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Complete Genome Sequences of Two Plant Growth-Inhibiting
Bacteria, Acinetobacter ursingii M3 and Asticcacaulis excentricus

M6, Isolated from Duckweed (Lemna minor)
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ABSTRACT Acinetobacter ursingii M3 and Asticcacaulis excentricus M6 are plant
growth-inhibiting bacteria that reduce the yield of the duckweed Lemna minor. We
report here the complete genome sequences of A. ursingii M3 and A. excentricus M6,
sequenced using the PacBio RS Il platform.

lant growth-inhibiting bacteria (PGIB), also called deleterious rhizobacteria, repress

host growth without any disease symptoms other than reduced growth (1). Despite
their ubiquitous occurrence in the plant rhizosphere and potential negative influence
on crop productivity (2-4), the molecular aspects of PGIB and their plant interactions
are not well understood.

We report the genome sequences of Acinetobacter ursingii M3 and Asticcacaulis
excentricus M6, the PGIB strains of the duckweed Lemna minor. Previously, 22 distinct
bacterial strains were isolated from L. minor RDSC 5512 using conventional culture
methods, and these were separately cocultured with sterilized Lemna minor samples to
examine the effect on host growth. Unlike the majority of the isolates, which had
positive or neutral effects on the host, A. ursingii M3 and A. excentricus M6 decreased
the weekly yield of duckweed by 10 to 20% (4). Plant growth inhibition by A. ursingii M3
and A. excentricus M6 is reportedly accompanied by the enhanced accumulation of
reactive oxygen species and stimulation of antioxidant enzymes in plant cells (5). Since
duckweed is an emerging crop that can be cultured with wastewater and yield
high-value biomass (6), attention has been directed at improving its productivity by
considering plant-microbe interactions. For that purpose, the mechanisms by which
these PGIB reduce host growth need to be well understood.

The genomic DNA of A. ursingii M3 and A. excentricus M6 was extracted using the
illustra bacterial genomicPrep mini spin kit (GE Healthcare, Little Chalfont, UK) accord-
ing to the manufacturer’s protocol. Sequencing was performed with a PacBio RS I
platform (Pacific Biosciences, Menlo Park, CA, USA) using a single-molecule real-time
(SMRT) cell 8Pac version 3 and a DNA polymerase binding P6 kit (Pacific Biosciences).
Approximately 12 ug of DNA was used for construction of a SMRT cell library. For the
genomes of A. ursingii M3 and A. excentricus M6, we obtained 107,291 and 152,454
quality-filtered subreads (Nso, 15,204 and 12,763 bp, respectively), totaling 1,126 and
1,373 Mb, respectively. De novo assembly was performed using the Hierarchical Ge-
nome Assembly Process (HGAP) version 3.0 with default settings. Gene prediction and
annotation were conducted with Rapid Annotations using Subsystems Technology
(RAST; see http://rast.nmpdr.org/).

The genome assembly yielded three circular contigs each for A. ursingii M3 and A.
excentricus M6. Table 1 summarizes the genome statistics. It was found that the
chromosome of A. ursingii M3 contained seven sets of 55-235-16S rRNA genes, while A.
excentricus M6 has one and two sets of 55-235-16S rRNA genes in chromosome 1 and
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TABLE 1 Genome information for Acinetobacter ursingii M3 and Asticcacaulis excentricus M6
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Coverage Genome G+C No. of coding GenBank

Strain Replicon depth (fold) size (bp) content (%) sequences accession no.
A. ursingii M3 Chromosome 251 3,429,552 40.2 3,230 AP018824
Plasmid pAURM-1 175 105,528 41.0 114 AP018825
Plasmid pAURM-2 206 33,916 384 37 AP018826
A. excentricus M6 Chromosome 1 277 2,422,803 60.7 2,157 AP018827
Chromosome 2 254 1,079,025 60.9 950 AP018828
Plasmid pASEM-1 368 291,367 59.3 216 AP018829

chromosome 2, respectively. Further investigation is needed to screen for candidate
genes involved in their plant growth inhibition. To our best knowledge, this is the first
report of a PGIB genome sequence.

Data availability. The genome sequences of A. ursingii M3 and A. excentricus
M6 have been deposited at DDBJ/EMBL/GenBank under the accession numbers
AP018824 to AP018826 (BioProject PRJDB7166) and AP018827 to AP018829 (BioProject
PRJDB7167), respectively.
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