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ABSTRACT At sites of blood vessel injury, platelets release numerous substances that may have 
biological activities influencing cellular responses. In this study we examined separately the 
chemotactic activity for fibroblasts of three highly purified proteins obtained from platelet 
alpha granules: platelet factor 4 (PF4), platelet-derived growth factor (PDGF), and /3-throm- 
boglobulin (BTG). We observed that each of these proteins was strongly chemotactic for 
fibroblasts, with maximum chemotactic activity in each instance comparable to that observed 
with an optimal concentration of the control chemotactic protein, plasma fibronectin. Each 
protein was active at very low concentrations. The peak chemotactic activities of PF4, PDGF, 
and BTG occurred at 200 ng/ml, 30 ng/ml, and 6 ng/ml, respectively. Specificity of fibroblast 
chemotaxis to individual platelet proteins was provided by finding that anti-PF4 immunoglob- 
ulin blocked the chemotactic activity of PF4 without affecting the chemotactic activity of 
PDGF, while anti-PDGF immunoglobulin blocked the activity of PDGF but did not alter the 
capacity of PF4 to promote fibroblast chemotaxis. These results suggest that in vivo several 
alpha granule proteins released from platelets may affect wound healing by causing directed 
fibroblast migration. 

Apart from an essential role in hemostasis, platelets appear to 
be important for inflammation (1). The mechanisms by which 
platelets mediate inflammation have not been well understood. 
To help determine whether platelets might influence inflam- 
mation by inducing directed cell migration of inflammatory 
cells to sites of  injury, we undertook to examine the chemotactic 
activities of highly purified platelet secretory proteins for neu- 
trophils and monocytes. Platelet factor 4 (PF4) was shown to 
be a potent chemotactic agent for human monocytes and for 
human neutrophils, at concentrations of PF4 present in normal 
human serum and thus at concentrations present at sites of 
injury (2). Subsequently, we reported that the platelet-derived 
growth factor (PDGF) purified to homogeneity is highly active 
as a chemoattractant for human inflammatory cells (3). Opti- 
mal PDGF concentrations for chemotaxis for monocytes and 
neutrophils were 20 ng/ml and 1 ng/ml, respectively. Coinci- 
dent with these studies, Grotendorst et al. (4) and Seppa et al. 
(5) reported that PDGF is chemotactic for fibroblasts and 
smooth muscle cells, and suggested that PDGF may be in- 
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volved in wound healing through effects upon fibroblast move- 
ment. 

The present report extends the observations concerning the 
activity of platelet proteins upon cell migration by establishing 
that PF4 and another platelet alpha-granule protein, B-throm- 
boglobulin (BTG), are highly chemotactic for fibroblasts. The 
results provide additional information in support of the hy- 
pothesis that platelets participate in inflammation and wound 
repair. 

MATERIALS AND METHODS 

PF4, PDGF, and BTG were purified from outdated, frozen platelet packs using 
procedures previously reported (6-8). Both PFa and BTG migrated as single 
homogeneous bands in SDS PAGE (6, 8). BTG was established as pure also 
using N-terminal amino acid analysis. PDGF was resolved into two separate 
homogeneous species, PDGF I and PDGF II (7), by SDS PAGE; each protein 
species was tested separately for chemotactic activity. Fibronectin, purified from 
human plasma (a gift of Dr. John A. McDonald, Washington University and 
The Jewish Hospital of St. Louis), was used as a positive control. 

Fibroblasts: Fibroblasts from human skin and bovine nuchal ligament 
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were cultured in Dulbecco's modified Eagle's medium (DME, The Center for 
Basic Cancer Research, Washington University School of Medicine, St. Louis, 
MO), as previously described (9). Confluent fibroblasts (2-6 passages) were 
detached by exposure to 0.25% (wt/vol) trypsin and 0.1% (wt/vol) ethylenedia- 
minetetraacetic acid (Sigma Chemical Co., St. Louis, MO) in phosphate-buffered 
saline for 3 rain at 37°C before use in chemotaxis assays. The trypsin was 
promptly inactivated by dilution into a 5x volume of fresh culture medium 
containing 10% (vol/vol) fetal bovine serum (KC Biological, Inc., Lenexa, KS). 
To minimize the potential effects of platelet-derived factors contained in the fetal 
bovine serum included in the culture medium, the medium was not changed for 
48 h before the cells were harvested. 

C h e m o t a x i s  As5ay5: Assays of fibroblast chemotaxis were performed 
in triplicate in a multi-blind well apparatus by the method recently reported (9). 
Each well of the apparatus was separated into two compartments by a pair of 
micropore membranes, an 8-#m micropore membrane (Nucleopore Corp., Pleas- 
anton, CA) overlying a 0.45-/tm micropore membrane (Millipore Corp., Bedford, 
MA). To obtain attachment and spreading of the fibroblasts to the membranes, 
the membranes were pretreated with poly-L-lysine (P-1886, Sigma Chemical Co., 
St. Louis, MO). The lower compartment of each well was filled with 240 gl of 
solution to be assayed and the upper compartment was filled with 360 gl of a cell 
suspension containing 1.2 x l0 s cells per ml. After 6 h of incubation at 3 7 ° C  the 
chambers were disassembled and the membranes stained with hematoxylin. To 
quantify cell migration, 5 high-power (x 400) fields (hpf) were counted per 
membrane pair. In every experiment negative controls were run in parallel. These 
controls, consisting of wells in which the lower compartment contained medium 
only, yielded -20  ceils per hpf. The cell migration in test chambers  was corrected 
by subtracting the number of cells in the corresponding control assays. Accord- 
ingly, the results are reported as net cell migration. 

In some experiments, rabbit anti-PF4 IgG or rabbit a n t i - P D G F  IgG was 
incubated for 60 min at 37°C with either PF4 or PDGF and then the mixture 
was assayed for chemotact ic  activity. In these experiments, in addition to the 
usual negative controls, additional controls of IgG with medium in the lower 
compartment were also included. The IgG were established as monospecific by 
immunodiffusion analysis against whole platelet lysates and against the appro- 
priate purified protein. 

RESULTS 

Both B T G  a n d  PF4 were  observed  to p r o m o t e  fibroblast 
migration, with the optimal cell migration at 6 ng/ml and 200 
ng/ml, respectively (Fig. 1A and B). The effects of these 
proteins upon fibroblast migration were established as chem- 
otactic, since cell movement was little above background when 
the assay chambers were prepared so that the concentration of 
the test protein was either the same in both compartments, or 
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FIGURE 1 Bovine l igament f ibroblast migrat ion in response to B- 
thrombogiobul in  (A)  and PF4 (B). Mean and SE of  tr ipl icate obser- 
vations. 

high in the upper compartment. Maximum chemotactic re- 
sponsiveness of  fibroblasts to PF4 and to BTG was comparable 
to the maximum chemotactic response induced by 1 gg/ml 
plasma fibronectin ( -35 net cells per hpf). 

The chemotactic activity of homogeneous preparations of  
PDGF II for fibroblasts was then tested. Table I presents 
results of examining various concentrations of PDGF in the 
upper and lower chambers of the in vitro chemotactic assay 
("checkerboard analysis"). PDGF is established as chemotactic 
for fibroblasts in this assay. Maximal chemotactic activity of 
PDGF occurred at 30 ng/ml, approximately the Ka of PDGF 
for fibroblasts (10). The activity of PDGF I was tested also 
and found to be similar to that of  PDGF II. 

Fig. 2, depicting the cell migration of human skin fibroblasts 
in comparison to bovine ligament fibroblasts, indicates that 
PDGF has effects on both types of fibroblasts; the dose re- 
sponse curves for both cell types are similar although human 
cells appear t_o be quantitatively less responsive. We previously 
observed a similar difference between chemotactic responses of  
human and bovine cells, using tropoelastin and elastin derived 
peptides as chemoattractants (9). 

Rabbit immunoglobulins raised against PF4 and PDGF 
were used to help establish the specificity of the chemotactic 
responses of  fibroblasts to the platelet proteins. The chemotac- 
tic activity of PF4 for fibroblasts was abolished by anti-PF4 
IgG, but was unaffected by anti-PDGF IgG; reciprocally, the 
chemotactic activity of PDGF was abolished by anti-PDGF 
IgG but unaffected by anti-PF4 IgG (Fig. 3A and B). In these 
experiments, in which the same batches of bovine ligament 
fibroblasts were tested simultaneously with either PF4 or 
PDGF, as shown, the peak chemotactic activity to PF4 fully 
equaled the peak chemotactic activity of PDGF, but there is a 
marked difference between the concentration optimums and 
the concentration ranges over which PF4 and PDGF are 
effective. PDGF activity, maximum at 30 ng/ml, is expressed 
over a 1,000-fold range of concentration (0.3-300 rig) whereas 
the activity of  PF4, maximal at 200 ng/ml, is expressed over a 
relatively narrow, 10-fold concentration range (50-500 rig). 

TABLE I 

Fibroblast Chemotaxis to PDGF 

PDGF, 
lower 

compart-  
ment 

PDGF, upper compartment ,  ng /ml  

0 3 15 30 

ng/ml 

3 17 ± 0.5* 5 ± 0.4 0 ± 0.5 4 ± 0.6 
15 29 ± 0.6 13 ± 0.6 6 ± 0.4 2 ± 0.4 
30 52 + 0.9 42 + 0.6 8 ± 0.8 3 ± 0.3 

* Cells/hpf +_ SEM, n = 15 

FIGURE 2 The migration 
of fibroblasts to PDGF. Bo- 
vine l igament fibroblasts, 
{m); human skin f ibro- 
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FIGURE 3 Bovine ligament fibro- 
blast migration to PF4 and PDGF ~ ,~ 
which have been preincubated < ,- 
with (A) anti-PF4 immunoglobulin ~ 
(PF4 Ab) or (B) anti-PDGF immu- 
noglobulin (PDGF Ab). (A) PDGF, ~ 
(0); PDGF plus PF4 Ab, (O); PF4, O z 
(A); PF4 plus PF4Ab, (A). (B) PDGF, 
(0); PDGF plus PDGF Ab, (O); PF4, u 
(A); PF4 plus PDGF Ab, (A). See 
Materials and Methods for details. 
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DISCUSSION 

When blood vessels are injured, circulating platelets adhere to 
exposed collagen and to the subendothelial basement mem- 
brane. Aggregation of  adhered platelets follows and the plate- 
lets involved release the contents of their alpha and dense 
granules (11). In addition to fibrinogen, fibronectin, and other 
proteins also found in plasma, three platelet-specific, alpha- 
granule proteins, PF4, PDGF,  and BTG, are released (12). The 
present experimental data demonstrate that each of  these 
unique alpha-granule proteins is a strong chemotactic agent for 
fibroblasts. Thus, platelet-specific secretory proteins have the 
potential to be highly important mediators of fibroblast migra- 
tion into injured areas. Other potentially important mediators 
of fibroblast migration include lymphokines, a complement- 
related component, collagen, fibronectin, tropoelastin, and 
elastin-derived peptides (9, 13-16). 

PF4 was the first platelet-specific, alpha-granule protein 
shown to be active in chemotaxis of  inflammatory ceils, sug- 
gesting a vital role for platelets as effector cells in initiating 
major events of inflammation and repair (3). Additional sup- 
port favoring a role of PF4 in vivo in mediating chemotaxis of  
inflammatory ceils was obtained by the demonstration that 
PF4 was active in chemotaxis at concentrations found in human 
serum (17). In contrast, the concentration of PF4 resulting in 
maximum fibroblast chemotactic activity is less than one-tenth 
that required for optimal chemotaxis of inflammatory cells--  
the concentration also found in human serum. This differential 
in PF4 concentration for chemotactic activity between inflam- 
matory cells and fibroblasts may have relevance to the types of 
responses initiated by platelets. High-level, acute injury with 
maj or platelet release provides concentrations of PF4 favoring 
inflammation whereas low-level, chronic release may mediate 
fibroblastic ingress. Also, optimal chemotactic concentrations 
for monocytes and neutrophils are found at the immediate site 
of injury, where monocytes and neutrophils are to be found; 
the substantially lower optimal concentrations of  PF4 required 
for attracting fibroblasts are consistent with the lower concen- 
trations of  PF4 found as the distance is increased from the 
immediate site of injury to the subendothelial site of focus of 
fibroblasts in vivo. The differences in optimal concentrations 
of PF4 required for cell migration of monocytes and neutro- 
phils on one hand and fibroblasts on the other emphasize the 
complexity of interactions between cells and chemoattractants. 
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Each cell type needs to be investigated over a wide range of  
concentrations before concluding whether or not the cells will 
respond to a potential chemoattractant. 

PF4 antigen rapidly permeates into blood vessel wails fol- 
lowing endothelial injury (18). Whether PF4 is subject to 
proteolytic cleavage in the vessel wall is not clear, however, it 
is possible that PF4-derived peptides may retain chemotactic 
activity. Indeed, we recently demonstrated that the carboxyl 
terminal 13 amino acid residues of PF4 fully express monocyte 
chemotactic activity of  intact PF4, strongly suggesting that this 
tridecapeptide contains the chemotactically active site of PF4 
(19). Release of  this peptide by proteolysis in the tissues could 
provide locally a potent chemotactic agent for inflammatory 
cells. 

The function of  BTG heretofore has not been described. The 
finding that BTG is highly chemotactic for fibroblasts provides 
one potentially important function for this protein. BTG shares 
marked amino acid sequence homology with PF4 (20). Despite 
close similarity in structure, as well as similarities in concentra- 
tion within the platelet and in the quantity of each protein 
released from stimulated platelets (21), however, there are a 
number of  differences between BTG and PF4. PF4 does not 
compete with BTG for receptor binding on endothelial cells 
(22), an observation suggesting that BTG and PF4 may utilize 
different receptors in promoting fibroblast chemotaxis. Also, 
BTG has a longer half-time in the circulation (21), suggesting 
that BTG may function effectively as a chemoattractant over 
a longer time. In the experiments reported above, on a mole to 
mole basis, BTG is a more potent fibroblast chemoattractant 
than PF4. The maximum effect of BTG occurs at 1.7 x 10 -~° 
M, 30-fold less than the concentration required for optimal 
effectiveness of PF4. 

Recently, PDGF was shown to have fibroblast chemotactic 
activity (5). In that work, in which the concentrations of PDGF 
were expressed as units of mitogenic activity, the dose-response 
curves for the mitogenic and chemotactic activities of PDGF 
were found to be similar up to the optimal concentration for 
chemotactic activity. Above that concentration, chemotactic 
activity declined while mitogenic activity persisted. We now 
demonstrate that PDGF is at least as potent a fibroblast 
chemoattractant as fibronectin and that the maximal chemo- 
tactic activity occurs at 10 -9 M, a concentration virtually 
identical to the dissociation constant (0.7 x l0 -9 M) of PDGF 
we reported in studies of its binding to fibroblasts (10). The 



fibroblast chemotactic activity of  PDGF is likely due to an 
interaction of  PDGF with specific cell surface receptors. Such 
receptors have been suggested in direct binding studies with 
mouse fibroblasts, human skin fibroblasts, arterial smooth 
muscle cells, and human glial cells (10, 23, 24). The chemotactic 
responsiveness of neutrophils and monocytes to PDGF also 
suggests that these cells have receptors for PDGF (3). PDGF 
I and PDGF II show comparable chemotactic activity, analo- 
gous to the finding that both proteins have similar mitogenic 
activity (7). 

The demonstration of  PDGF fibroblast chemotactic activity 
by Seppa et al. (5) was preceded by their observation that 
supernatants from thrombin-stimulated platelets were chemo- 
tactic for fibroblasts. The possibility that other factors released 
by stimulated platelets besides PDGF might also have chem- 
otactic activity for fibroblasts was not examined. The present 
results indicate that at least two other proteins released from 
platelet alpha granules, PF4 and BTG, also have the capacity 
to promote fibroblast chemotaxis, and that their effects appear 
to be at least as great as the effects achieved by either P D G F  
I or PDGF II. The possibility that platelets contain still other 
chemotactic factors for fibroblasts needs further study because 
platelets release fibronectin, a known chemoattractant for fi- 
broblasts (16), and Nakao et al. recently observed that 12-L- 
5,8,10,14-eicosatetraenoic acid, a platelet lipoxygenase product, 
produces smooth muscle migration (25). It must be concluded 
that the role of  platelets in inflammation and wound healing 
is likely to be highly complex, involving a variety of factors 
with differing potency and cellular specificity. 
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