O2 $ kg21 $ min21 (6), are able to ex-
ercise sufficiently vigorously to increase their whole body
rates of O2 uptake/substrate oxidation;8–9-fold. Since the
muscle mass involved in the exercise makes up ;20% of
body weight, this means muscles of T2DM patients have
a sufficiently high respiratory capacity to increase sub-
strate oxidation ;40-fold. In light of this huge reserve ca-
pacity, it is clear that a ;30% lower than normal content of
mitochondria is not sufficient to limit resting substrate
oxidation in muscles of T2DM patients or, therefore, to
cause a decrease in ATP or an increase in AMP and AMP
kinase activity.

It is clear from the many studies showing that mito-
chondrial deficiency/dysfunction severe enough to limit fat
oxidation in resting muscle increases insulin respon-
siveness, that mitochondrial deficiency plays no role in
mediating insulin resistance.

DOES MITOCHONDRIAL DEFICIENCY DECREASE

FAT OXIDATION IN T2DM PATIENTS AND

INSULIN-RESISTANT OBESE INDIVIDUALS?

Studies by Kelley and colleagues have supported the
concept that fat oxidation is reduced in insulin-resistant
individuals. In one of these studies, fat oxidation was de-
creased and glucose oxidation was increased in the resting,
postabsorptive state in 11 T2DM patients compared with
9 nondiabetic control subjects (36). In another, fat oxida-
tion by muscle was lower in 40 obese men than in lean
control subjects (2). However, in a subsequent study on
obese men, Kelley and colleagues in collaboration with
Wolfe (37) found that obese men derive a greater pro-
portion of energy from fat oxidation than lean men (43 vs.
31%) during mild exercise. In another study, Kelley and
colleagues found that fat oxidation was not reduced in
obese insulin-resistant individuals or T2DM patients, with
fat providing 37% of total energy in the lean control subjects,
47% of energy in the obese insulin-resistant individuals,
and 43% in the T2DM patients (38). There have also been
reports that plasma fatty acid oxidation was reduced in
insulin-resistant individuals, giving the impression that fat
oxidation was impaired (39,40). However, in these studies,
nonplasma fatty acid oxidation (probably from in-
tramuscular fat) was increased, so that total fat oxidation
was not significantly different between the control and
insulin-resistant groups. For example, in a study by
Thyfault et al. (40), total fat oxidation averaged 0.92 6
0.08 mmol $ kg21 $ min21 in the control subjects and
1.07 6 0.18 mmol $ kg21 $ min in the obese group. Most
of the studies by other investigators comparing obese
insulin-resistant individuals and/or patients with T2DM
have, however, found that insulin resistant individuals
have increased fat oxidation (7,37,41–47).

A hypothesis that used to be rather widely accepted is
that insulin resistance is mediated by increased fat oxi-
dation. This hypothesis is based on the finding by Randle
et al. (48) that fat oxidation inhibits glucose uptake and
metabolism and is, therefore, referred to as the “Randle
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glucose fatty acid cycle.” Evidence for the Randle effect in
insulin resistant humans was provided by DeFronzo and
colleagues (41), who found that fat oxidation is increased
in patients with T2DM and in obese insulin-resistant indi-
viduals compared with normal control subjects. Most of
the other studies comparing fat oxidation in normal con-
trols with T2DM patients and/or obese insulin-resistant
individuals have also shown that fat oxidation is increased
in insulin-resistant obese individuals and patients with
T2DM (7,37,41–47).

In conclusion, the answer to the three questions ad-
dressed in this counterpoint article is clearly no. Rather
than a decrease in mitochondria, an increase in mito-
chondrial biogenesis occurs in skeletal muscle concomi-
tantly with the development of muscle insulin resistance
(21,22). Rather than causing insulin resistance, a decrease
in mitochondria or disruption of mitochondrial function
sufficiently severe to limit fat oxidation in resting muscle
results in increases in basal and insulin stimulated glucose
transport into skeletal muscle and an improvement glu-
cose tolerance (29–32,34). Rather than a reduction in fat
oxidation in muscle, the majority of studies show that fat

oxidation is increased in obese, insulin resistant individu-
als and patients with T2DM (7,37,41–47).
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