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Abstract: Oxidative stress (OS) plays a pivotal role in diabetes mellitus (DM) onset, progression,
and chronic complications. Hyperglycemia-induced reactive oxygen species (ROS) have been
shown to reduce insulin secretion from pancreatic β-cells, to impair insulin sensitivity and signaling
in insulin-responsive tissues, and to alter endothelial cells function in both type 1 and type 2
DM. As a powerful antioxidant without side effects, astaxanthin (ASX), a xanthophyll carotenoid,
has been suggested to contribute to the prevention and treatment of DM-associated pathologies.
ASX reduces inflammation, OS, and apoptosis by regulating different OS pathways though the
exact mechanism remains elusive. Based on several studies conducted on type 1 and type 2 DM
animal models, orally or parenterally administrated ASX improves insulin resistance and insulin
secretion; reduces hyperglycemia; and exerts protective effects against retinopathy, nephropathy,
and neuropathy. However, more experimental support is needed to define conditions for its use.
Moreover, its efficacy in diabetic patients is poorly explored. In the present review, we aimed to
identify the up-to-date biological effects and underlying mechanisms of ASX on the ROS-induced
DM-associated metabolic disorders and subsequent complications. The development of an in-depth
research to better understand the biological mechanisms involved and to identify the most effective
ASX dosage and route of administration is deemed necessary.

Keywords: astaxanthin; diabetes mellitus; oxidative stress; hyperglycemia; diabetes complication;
diabetic retinopathy; diabetic neuropathy; diabetic nephropathy; insulin resistance; antioxidant; ROS

1. Introduction

Diabetes mellitus (DM), the most common metabolic disease, has become a major health concern
with increasing prevalence worldwide. Currently, 463 million people (9.3% of adults aged 20–79 years)
are living with diabetes around the world. A further 1.1 million children and adolescents under the
age of 20 live with type 1 diabetes (T1DM) [1]. This number is projected to increase to 578 million by
2030. The financial burden of DM is also staggering. The cost of the total diabetes-related healthcare is
estimated to be around $760 billion and has been projected to reach up to $825 billion in the next 10 years.
DM is a chronic disease that is recognized by hyperglycemia (HG) resulting from impaired insulin
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secretion, inappropriate insulin action, or both. The insulin deficit leads to high levels of blood glucose
(HG), which, if not tightly controlled, leads to disabling and life-threatening health complications
including cardiovascular diseases, retinopathy, neuropathy, nephropathy, and prolonged/incomplete
wound healing [1]. Moreover, DM increases bone fragility and impaired bone healing [2,3]. The main
categories of DM are type 1 (T1DM), type 2 (T2DM), and gestational DM. From these three types,
T2DM is the most common type, accounting for around 90% of all diabetes worldwide.

The development of DM and its complications are known to be associated with oxidative stress (OS)
and low-grade chronic inflammation [4]. OS, an imbalance between cellular oxidant and antioxidant
systems, results from the overproduction of free radicals and associated reactive oxygen species (ROS).
HG upregulates the markers of chronic inflammation and contributes to increased ROS generation,
which ultimately involves DM complications including vascular dysfunction [5]. Moreover, an increased
level of ROS reduces insulin secretion and impairs insulin sensitivity and signaling in insulin-responsive
tissues [5]. Proper treatment of HG and inhibition of ROS overproduction is, therefore, crucial for
delaying the DM onset and progression as well as for preventing its subsequent complications.

Recent advances in biological properties of antioxidants such as carotenoids have suggested that
these compounds are not only able to prevent but also able to ameliorate diabetes and its subsequent
complications [6]. In particular, astaxanthin (ASX) (3,3′-dihydroxy-β,β′-carotene-4,4′-dione), a xanthophyll
carotenoid [7], has been reported to exhibit multiple biological activities including modulation of OS and
inflammation through free radical quenching [8] and activation of endogenous antioxidant systems via
modulation of gene expression [9,10] and has numerous advantages compared to some other carotenoids.
Due to its unique structure, ASX is incorporated in the lipid bilayer of cellular membranes, without
damaging it, and prevents lipid-based oxidation [11]. Moreover, its bioactivity is by far higher than
other carotenoids such as α-carotene, β-carotene [12], and α-tocopherol [13,14]. It has therefore
attracted considerable interest because of its potential pharmacological effects including antidiabetic,
anti-inflammatory, and antioxidant activities properties and anti-inflammatory; antidiabetic; as well as
its neuro-, nephro-, and retinoprotective and cardiovascular effects [6].

Given the crucial role of OS and inflammation in the pathogenesis and subsequent complications
of DM, in this review, we aimed to analyze the biological effects and the underlying mechanisms of
ASX on the prevention and the treatment of DM-associated pathologies.

2. Pathophysiology of Diabetes-Related Metabolic Disorders and Complications Focus on the
Hyperglycemia–Oxidative Stress Interactions

T1DM and T2DM are complex conditions characterized by elevated blood glucose levels due to
impaired insulin production and/or to a reduced insulin sensitivity and function. T1DM is caused
by the autoimmune-mediated destruction of Langerhans-islet-β-cells and is mainly associated with
failure in insulin production, while T2DM is associated with chronic abnormalities of carbohydrate
and fat metabolisms in which triggering various pathways induces impaired insulin secretion
from the pancreatic β-cells, insulin resistance, reduced glucose utilization in peripheral tissues,
and increased hepatic glucose production [15]. In both T1DM and T2DM, chronic HG leads to macro-
and microvascular complications [16]. Today, it is admitted that OS and ROS are involved in the
pathogenesis of impaired insulin secretion from the pancreatic β-cells, insulin resistance development,
and endothelial dysfunction in both T1DM and T2DM [15–17] and are deeply altered by oxidation DNA,
RNA, protein, and lipid molecules which can be used as possible markers for disease progression [16].

In diabetes-related pathologies, ROSs play a central role in the interactions involving metabolic
control, OS, and inflammation [4,18]. ROSs are a family of species including molecular oxygen
and its derivatives: superoxide anion (O2−), nitric oxide (NO), peroxynitrite (ONOO−), hydroxyl
(HO), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and lipid radicals. Out of these
molecules, superoxide has been the initial oxygen free radical, which is then converted into other
more reactive species that can impair cell function. They are produced in aerobic metabolism at
very low levels and play a crucial role in cell signaling homeostasis [19]. ROSs are mainly produced
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in the mitochondrial electron transport chain (ETC), endoplasmic reticulum (ER), peroxisomes,
and microsomes [4]. Overproduction and/or insufficient removal of excessive ROS by endogenous
antioxidant systems result in damage to cellular proteins, membrane lipids, and nucleic acids, thereby
leading to OS. Besides antioxidant components such as superoxide dismutase (SOD) and glutathione
(GSH), different cellular compartments (nucleus, cell membrane, and mitochondria) contribute
differently to the ROS balance [18].

In HG conditions and/or fatty acid oxidation, therefore, ROS overproduction causes cellular
dysfunction, apoptosis, and inflammation in several insulin targets including the pancreas, liver,
kidney, nerves, and vasculature [17,18].

For instance, in T1DM, the generated ROS under metabolic or autoimmune stress in the cells of
the pancreatic microenvironment may enhance damage of pancreatic β-cells, thereby reducing insulin
secretion [17]. Regarding T2DM, HG-induced ROS production is considered a major contributor to
damage and disease progression. HG leads to glucose autoxidation, alters mitochondrial dynamics,
and enhances ROS production. The induced OS reduces insulin secretion and impairs insulin signaling
in target tissues [20]. ROS overproduction is also the underlying contributor to the development
of vascular complications of DM [18]. Specifically, in the HG-induced vascular damage, several
mechanisms are involved: (1) increased flow of glucose mediated by the activation of the polyol
pathway, (2) increased intracellular formation of advanced glycation end-products (AGE), (3) increased
expression of the AGE receptor and activation of the ligands, (4) protein kinase C (PKC) isoforms
activation, and (5) hyperactivity of the hexosamine pathway. Today, it has been widely accepted that
all of these pathogenic mechanisms stem from the HG-induced overproduction of the superoxide
anion radical (•O2−) in the mitochondrial ETC.

Specifically, high levels of blood glucose increase AGE formation and subsequent OS [21].
AGE accumulation has been related to diabetes as well as its associated complications, although
the signaling pathways and underlying mechanisms are not yet clearly defined. AGEs, via their
receptors including AGE-R1/OST-48, AGE-R2/80K-H, AGE-R3/galectin-3, lectin-like oxidized LDL
receptor 1 (LOX-1), as well as receptor for advanced glycation end products (RAGE) mediate ROS
production and increase the intracellular levels of oxygen derivates such as H2O2, O2−, and NO. AGE
interaction with its receptor RAGE induces an increase of NADPH oxidase (NOX): NOX1, NOX2,
and NOX4 mRNA levels and activates it. In addition, it activates the mitochondrial respiratory chain,
microsomal enzymes, and xanthine oxidase and enhances the release of arachidonic acid metabolites [21].
Moreover, AGE-induced ROS upregulates the expression and activities of antioxidant enzymes such
as catalase, glutathione peroxidase (GPx), and SOD. AGE-induced increased ROS formation also
modulates the signal transduction pathways such as RAS/MEK/extracellular signal-related kinases 1/2
(ERK1/2), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), or p38 mitogen-activated protein
kinase (MAPK) p21RAS; enhances nuclear factor-kappa B (NF-κB) translocation and activation; and
finally induces inflammation, apoptosis, and proliferation by NOD-like receptor protein 3(NLRP-3)
inflammasome and the production of several cytokines such as tumor necrosis factor alpha (TNF-α),
monocyte chemoattractant protein-1(MCP-1), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) [21].
Many studies have shown increased circulating levels of IL-6 and TNF-α in rodents and T2DM
patients [22]. These cytokines impair insulin signaling and peripheral glucose uptake and contribute
to insulin resistance, lipolysis, and hepatic glucose production.

3. Astaxanthin: Biological Effect on Diabetes Onset, Progression, and Chronic Complications

3.1. General Aspects of Astaxanthin: Structure, Sources, Bioactivity, and Administration Toxicity

3.1.1. Sources and Chemical Structure of Astaxanthin

ASX is one of the most powerful carotenoids with antioxidant activity which is produced naturally
or chemically. Natural sources of ASX include various microorganisms and marine animals such as
yeast, microalgae, trout, salmon, krill, shrimp, and crayfish; complex plants; and some birds. ASX is not
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synthesized in the human body but is ingested in the diet, in particular by seafood [23]. Commercialized
ASX is often extracted from Phaffia rhodozyma, Blakeslea trispora, and Haematococcus pluvialis as well as is
produced by chemical synthesis. H. pluvialis, the main source of natural ASX for human consumption,
is a unicellular green microalga which accumulates ASX under environmental stress conditions such
as starvation, irradiation, high salinity, temperature, or light [24,25]. ASX was authorized in 1987
by the United States Food and Drug Administration (US FDA) as a fish feed additive and then was
approved as a dietary supplement in 1999 [26]. ASX has also been registered as a fish feed additive by
the European Food Safety Authority (EFSA). According to the Novel Foods Regulation (EU) 2015/2283,
ASX from H. pluvialis has an acceptable daily intake in human up to 8 mg [27]. The H. pluvialis-extracted
ASX included in human dietary supplements has been proven to be safe and accepted by the US FDA
at daily doses of 2–12 mg [28,29].

ASX (3,3′-dihydroxy-β,β′-carotene-4,4′-dione, molecular formula C40H52O4, molar mass 596.84
g/mol) is a xanthophyll carotenoid which is composed of 40 carbon atoms organized in two oxygenated
β-iononetype rings joined by a polyene chain [7,30,31]. The conjugated double bond chain acts as
a strong antioxidant by electron donation and by reacting with free radicals [32]. Hydroxyl acid on
terminal rings can react with fatty acids and can form monoesters and/or diester. In nature, ASX can
also exist conjugated with proteins (e.g., salmon muscle or lobster exoskeleton). Interacting with
fatty acids or proteins stabilizes ASX, which in its free form is unstable and particularly susceptible
to oxidation; therefore, this form is mainly produced synthetically or from yeast [32]. ASX can be
naturally found in stereoisomers, geometric isomers, and free and esterified forms. Moreover, synthetic
ASX may have different conformations including chiral ((3S, 3′S) or (3R, 3′R)) or meso forms (3R, 3′S);
however, the chiral stereoisomers are the most prevailing forms. In addition, the polyene chain double
bond can be organized as two different conformations: cis or trans. Trans-isomers remain the most
widespread form due to the thermodynamic instability of cis carotenoids [11].

3.1.2. Administration Doses and Toxicity Studies

Solving ASX stability drawbacks and parenteral administration problems are of crucial importance
for the development of ASX-based therapy. In order to encapsulate, deliver, protect, and/or enhance
its in vivo stability, several vectors including polymeric systems, lipid-based carriers, and inclusion
complex using cyclodextrins have been proposed [33,34]. A polymeric matrix or a coating layer around
a particular compound provides a physical barrier, preserves its biological activity, and enhances
its physicochemical stability [23,35,36]. Lipid-based carriers based on microemulsion, nanoemulsion,
or an association of both referred as solid lipid nanoparticles or nanostructured lipid carriers were
shown to stabilize ASX [33,37,38]. A clinical trial revealed the improvement of ASX bioavailability
when incorporated into a lipid-based carrier [39].

Nanoemulsions formulated with ASX andα-tocopherol were administered locally to streptozotocin
(STZ)-induced diabetic mice wounds; a faster wound closure was seen. The tissue composition in
the presence of nanoemulsion was characterized by an abundance of inflammatory cells, fibroblast
formation, and collagen syntheses [40]. Cyclodextrins and natural macrocyclic oligosaccharides were
also proposed as an encapsulation system of choice to solubilize ASX due to their toroid-shaped
structures combining a rigid lipophilic cavity to a hydrophilic outer surface [41,42]. The noncovalent
association of the latter with cyclodextrin improves its solubility in water, bioavailability, stability [43],
and release [44,45]. The local delivery of cyclodextrin–ASX complexes from biocompatible polyvinyl
alcohol-dextran hydrogels was shown to block OS [36]. In addition, in an ischemic rat model, the same
systems neutralized excessive ROS and modulated the expression of endogenous antioxidant genes,
suggesting that local release of ASX may reduce the damage to tissues by activating endogenous
antioxidant pathways [42].

After oral administration, ASX esters are hydrolyzed selectively during absorption within the
intestine and are transported through circulation to the tissues [46]. Due to the presence of polar ends
in its structure, ASX can be absorbed better than other nonpolar carotenoids such as lycopene and
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β-carotene [24]. However, its limited solubility in digestive fluids compromises the uptake by intestinal
epithelial cells and its final secretion to lymph as chylomicrons [47,48]. The mechanism involved in
absorption, metabolic conversion of ASX, and excretion is not completely elucidated. Besides the
chemical structure, the absorption and bioavailability of ASX are influenced by a variety of parameters
such as age, gender, smoking, fat, food intake, and so on [49]. Various studies have tested dosages of
natural ASX ranging from 1–4 mg/day to 100 mg/day of synthetic ASX and reported a nonlinear dose
response for plasma concentrations as well as a lower bioavailability of esterified ASX [49].

From a safety perspective, studies on oral administration of natural ASX have not documented
negative effects [27]. For instance, oral administration of high doses (up to 1240 mg/kg/day) over a long
period of time (90 days) in rats did not exhibit any toxic effect [50]. In addition, in humans, natural ASX
ranging from 8 to 45 mg/day over 4 to 12 weeks showed low adverse effects [51]. ASX has an excellent
clinical safety, even when compared to the placebo in randomized studies, at low (up to 12 mg) or high
(up to 100 mg) doses of daily administration [27]. Nowadays, only natural ASX has been reported as a
human dietary supplement [7], and although in vivo preclinical studies on rats tested the actual safe
human doses at least 100–800 times, no critical adverse effect was observed. Safety parameters and
specific dose activities in humans should therefore be investigated [52].

Since 2010, 34 clinical studies have been reported on the use of ASX [53], from which 22 have been
completed until now. ASX has mainly been tested as a dietary supplement alone or in combination
with other molecules for safety and pharmacokinetic information or on various pathologies associated
to OS (e.g., stroke, infertility, hyperlipidemia, skin aging, and cognitive disfunction). Currently,
two studies are recruiting to investigate the potential of antioxidant therapy (ASX combined with
lutein, zeaxanthin, vitamin C, vitamin E, zinc, and copper as a daily administered drug) for diabetic
retinopathy (unpublished data, clinical trials N◦ NCT03310359 and N◦ NCT03702374). The study of
antioxidant therapy involving ASX for diabetic retinopathy has been completed; however, the results
have not been published yet. Emerging clinical studies using ASX for diabetic complications treatment
reflect the medical interest for this antioxidant.

3.1.3. Bioactivity of Astaxanthin

At cellular and molecular levels, ASX acts against oxidative damage through various mechanisms
(Figure 1) including quenching singlet oxygen, scavenging radicals, inhibiting lipid peroxidation,
and regulating OS-related gene expression [54]. ASX’s antioxidant potential is largely attributed to
its interactions with cell membrane lipids [55]. In contrast to other carotenoids, such as lycopene and
β-carotene, ASX, thanks to its polar structure, is incorporated in the membrane without disorganizing
it, decreases lipid hydroperoxide levels, and does not exhibit harmful pro-oxidative effects [56]; in fact,
ASX inhibition of lipid peroxidation is related to its ability to trap ROS within and on both sides of
the membrane [57,58]. Growing evidence suggests that ASX improves mitochondrial function by
reducing mitochondrial reactive oxygen species (mtROS) production and by increasing ATP production,
mitochondrial content, and respiratory chain complex activity [59].
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Figure 1. Schematic representation of molecular pathways implied in the protective potential of
astaxanthin (ASX): Due to its membrane penetrance, ASX has both intra- and extracellular reactive
oxygen species (ROS) scavenging actions. Moreover, in the phospholipid membrane, the ASX polyene
chain participates in the reduction of lipid peroxidation. Through the regulation of different pathways,
ASX reduces inflammation, oxidative stress, and apoptosis. Red arrows indicate inhibitory action,
and green arrows show enhancement action.

Parallel to natural scavenging, in STZ-induced diabetic rats (12 weeks), ASX regulates intracellular
OS by mainly activating MAPK, PI3K/Akt, and nuclear factor erythroid 2-related factor 2 (Nrf2)/
antioxidant response element (ARE) signaling pathways [60]. Activation of PI3K/Akt and ERK
pathways facilitates the dissociation and translocation of Nrf2 to the nucleus. Nrf2/ARE increases the
expression of heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NAD(P)H)
quinone dehydrogenase 1 (NQO1), and Glucathione S-transferase alpha1(GST-α1) and leads therefore
to an endogenous antioxidant response [52]. ASX was proven to ameliorate early brain injury by
the activation of Nrf2/ARE signaling pathways in an experimental subarachnoid hemorrhage rat
model [61]. In addition, ASX inhibits the specificity protein 1 (Sp1)/N-Methyl-d-aspartic acid (NMDA)
receptor subunit 1 (NR1) pathway, which is involved in intracellular ROS production [54,59].

ASX, through PI3K/Akt and ERK activation, also regulates the Bax/Bcl2 pathway, which reduces
cytochrome c release from mitochondria and decreases caspase 3-related apoptosis (reduction of
mitochondrial permeabilization). In endothelial cells, under OS, ASX treatment significantly activates
PI3K/Akt and reduces the expression of both endothelial nitric oxide synthase (eNOS) and Bax genes [34].
Moreover, ASX decreases caspase-associated apoptosis by modulating the p38 MAPK pathway [62].
Finally, ASX modulates inflammatory response by inhibiting the release of pro-inflammatory cytokines
(e.g., interleukin-1B (IL-1B), interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1), tumor
necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1)) through the activation
of reactive oxygen species (SHP-1), which suppresses NF-κB expression and IκB degradation. ASX also
has a direct inhibitory effect on IκB liberation, preventing the nuclear translocation of NF-κB and
increasing the anti-inflammatory effect [10,52,63]. The ASX pleiotropic effect was also related to
decreased expression of ER markers [64]. For instance, in human liver hepatocellular carcinoma
(HepG2), ASX reduces the expression of molecules such as glucose-regulated protein 78 (GRP78),
growth arrest and DNA damage-inducible protein (GADD34), C/EBP homologous protein (CHOP),
activating transcription factor 4 (ATF4), activating transcription factor 6 (ATF6), and X-box binding
protein 1 (XBP1), which are involved in ER stress-induced apoptosis.
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3.2. Antidiabetic Effects of Astaxanthin

ASX has shown some beneficial effects on the prevention and treatment of diabetes [6].
These effects depend on how advanced the disease is as well as on the type of complications
observed. Figure 2 summarizes the main effects described in the literature. For example, in clinical
studies, oral administration of ASX (8 mg/day for 8 weeks) to patients with T2DM significantly reduced
the fructosamine and plasma glucose concentrations [65]. ASX also improves glucose metabolism and
reduces blood pressure in patients with T2DM.

Figure 2. Beneficial effects of astaxanthin at different developmental stages of diabetes mellitus (DM)
and its complications.

The antidiabetic effect of ASX has been studied in different animal models with variable outcomes
(Figure 2) though the underlying mechanisms have not been clearly elucidated. Oral administration
of ASX significantly reduced fasting blood glucose in db/db mice, a well-known obese model for
T2DM [66–69]. A long-term administration of ASX (35 mg/kg for 12 weeks) showed that hypoglycemic
effect is linked with a lower malondialdehyde (MDA) content and enhanced SOD activity in serum [70].
In the same animal model, in the presence of ASX (1 mg/day for 18 weeks), pancreatic β-cells were
protected against glucose toxicity as they preserved their ability to secrete insulin. The non-fasting
blood glucose level was also significantly reduced [69]. Kitahara et al. reported that ASX can also
prevent pancreatic β-cell dysfunction by protecting them from ER stress-mediated apoptosis [71].
In pancreatic β-cells mouse insulinoma (MIN6), palmitate-treated, ASX on the one hand reduced
MCP-1 and, vascular endothelial growth factor (VEGF) secretion through the, c-Jun N-terminal kinases
(JNK) and PI3K/Akt pathways and on the other hand attenuated ER stress by reducing CHOP and by
upregulating the expression of GRP78, which is an ER chaperone [71].

Besides the glucose-lowering effect, animal studies have demonstrated that ASX improves
insulin sensitivity and glucose uptake, thereby lowering insulin resistance, the hallmark of T2DM.
Arunkumar et al. [72] reported that ASX (6 mg/kg per day for 45 days) significantly lowered plasma
glucose and insulin levels in HFFD (high fat fructose diet)-fed mice and improved insulin sensitivity.
Moreover, ASX potentiates post-receptor insulin signaling events by enhancing the autophosphorylation
of insulin receptor-β (IR-β), IRS-1 associated PI3-kinase step, phospho-Akt/Akt ratio, and GLUT-4
translocation in skeletal muscles [72]. Yasuhiro Nishida et al. also showed improved glucose metabolism
by enhancing glucose incorporation into skeletal muscles in ASX-treated HFD mice [73]. In this study,
ASX administration significantly ameliorated insulin resistance and glucose intolerance through the
regulation of 5′ adenosine monophosphate-activated protein kinase (AMPK) activation in the muscle,
independent of its antioxidant activity. In addition, it stimulated muscle mitochondrial biogenesis [73].
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Furthermore, ASX improves glucose metabolism by increasing glycogen reserves in the
liver [74]. It modulates the activity of metabolic enzymes such as hexokinase, pyruvate kinase,
glucose-6-phosphatase, fructose-1,6-bisphosphatase, and glycogen phosphorylase. It also promotes
the IRS-PI3K-Akt pathway of insulin signaling by decreasing serine phosphorylation of IRS proteins.
In STZ-induced diabetic rat, a well-known T1DM model, the treatment with ASX (50 mg/kg body
weight/day; 18 days), significantly decreased the levels of AGEs, ROS, and lipid peroxidation in the
liver of diabetic rats. These results suggested that the inhibitory effect of ASX on diabetes-induced
hepatic dysfunction could be linked to the blocking of AGE formation and further anti-inflammatory
effect [75].

Insulin resistance and compensatory hyperinsulinemia are strongly associated with obesity,
dyslipidemia, and hypertension in the metabolic syndrome. The effect of ASX was also evaluated
on several parameters of metabolic syndrome [6,76]. Hussein et al. reported that a 22-week ASX
administration (50 mg/kg/day) in SHRcp (spontaneous hypertensive rat (SHR)/NDmcr-cp (cp/cp))
rats reduced the fasting blood glucose level and improved insulin sensitivity and lipid metabolism
parameters including serum adiponectin [76]. Further, it has been shown that ASX administration
for 10 weeks prevented and reversed hepatic insulin resistance and ameliorated hepatic steatosis
in both genetically (ob/ob) and high-fat-diet-induced obese mice [77]. Moreover, these results were
associated with enhanced insulin-stimulated phosphorylation of the insulin receptor (IR)-β subunit
(p-IRβ) and Akt (p-Akt) in the livers of CL (cholate)+ASX mice compared with CL mice [77]. ASX
may also modulate interactions of peroxisome proliferator-activated receptors gamma (PPARγ)
with transcriptional intermediary factor 2 (TIF2), steroid receptor coactivator-1 (SRC-1), 3T3-L1 cell
differentiation, and lipid accumulation. PPARγ activation results in changes in adipokine production
and in decreased inflammation of adipose tissue, thereby leading to improved insulin sensitivity in the
liver and skeletal muscle [12]. Besides PPARγ, ASX activates peroxisome proliferator-activated receptors
alpha (PPARα), known to play a role in the regulation of lipid and cholesterol homeostasis [78,79].
ASX diluted in flaxseed oil has been shown to reduce hepatic steatosis as well as hepatic triglycerides
and total cholesterol in high-fat diet-fed Sprague–Dawley rats [80]. More specifically, it reduces fatty
acid synthesis by increasing PPRAα activity and by lowering lipogenic transcriptional factors and
other lipogenic enzymes. Ravi Kumar et al. described the effect of ASX administration combined with
squalene in mice fed with high-fat-high-sucrose diet on glucose/triglyceride levels. Blood glucose
levels were decreased while adiponectin levels and mRNA expression of Sod1 and GPx were
increased, underlining a possible benefit of utilizing the two drugs together for the management
of obesity/diabetes [81]. ASX significantly reduces also the expression of ER stress markers (eIF2a
(Eukaryotic Initiation Factor 2 alpha), PERK(protein kinase RNA-like endoplasmic reticulum kinase),
and Bip (immunoglobulin heavy chain-binding protein)) in high fat fructose fed mice. eIF2a and PERK
are implicated in lipogenesis (that also exacerbate ER stress). and Bip stimulates mitochondrial ROS
production [82].

Interestingly, recent studies have shown that oral administrated ASX n-octanoic acid diester,
a more stable ASX formulation, in high-fat and high-sucrose diet-fed mice improves insulin resistance
by modulating gut microbiota [83]. Moreover, it has also been reported that changes in the gut
microbiota induced by Xanthophyllomyces dendrorhous-derived ASX administration in high fat
fed mice were correlated with changes to some extent in triglyceride and total cholesterol plasma
levels [83,84].

On the contrary, some other studies reported no significant influences on glucose/insulin
metabolism. For instance, Chan et al. reported no significant hypoglycemic effect of ASX [85].
Preuss et al. examined several parameters of metabolic syndrome in Zucker fatty rats (ZFR); they
failed to show an ASX effect on insulin sensitivity [86] at low doses and observed a modulation of
glucose-insulin metabolism and nitric oxide at relatively high doses [86]. Differences in administrated
doses and/or animal species used among several studies are plausible explanations of the variation in
results and stands for a need to further investigate.
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3.3. Astaxanthin: Protective Effects on Diabetes Complications

OS is a common denominator link for the major pathways involved in the pathogenesis of diabetic
micro- as well as macrovascular complications [87]. Hyperglycemia induces the overproduction of
mitochondrial superoxide in endothelial cells of both large and small vessels as well as the myocardium.
In microvasculature, the intracellular, increased superoxide production causes vascular damage via
multiple metabolic pathways including AGE accumulation, AGE receptors, the protein kinase C (PKC)
pathway, the polyol pathway, and the hexosamine pathway activation [88]. Inflammation may also
play a key role in the development and the progression of diabetes complications [89]. In diabetic
macrovascular complications and in the heart, vascular damage appears to be a consequence of
increased oxidation of fatty acids, resulting in part in pathway-specific insulin resistance [88].

Owing to its molecular structure, ASX is one of the few antioxidants that can move throughout
the body and can provide protection to all of our cells. ASX may help in preventing and treating
diabetic microvascular complications by modulating OS, inflammation, and apoptosis through free
radical quenching [8]. Although the exact mechanism remains elusive, ASX has been reported to exert
beneficial effects in preventing DM complications including retinopathy, nephropathy, neuropathy,
and wound healing in numerous diabetic models in animal studies. The recommended dose for
reaching positive outcomes with diabetic complications should be addressed in adequate human trials
that would evaluate the efficacy and safety of ASX considering the bioavailability, individual response,
metabolism, tissue delivery, and possible toxicity.

3.3.1. Astaxanthin: Protection against Diabetic Retinopathy

Astaxanthin has recently been reviewed to have a beneficial pleiotropic effect in the prevention
and treatment of several ocular diseases due to its anti-inflammatory, antioxidant, and metabolism
regulatory effect [90]. Diabetic retinopathy (DR) is one of the major microvascular complications of
diabetes and the most frequent cause of acquired blindness in adults [91]. It is a slow progressive
chronic disease, and its prevalence is augmented by the duration of diabetes. The pathophysiology of
diabetic retinopathy is complex, as many metabolic changes affect different cell types in the retina.
Chronic HG increases OS in the retina and its capillary cells, leading to microvascular damage and
retinal dysfunction [92]. HG contributes to nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) overexpression, leading to cytosolic ROS increase and mitochondrial membrane damage.
In retina, OS can activate metabolic pathways including PKC, AGEs, hexosamine pathway, polyol
pathway, p38 MAPK pathway, and autophagy pathway can and alter the expression of growth factors
such as vascular endothelial growth factor (VEGF) [93]. It can also activate the nuclear factor-κB (NF-κB)
transcription factor, leading to the upregulation of pro-inflammatory cytokines that contribute to retinal
cell damage and subsequent development of DR [94]. The diabetic environment also compromises
the superoxide scavenging system by decreasing the activity of antioxidant enzymes such as SOD,
glutathione reductase, glutathione peroxidase, catalase GSH, and manganese superoxide dismutase
(MnSOD) activity, as well as by altering enzymes responsible for DNA and histone modifications [92].

Several studies have reported the protective effect of ASX on DR (Figure 3). In cultured human
retinal pigment epithelial cells, ASX reduced the high-glucose exposure-induced increased intracellular
level of AGEs, ROS, lipid peroxidation, the mRNA expression of VEGF and matrix metalloproteinase-2
(MMP2), and cell proliferation [95]. In STZ rats, oral administration of ASX plays a protective role in
the retinal function and architecture, and so, it prevents DR. ASX reduced the levels of OS mediators
(e.g., 8-hydroxy-2′-deoxyguanosine, nitrotyrosine, and acrolein), increased the levels of antioxidant
enzymes (heme oxygenase-1 and peroxiredoxin), and decreased inflammatory mediators (intercellular
adhesion molecule-1, monocyte chemoattractant protein-1, and fractalkine), which may be mediated
by downregulation of the NF-κB transcription factor [96].

An inhibitory effect of ASX has also been recently reported on aldose reductase (AR) activity, a key
enzyme in the polyol pathway involved in the pathogenesis of diabetic complications including DR in
the gerbil (Gerbillidae family, Psammomys obesus species) animal models for T2DM [97]. In db/db mice,
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ASX improved oscillatory potentials (OPs) and the levels of OS markers including superoxide anion,
MDA (a marker of lipid peroxidation), 8-hydroxy-2-deoxyguanosine (8-OHdG, indicator of oxidative
DNA damage), and MnSOD (manganese superoxide dismutase) in the retinal tissue [98]. Thus, it was
suggested that ASX as an antioxidant possibly improved DR by the regulation of intracellular OS, which
mediates pathological cell functionality (VEGF level, inflammation, and excessive cell proliferation).

Figure 3. Schematic representation of different pathways suggested for the protective effect of
astaxanthin on diabetic retinopathy (DR) via its ROS scavenging potential and reduced oxidative
stress induced by the enhanced antioxidant and the downstream pathways activated in hyperglycemic
states: In parallel, ASX inhibits inflammation through the nuclear factor-kappa (NF-κB) pathway,
microvascular damages through vascular endothelial growth factor (VEGF) production, and finally
apoptosis through the regulation of mitogen-activated protein kinase (MAPK) and phosphoinositide
3-kinase/protein kinase B PI3K/Akt pathways. The grey arrow indicates different pathways implied in
the development of the pathology, the red arrow indicates the inhibitory/regulatory effect, while the
green ones represent a stimulatory effect.

3.3.2. Astaxanthin Protection against Diabetic Nephropathy

Diabetic nephropathy (DN), also called diabetic kidney disease, is a microvascular complication
resulting from lesions in the renal glomeruli and tubuli [99]. It is strongly associated with poor
glycemic control [100]. The ROS-related increase of HG induces the recruitment of inflammatory
cells [101], the production of inflammatory cytokines [102], and an increased expression of NF-κB [103].
Renal inflammation has been reported to contribute to nephropathy development. ROS overproduction
has been also associated with TGF-ß and excessive extracellular matrix (ECM) deposition, leading to
the progression of renal fibrosis [104].

Several animal studies have reported the nephroprotective effect of ASX and proposed that it
should be explored further as a potential remedy for the prevention and treatment of DN (Figure 4).
In DN, HG-induced oxidative stress is mainly responsible for the disease progression. Chronic exposure
to glucose induces an increase in AGEs that activate the transcription factor NF-κB and the protein
kinase C (PKC) system through cellular RAGEs, leading to the inflammation and augmentation of
synthesis of the ECM constituents [105]. It has been shown that ASX administration for 12 weeks to
db/db mice reversed the HG-induced increased urinary albumin and decreased OS markers such as
8-hydroxydeoxyguanosine [66]. In diabetic rats, dietary supplementation with ASX (20 mg/kg daily)
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has shown direct favorable effects against renal dysfunction with a return to physiological levels of
creatinine and uric acid and a significant reduction in urea level, along with partial reversal of glomerular
hypertrophy [67]. ASX increases the activity of antioxidant enzymes such as SOD and catalase and
reduces the generated MDA in the serum. It has been also reported that the ASX accumulated in
the mitochondria of human mesangial cells suppresses HG-induced ROS production and inhibits the
activation of transcription factors and the production of COX-2, MCP-1, and TGFβ1 [106]. ASX may
partially interfere with the pathogenesis of DN by reducing the accumulation of ECM components
as it regulates the overproduction of fibronectin (FN) and TGF-β1 and can prevent renal fibrosis [60].
Recently, it has been revealed that the renoprotective effect of ASX on DM partially depends on the
signaling of the redox-regulated transcription factor Nrf2–ARE that exerts major effects in protecting
against oxidative damage [60]. Moreover, in the cultured HG-treated glomerular mesangial cells
and in db/db mice, ASX upregulates the Cx43 protein level and inhibits c-Src activity. Furthermore,
it promotes the nuclear translocation of Nrf2 and increases the expression level of its downstream
protein heme oxygenase-1 and superoxide dismutase 1 [70]. According to a recent report, administration
of ASX-s-allyl cysteine biconjugate to SZT-treated rats protected the antioxidant status of kidney and
plasma and curbed the progression of secondary complications of DM [107].

Figure 4. Schematic representation of different pathways suggested for the protective effect of
astaxanthin (ASX) on diabetic nephropathy (DN): Through its ROS scavenging and antioxidant
potential, ASX reduces oxidative stress and the downstream pathways activated in the development of
the disease. In addition, ASX directly inhibits NF-κB translocation and transforming growth factor beta
(TGF-β) production as well as reduces inflammation and fibrosis, which are strongly implied in DN.
The grey arrow indicates different pathways implied in the DN development, the red arrow indicates
an inhibitory/regulatory effect, while the green ones indicate a stimulatory effect.

3.3.3. Astaxanthin Protection against Diabetes-Induced Neuropathy

DM-induced neuropathy and hippocampal-based cognitive deficits are prevalent diseases with
important impacts on the life quality of patients. Besides inflammation, the oxidant/antioxidant
imbalance is considered the link between the HG states and neuronal abnormalities [6]. Several animal
studies have therefore considered the neuroprotective effects of ASX on DM (Figure 5) and on other
aging-related diseases, as well [10,52,63]. Specifically, in STZ rats, ASX administration improves
cognitive function [108] and simultaneously reduces activities of oxidative stress by increasing the
levels of antioxidant enzymes. By reducing NF-κB p65 subunit in the cerebral cortex and hippocampus,
ASX reduces the levels of inflammatory mediators such as TNF-α, IL-1β, and IL-6. Furthermore,
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by activating the PI3K/Akt pathway, it reduces caspase 3 and caspase 9 activities, protecting brain
cells from apoptosis. In another study, ASX ameliorated the neuronal behavior in STZ-treated mice.
This effect has been related to the decrease of glial fibrillary acidic protein (GFAP) expression in
the brain; cleaved caspase-3, IL-6, and IL-1β downregulation; and cystathionine β-synthase (CBS)
upregulation in the frontal cortex [109]. In a recent study on diabetic mice, ASX increased the level of
SOD and decreased the level of MDA in the hippocampus. It also alleviated cognitive dysfunction by
inhibiting OS and inflammatory responses via Nrf2/ARE and NF-κB signaling pathways [110].

Figure 5. Schematic representation of different pathways suggested for the protective effect of
astaxanthin (ASX) on diabetic neuropathy: Through its ROS scavenging potential and the enhancement
of antioxidant activities, ASX reduces oxidative stress and the downstream pathways activated in the
development of DM-induced neuronal abnormalities. In addition, ASX directly inhibits inflammation
through NF-κB, microvascular damages through VEGF production, and finally apoptosis through the
regulation of MAPK and PI3K/Akt pathways. The grey arrow indicates different pathways implied in the
development of DM-induced neuronal abnormalities, the red arrow indicates an inhibitory/regulatory
effect, while the green ones indicate a stimulatory effect.

3.3.4. Cardiovascular Protective Effect of Astaxanthin in Diabetes

Cardiovascular disease is a major cause of mortality in T2DM patients due to hypertensive vascular
damages [111]. HG leads to arteriosclerosis through AGE increase [112]. OS resulting from NOX
enhancement leads to platelet aggregation and thrombosis. It is worthy to note that, physiologically,
the antioxidant enzymes in blood platelets regulate ROS overproduction [113]. Considering that
antioxidant enzyme production is compromised by the diabetic environment, ASX could reduce
thrombosis through balancing the redox reactions. By limiting the low density lipoprotein, ASX may
also contribute to the prevention of arteriosclerosis in a dose-dependent manner [114]. Eventually
through the regulation of ROS-induced vasoconstriction, ASX may significantly modulate arterial
blood pressure and fluidity in hypertensive animals [115]. The cardiovascular protective effects of
ASX and derivatives have been previously reported after prior oral or intravenous administration
to different animal species. It also reduces OS and inflammation and is known to contribute to the
pathophysiology of atherosclerotic cardiovascular disease [101]. An overview of the potential effects of
ASX l (Figure 6) on cardiovascular diseases has been documented in numerous reviews [49,116,117].
It should be noted that DM is one of the contributing events in the cardiovascular physiopathology,
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besides hypertension, infections of the vessel wall, and smoking. With a focus on the DM context,
Zhao et al. studied the effect of ASX (10 mg/kg daily for 42 consecutive days) on endothelial cells in
STZ diabetic rats and reported reduced levels of the oxidized low-density lipoprotein (oxLDL) and
the expression of its endothelial-cell receptor LOX-1, leading to eNOS expression restoration [118].
Chan et al. showed that, in diabetic rats, dietary intake of astaxanthin (at 0.01 and 0.05%) exhibited
anti-inflammatory and anti-coagulatory effect [85]. Moreover, a clinical trial in T2DM patients (daily
intake up to 12 mg ASX) significantly attenuated hemostatic disorders and reduced the inflammatory
cytokines level without affecting renal function [119]. Further investigations are needed to clarify the
mechanisms and the effects of ASX in the DM context.

Figure 6. Schematic representation of different pathways suggested for the protective effect of
astaxanthin (ASX) on diabetic cardiovascular complications in the literature: through its ROS
scavenging potential and the enhancement of antioxidant activities, ASX reduces oxidative stress and
the downstream pathways activated in the development of the pathology. In addition, ASX directly
inhibits inflammation through NF-κB pathway. Thrombosis and vasoconstriction reduction are also
associated with oxidative stress regulation. Moreover, ASX lowers oxidized low-density lipoprotein
(oxLDL), enhances endothelial nitric oxide synthase (eNOS), and reduces vasoconstriction. The grey
arrow indicates different pathways implied in the development of DM-induced neuronal abnormalities,
the red arrow indicates an inhibitory/regulatory effect, while the green ones indicate a stimulatory effect.

3.3.5. Anti-Inflammatory Effects of Astaxanthin in Diabetes

Inflammation is a determinant factor in the onset and development of T1DM, T2DM, and their
complications [120]. Immune cells involved in pancreatic β-cell destruction are activated through a
variety of cytokines including IFN-γ, TNF-α, and IL-1β. Chronic low-level inflammation is a main
feature of T2DM, and TNF-α, IL-1, IL-6, IL-10, and adipokines serve as links between inflammation and
metabolism. Obese adipose tissue is characterized by macrophage infiltration, which is an important
source of inflammation and TNF-α production in this tissue [121].

The anti-inflammatory effects of ASX have been reported in several studies. ASX supplementation
induces macrophage phenotype switch by the decrease of pro-inflammatory M1 markers (CD11 and
MCP-1) and the increase of anti-inflammatory M2 markers (IL-10) [77,122]. Moreover, Kim et al. [122]
observed an attenuated monocyte recruitment, thereby reducing in situ macrophage proliferation.
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ASX reduces the HG-induced inflammation-related levels of inducible nitric oxide synthase (iNOS),
cyclooxygenase (COX), MCP-1, prostaglandin E2 (PGE2), IL-1β, and TNF-α molecules. For instance,
in STZ-induced diabetic rats, ASX (0.01% or 0.05% in diet) was shown to reduce the level of activated
macrophages (MCP-1) in plasma and kidney and that of the pro-inflammatory cytokines (IL-6 and
TNF-α) [85]. Bhuvaneswari et al. demonstrated that, in high-fat-high-fructose diet, ASX administration
(2 mg/kg/day) inhibited IkB phosphorylation and therefore the nuclear translocation of the NF-κB p65
subunit [82]. Indeed, numerous studies have demonstrated that the anti-inflammatory effect of ASX is
mediated via inhibiting NF-κB activation in diabetes-induced models [123,124]. In fact, by regulating
the NF-κB pathway, ASX reduces the risk of complication in diabetes [96,106,108,110]. Thus, ASX in
targeting inflammation may improve the prevention and control of the diabetes-related diseases.

4. Conclusions and Future Perspectives

OS and inflammation are recognized as determinant factors of DM development and its associated
complications. Several in vitro studies have shown a broad range of biological properties in DM-related
pathologic cells including pancreatic β-cells, macrophages, T-cells, hepatocytes, adipocytes, endothelial
cells, retinal pigment epithelial cells, and glomerular mesangial cells, among others. ASX is able
to reduce intracellular oxidative stress and inflammation by scavenging the ROS and inhibition of
lipid peroxidation. It modulates multiple OS pathways, but the mechanisms and specificity of action
regarding type of cells remain elusive.

The literature reviewed here clearly suggests a promising utilization of ASX in diabetes healthcare.
ASX is a safe drug with pleiotropic effects and without crucial adverse effects. The orally/parenterally
administrated ASX to T1DM and T2DM animal models has been shown (i) to improve insulin resistance
and glucose intolerance, (ii) to reduce hyperglycemia, (iii) to stimulate activation of antioxidant enzymes
and reduce OS, and (iv) to have an anti-inflammatory effect. It may have, therefore, a significant
preventive role in the onset and progression of DM as well as a protective role in the development
of diabetic complications. However, the heterogeneity of DM models, ASX source, dosage, mode of
administration, and outcomes studied make comparisons of the obtained results almost impossible.

Although a number of clinical trials have already studied ASX effects, research on the biological
mechanisms involved in a diabetic context is necessary. The appropriate dose for reaching positive
results with diabetic complications should be addressed in adequate human trials that would evaluate
efficacy and safety considering the bioavailability, individual response, metabolism, tissue delivery,
and possible toxicity.
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