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Cemented paste backfill (CPB) is wildly used in mines production practices around the world. The strength of CPB 
is the core of research which is affected by factors such as slurry concentration and cement content. In this paper, 
a research on the UCS is conducted by means of a combination of laboratory experiments and machine learning. 
BPNN, RBFNN, GRNN and LSTM are trained and used for UCS prediction based on 180 sets of experimental UCS 
data. The simulation results show that LSTM is the neural network with the optimal prediction performance (The 
total rank is 11). The trial-and-error, PSO, GWO and SSA are used to optimize the learning rate and the hidden 
layer nodes for LSTM. The comparison results show that GWO-LSTM is the optimal model which can effectively 
express the non-linear relationship between underflow productivity, slurry concentration, cement content and 
UCS in experiments (𝑅 = 0.9915, RMSE = 0.0204, VAF = 98.2847 and T = 16.37 s). The correction coefficient 
(𝑘) is defined to adjust the error between predicted UCS in laboratory (UCSM) and predicted UCS in actual 
engineering (UCSA) based on extensive engineering and experimental experience. Using GWO-LSTM combined 
with 𝑘, the strength of the filling body is successfully predicted for 153 different filled stopes with different 
stowing gradient at different curing times. This study provides both effective guidance and a new intelligent 
method for the support of safety mining.
1. Introduction

Filling mining is a green and efficient mining method that can both 
recycle solid waste in mine and improve the safety of underground 
mining operations [1, 2, 3, 4]. It is widely used in mines all around 
the world because it can effectively solve the safety hazards from the 
mined-out areas and tailings reservoir [5, 6, 7, 8]. Cemented paste back-

fill (CPB) is an important technology in filling mining methods which 
uses tailings, waste rock or river sand as aggregate and mixed it with 
binder to make a filling slurry and then filled it into the mined-out area 
[9, 10, 11, 12, 13, 14]. CPB forms a filling body with strength and can 
effectively support the mined-out area. Uniaxial compressive strength 
(UCS) is the essential strength metric for CPB, which is affected by 
slurry concentration, binder content, curing time and particle size for 
tailings [15, 16, 17, 18, 19, 20]. Many scholars have conducted mech-

anistic modeling of UCS based on different affecting factors and have 
achieved instructive results [21, 22, 23, 24, 25]. However, the CPB is 
a complex multiphase mixture and the formation of UCS depends on 
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the hydration of the binder and the coupling effect of different factors. 
Therefore, the use of simple mechanistic modeling cannot construct a 
valid mapping relationship between UCS and different affecting factors.

In the age of artificial intelligence, many scholars have done 
prospective and innovative studies on predicting UCS in recent years, 
as detailed in Table 1 [1, 20, 26, 27, 28, 29, 30, 31]. Artificial neu-

ral networks (ANN), a popular branch of machine learning technology, 
have been widely used in various engineering practices and modeling. 
ANN processes complex information by simulating the nervous system 
of the human brain and have a unique knowledge representation and 
intelligent adaptive learning capability. Meanwhile, intelligent opti-

mization algorithms (IOA) as the core of artificial intelligence have also 
gained popularity in engineering, especially in the field of optimization 
in engineering design. IOA can rapidly solve optimization problems in 
multidimensional spaces that are difficult to solve by traditional com-

putational methods. In filling mining, ANN and IOA are combined and 
applied in the strength design of the CPB. This is because IOA can be 
used to optimize ANN for parameters such as hidden layer nodes and 
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Table 1. Summary of ANN and IOA applications in filling mining.

Authors Publish time Main methods Input Output

Sivakugan et al. [29] 2005 ANN Cement content, solids content, curing time and grain size 
distribution

Strength

Orejarena et al. [31] 2010 ANN Water-cement ratios, binder composition and binder content 150d UCS

Qi et al. [28] 2018 PSO, ANN Tailings type, cement-tailings ratio, solids content, and 
curing time

3d, 7d, 28d UCS

Qi et al. [26] 2018 PSO Physical and chemical characteristics of tailings, 
cement-tailings ratio, solids content, and curing time.

7d, 28d UCS

Qi et al. [27] 2018 GA Physical and chemical characteristics of tailings, the 
cement-tailings ratio, the solids content, and the curing time

28d UCS

Xiao et al. [30] 2020 ANN Proportion of OPC, CG, CFA, and YS, solids content, and 
curing time

1d, 3d, 28d UCS

Yu et al. [20] 2021 ELM, SSA Cement-to-tailing mass ratio, solid mass concentration, fiber 
content, fiber length, and curing time

3d. 7d, 28d, and 56d UCS

Li et al. [1] 2021 GA, PSO, SSA Fiber properties, cement type, curing time, cement–tailings 
ratio and concentration

3d, 7d, 28d UCS
learning rate. Many researchers have done a lot of research on the ap-

plication of ANN and IOA in filling mining.

As can be seen in Table 1, ANN and IOA have been shown to have ex-

cellent application in filling mining, especially in predicting the UCS of 
CPB, in previous researches. However, traditional ANNs suffer from gra-

dient disappearance and gradient explosion in predicting UCS [26, 27, 
28]. In addition, the neurons of the hidden layer in a traditional ANN 
are independent and do not affect each other, which makes the ANN 
lack the memory and storage function of data when processing infor-

mation [32]. In filling mining, different materials and multiple factors 
have different degrees of effect on the strength of the filling body. Be-

sides, force majeure factors such as uneven slurry mixing and impurity 
mixing during the experimental process can also affect UCS. This can 
lead to outliers in the UCS obtained from laboratory experiments [15, 
16, 17, 18, 19, 20]. In the conditions of above problems, the weakness 
of traditional ANNs without data storage and memory mechanisms is 
exposed, which makes the accuracy of the constructed UCS prediction 
models also suffer. This not only affect the accuracy of ANN in predict-

ing UCS, but also limit the in-depth application of ANN in filling mining. 
In a word, the traditional ANN in predicting UCS needs to be improved 
to suit the requirements of future mine intelligence development.

Long short-term memory neural network (LSTM), as a new neural 
network with excellent generalization ability and robustness, is cur-

rently less used in fill mining [33, 34]. Its unique gating mechanism 
changed the structure of the traditional ANN, which gives ANN the 
function of memorializing and forgetting information [35]. The core 
of this study is to explore and construct the prediction model for UCS of 
CPB with LSTM as the fundamental model and IOA as the optimization 
method.

In this paper, section 2 and section 3 explain that underflow produc-

tivity for tailings, slurry concentration, cement content and curing time 
are used as affecting factors to design the mix proportion experiments 
of the filling slurry and 180 sets of experimental data are obtained after 
the UCS test. Section 4 presents four neural networks, four optimization 
algorithms, and the performance metrics in this study. Section 5 illus-

trates the process of selecting LSTM as the basic model for this study 
by comparing the prediction accuracy of different neural networks. 
Section 6 illustrates the accuracy of the improved LSTM prediction of 
UCS of CPB using different optimization algorithms and determines the 
LSTM improved by grey wolf optimization (GWO-LSTM) model as the 
optimal prediction model. In section 7, GWO-LSTM that is the optimal 
model, is combined with the correction coefficient (𝑘) to predict the 
strength of the filling body of 153 approaches in filled stope. This study 
not only provides guidance for safety mining, but also bring new tools 
for the intelligent development of mines.

2. Materials

The material used to prepare CPB is generally composed of two 
parts: aggregate and binder. Aggregate, an inert material, is used to 
2

Table 2. The main chemical composition of the tailings.

Composition SiO2 CaO MgO Fe2O3 Al2O3 Others

Content (%) 69.3 2.47 0.59 2.03 18.84 6.77

form the skeleton structure of CPB to enhance durability and effectively 
inhibit crack expansion. Commonly used aggregates are tailings, river 
sand and wind sand, etc. The binder mainly plays the role of gelling 
effect, which triggers the hydration reaction after mixing with water 
and generates hydration products to fill the gaps between the aggre-

gates. Commonly used binders are cement, fly ash, slag powder, etc. 
The combination of the skeletal structure formed by the aggregates and 
the gelling effect of the binder gives CPB its strength. In this study, tail-

ings and cement are used as aggregate and binder, respectively.

2.1. Tailings

The tailings used in this study are from the Jinfeng Mining Limited 
(Gold Mine), Southwest of Guizhou province, China. The composition 
of the tailings by using X-ray fluorescence (XRF) is shown in Table 2. 
From the Table 2, the main composition of the tailings is SiO2, which 
indicates that the tailings is an inert material and can be used as an ag-

gregate to produce the filling slurry. Due to the fine size of the tailings, 
the hydrocyclone is used to classify the tailings and obtained classi-

fied tailings with underflow productivity of 45%, 55%, 65% and 75% 
respectively. The comparison of particle size for tailings of different un-

derflow productivity is shown in Table 3.

2.2. Binder

The binder is the Portland cement (P.O42.5). The density of cement 
is 3.1 g/cm3 and the 28d compressive strength is higher than 45 MPa. 
The cement performance parameter is shown in Table 4.

3. Experiments

UCS is an important indicator used to evaluate whether CPB fulfills 
engineering standards. The level of UCS affects whether CPB satisfies 
the requirements of mine safety production. The current methods of 
measuring the UCS of CPB are mainly mix proportion experiments in 
the laboratory and the UCS test using a hydraulic testing machine.

3.1. Mix proportion of materials

In this study, proportional tests are conducted with underflow pro-

ductivity, slurry concentration, cement content and curing time as the 
main affecting factors of UCS of CPB. The mix proportions are shown in 
Table 5.
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Table 3. The comparison of particle size for tailings of different underflow productivity.

Underflow 
productivity

Main particle size and cumulative proportion

−5 μm −10 μm −20 μm −30 μm −45 μm −75 μm

100% 30.07% 44.44% 58.92% 70.73% 79.31% 96.08%

75% 30.53% 41.30% 52.81% 64.44% 74.62% 96.14%

65% 23.92% 33.20% 43.87% 58.65% 72.08% 94.09%

55% 18.76% 26.80% 36.32% 50.86% 65.39% 93.82%

45% 13.24% 20.36% 29.52% 42.55% 57.38% 83.67%

Table 4. The cement performance parameter.

Level Fineness Bending strength Compressive strength Setting time

P.O42.5 ≤6.0% 3d 28d 3d 28d Initial Final

17 MPa 20 MPa ≥25 MPa ≥45 MPa 2.0h 4.0h
Table 5. The mix proportion of materials.

Affecting factors Mix proportion

Underflow productivity 45% 55% 65% 75% ∖
Slurry concentration 63% 64% 65% ∖ ∖
Cement content 5% 5.5% 6% 6.5% 7%

Curing time 5d 7d 28d ∖ ∖

Fig. 1. The flow of the experiments (preparing materials, mixing slurry, making 
and curing specimen).

3.2. Experimental process

The tailings and cement used in the experiment are weighed accord-

ing to the different mix proportions in section 3.1 and the backfill slurry 
is prepared according to Chinese standards GBT17671-1999. First, the 
solid materials are mixed according to above proportions for not less 
than 5 minutes. Then, put the mixture into a bucket with water and 
blend for 5 min by using a handheld electric mixer. Lastly, the prepared 
slurry is poured into a mold with a size of 70.7 mm × 70.7 mm × 70.7 
mm. After the specimen is shaped, the mold is dismantled and the spec-

imen is placed in the standard curing room (the temperature is 20 ◦C 
and the humidity range is 90-95%) to cure until the predetermined cur-

ing time. In addition, 3 specimens are made for each mix proportion 
and the UCS is taken as their average. Finally, the cured specimens are 
tested with a press for UCS and 180 sets of UCS data are obtained. The 
flow of the experiments is shown in Fig. 1
3

3.3. Experiment results

The experimental results of UCS are shown in Fig. 2. From Fig. 2(a), 
the mean of UCS obtained from the experiment is 0.3533 and the stan-

dard deviation is 0.1252. From Fig. 2(b), the minimum, maximum, first 
quartile (Q1), third quartile (Q2) and median of UCS are 0.14, 0.96, 
0.265, 0.43 and 0.33, respectively. Set the two values of Q3 and Q1 
plus or minus 1.5 times the interquartile distance (Q1-1.5 IQR and 
Q3+1.5 IQR) as the truncation points of the outliers. There are 4 out-

liers in the experimental UCS and they are all distributed in the upper 
side of Q3+1.5 IQR, which is the reason for the rightward bias of the 
distribution of UCS in Fig. 2(a). From Fig. 2, the experimental UCS is 
concentrated between 0.265 MPa and 0.43 MPa. Although there are a 
very few outliers in the experimental UCS, this is normal in the UCS 
test.

4. Methodology

This section introduces 4 neural networks (BPNN, RBFNN, GRNN 
and LSTM), 3 intelligent optimization algorithms (GWO, PSO and SSA) 
and 4 performance metrics (RMSE, 𝑅, VAF and 𝑇 ). Neural networks 
are used to construct mapping relationships between inputs (underflow 
productivity) and output (UCS); intelligent optimization algorithms are 
used to optimize the neural networks that obtain the best mapping 
relationships; and performance metrics are used to compare the per-

formance of different models.

4.1. Neural network

Neural network is an algorithmic mathematical model that imitates 
the behavioral characteristics of animal neural networks and performs 
distributed parallel information processing. It relies on the complexity 
of the system and by adjusting the interconnections between internal 
nodes for the purpose of processing information. This section intro-

duces 4 neural networks for searching and constructing the relationship 
between inputs and outputs in this study.

For the fairness of the comparison of different neural networks, the 
hidden layer nodes, the learning rate and the maximum iterations are 
set to 5, 0.1 and 100 for all neural networks. At the same time, the 
number of hidden layers is set to 1 for both BPNN and RBFNN; the 
number of pattern layer and summation layer of GRNN are both set 
to 1. In addition, the important parameter spread factor of RBF and 
GRNN is set to 5. The above parameter settings are based on relevant 
researches and modeling experience [20, 36, 37, 38, 39].

4.1.1. Back propagation neural network

Back Propagation neural network (BPNN) is a multilayer feedfor-

ward neural network [40, 41]. It is characterized by the forward trans-

mission of the signal while the error is reverse transmitted. In forward 
transmission, the input signal is processed layer by layer from the input 
layer through the hidden layer to the output layer. In this process, the 
state of neurons in each layer affects only the state of neurons in the 
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Fig. 2. Distribution of experimental UCS (a) distribution curve of UCS; (b) box line diagram of UCS.
Fig. 3. The network structure of BPNN.

next layer [42, 43]. If the desired output is not obtained in the output 
layer, the network is back-propagated and the weights and thresholds 
are adjusted according to the prediction error, which enables the pre-

dicted output of the BPNN to continuously approach the desired output. 
The network structure of BPNN is shown in Fig. 3. The neuronal struc-

ture of the BPNN in this study is set according to the literatures [26, 27, 
28] as 4-8-1.

4.1.2. Radial basis function neural network

Similar to BPNN, Radial basis function neural network (RBFNN) is 
also a forward neural network, which has a network structure con-

sisting of input layer, hidden layer and output layer [44]. RBFNN is 
characterized by the introduction of RBF as the transform function of 
neurons in its hidden layer. This enables the hidden layer unit to trans-

form the input vector from low-dimensional and linearly inseparable 
to high-dimensional and linearly separable to improve generalizability 
and robustness [45, 46]. The network structure of RBFNN is shown in 
Fig. 4. To make the comparison fair, the neuronal structure of RBFNN 
is set to 4-8-1.

4.1.3. General regression neural network

General regression neural network (GRNN) is a modified RBFNN. 
Unlike RBFNN, the structure of GRNN has 4 layers: input layer, pattern 
layer, summation layer and output layer [47, 48]. The regression of 
GRNN on the inputs is different from the least-square superposition of 
Gaussian weights in RBF, which uses the density function to predict the 
output by using the calculation of the pattern layer and the summation 
layer [49, 50, 51]. The network structure of GRNN is shown in Fig. 5. 
The number of neurons in the pattern layer of GRNN is the number of 
variables in the input layer. In addition, two types of neurons are used in 
4

Fig. 4. The network structure of RBFNN.

Fig. 5. The network structure of GRNN.

the summation layer for summation. Therefore, the neuronal structure 
of GRNN is 4-144-2-1. The setting of the neuron structure of GRNN is 
referred to the literatures [47, 48, 49, 50, 51] and is not described here 
due to the limitation of space.

4.1.4. Long short-term memory neural network

Long short-term memory neural network (LSTM) is an improved 
recurrent neural network (RNN). The difference between LSTM and tra-

ditional RNN is its addition of memory units to the network structure 
[52, 53, 54]. The memory cell structure of LSTM is shown in Fig. 6. The 
LSTM processes information through a four-part gating mechanism con-

sisting of forget gate 𝒇 , input gate 𝒊, output gate 𝒐, and memory cell 𝑐
[55]. The structure of LSTM is as follows.

(1) There are two parts of input at moment t: the output result ℎ𝑡−1 at 
the previous moment and the new input information 𝑥𝑡 at this moment. 
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Fig. 6. The memory cell structure of LSTM.

The forget gate 𝑓 is used to control the amount of input information 
that would be forgotten. Its calculation equation is as follows.

𝒇 𝑡 = 𝜎(𝑾 𝑓 𝑥𝑡 +𝑼𝑓 ℎ𝑡−1 + 𝒃𝑓 ) (1)

(2) The input gate 𝒊 is used to control the amount of input infor-

mation that would be engaged in the update of the cell. Its calculation 
equation is as follows.

𝒊𝑡 = 𝜎(𝑾 𝑖𝑥𝑡 +𝑼 𝑖ℎ𝑡−1 + 𝒃𝑖) (2)

(3) Calculate the state of the cell 𝑐𝑡 at this moment for the current 
information. Its calculation equation is as follows.

𝑐𝑡 = tanh(𝑾 𝑐𝑥𝑡 +𝑼 𝑐ℎ𝑡−1 + 𝒃𝑐 ) (3)

(4) The cell state 𝑐 is the key to the LSTM model. Updates to the 
previous cell state 𝑐𝑡−1. Its calculation equation is as follows.

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝑐𝑡 (4)

(5) Calculate the output gate 𝒐 and calculate how the amount of 
information under the output gate control would be used to generate 
ℎ𝑡. Its calculation equation is as follows.

𝒐𝑡 = 𝜎(𝑾 𝑜𝑥𝑡 +𝑼 𝑜ℎ𝑡−1 + 𝒃𝑜) (5)

ℎ𝑡 = 𝒐𝑡 ⊗ tanh(𝑐𝑡) (6)

(6) Transfer ℎ𝑡 to the output layer and output 𝑦. The equation is 
calculated as follows.

𝑦 =𝑾 𝑦ℎ𝑡 + 𝒃𝑦 (7)

In equations (1)–(7), 𝜎 is the sigmoid function; tanh is the hyperbolic 
cosine function; 𝑾 and 𝑼 are the weight matrices; 𝒃 is the bias vector; 
⊗ is the sign of the convolution operation; 𝑦 is the output at time t.

4.2. Optimization algorithm

The optimization algorithm is a heuristic optimizer, which is an 
algorithm that imitates the laws of the biological world to solve the 
problem. It is used for solving the optimal solution of the problem un-

der complex conditions. This section presents 3 bionic algorithms to 
solve the parameters of a neural network with optimal mapping rela-

tionship.

4.2.1. Grey wolf optimization

Grey wolf optimization (GWO) is a new intelligent algorithm that 
imitates the hunting behavior of gray wolves in nature to optimize ob-

jectives [56, 57, 58]. Wolves are classified into 4 classes of 𝛼, 𝛽, 𝛿 and 
𝜔 according to their fitness degree during hunting. Their ranks are or-

dered from highest to lowest: 𝛼 > 𝛽 > 𝛿 > 𝜔. In addition, 𝛼 is called the 
5

head wolf which leads the other wolves in the hunting process and 𝜔 is 
the bottom wolf which is dominated by the other three classes of wolves 
in the hunting process. The hunting process is as follows.

(1) Search for and surround prey. Its calculation equation is as fol-

lows.

𝑫 = |||𝑪 ⋅𝑿𝑝(𝑡) −𝑿(𝑡)||| (8)

𝑿(𝑡+ 1) =𝑿𝑝(𝑡) −𝑨 ⋅𝑫 (9)

In equations (8)–(9), t is the current number of iterations; 𝑨 and 𝑪
are coefficient vectors; 𝑿𝑝 is the position vector of the prey; 𝑿 is the 
position vector of the grey wolf; 𝑫 is the distance vector between the 
gray wolf and the prey. 𝑨 and 𝑪 are calculated as follows.

𝑨 = 2𝑎 ⋅ 𝒓1 − 𝑎 (10)

𝑪 = 2 ⋅ 𝒓2 (11)

In equations (10)–(11), 𝑎 decreases from 2 to 0 as the number of iter-

ations increases; 𝒓1 and 𝑹 are vectors of random numbers in the range 
[0, 1].

(2) Attacking the prey. Suppose that 𝛼 is the gray wolf closest to 
the prey and 𝛽 and 𝛿 are the next closest. Use equation (12) to calcu-

late their distance to the prey and updating the positions of 𝛼, 𝛽 and 
𝛿 by equation (13). Finally, other gray wolves gradually approach prey 
through equation (14). Its calculation equation is as follows.

𝑫𝛼 = ||𝑪1 ⋅𝑿𝛼 −𝑿|| , 𝑫𝛽 =
|||𝑪2 ⋅𝑿𝛽 −𝑿

||| , 𝑫𝛿 = ||𝑪3 ⋅𝑿𝛿 −𝑿||
(12)

𝑿1 =𝑿𝛼 −𝑨1𝑫𝛼, 𝑿2 =𝑿𝛽 −𝑨2𝑫𝛽 , 𝑿3 =𝑿𝛿 −𝑨3𝑫𝛿 (13)

𝑿(𝑡+ 1) =
𝑿1 +𝑿2 +𝑿3

3
, (14)

In equations (12)–(14), 𝑿𝛼 , 𝑿𝛽 and 𝑿𝛿 are the positions of 𝛼, 𝛽 and 𝛿
at the t-th iteration.

4.2.2. Particle swarm optimization

Particle swarm optimization (PSO) is an intelligent algorithm de-

signed by simulating the hunting behavior of a group of birds [59, 60, 
61]. It uses the sharing of information by individuals in a population to 
make the entire movement of the group in the problem solution space 
from disorder to order evolutionary process to obtain the optimal solu-

tion. PSO is mainly implemented by the following 2 core equations.

𝑽 𝑖𝑑 (𝑡+1) =𝒘(𝑡)𝑽 𝑖(𝑡) + 𝑐1𝒓1
(
𝑷 𝑖𝑏𝑒𝑠𝑡(𝑡) −𝑿𝑖𝑏𝑒𝑠𝑡(𝑡)

)
+ 𝑐2𝒓2(𝑮𝑏𝑒𝑠𝑡(𝑡) −𝑿𝑖𝑏𝑒𝑠𝑡(𝑡))

(15)

𝑿𝑖𝑑 (𝑡+ 1) =𝑿𝑖𝑑 (𝑡) + 𝑽 𝑖𝑑 (𝑡+ 1) (16)

In equations (15)–(16), 𝒓1 and 𝑹 are random numbers uniformly dis-

tributed within [0, 1]; 𝑐1 and 𝑐2 are learning factors; 𝒘 is inertia weight; 
𝑷 𝑖𝑏𝑒𝑠𝑡(𝑡) is the i-th particle optimal position; 𝑮𝑏𝑒𝑠𝑡(𝑡) is the population 
optimal position; 𝑿𝑖𝑑 (𝑡) is the current position of the particle; 𝑽 𝑖𝑑 (𝑡) is 
the current speed of the particle.

4.2.3. Sparrow search algorithm

The sparrow search algorithm (SSA) was proposed as a new al-

gorithm to solve optimization problems in 2020 [62, 63]. The core 
principle of SSA is from the group predatory behavior of sparrows in 
nature [63, 64, 65]. SSA divides sparrow group into finder and fol-

lower. The function of the finder is to guide the entire sparrow group 
to search and hunt. Its position equation is as follows.

𝑿𝑖+1
𝑖,𝑗

=
⎧⎪⎨⎪
𝑿𝑖
𝑖,𝑗

⋅ exp
(

−𝑖
𝛼⋅𝑖𝑡𝑒𝑟max

)
, 𝑅2 < 𝑆𝑇

𝑿𝑖
𝑖,𝑗

+𝑄 ⋅𝑳, 𝑅2 ≥ 𝑆𝑇
(17)
⎩
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In equations (17), 𝑖 is iteration; 𝑗 is the individual dimension; 𝑿𝑖
𝑖,𝑗

is the 
position of the sparrow; itermax is the maximum iteration; 𝛼 ∈ [0, 1] is a 
random number; 𝑅2 ∈ [0, 1] and 𝑆𝑇 ∈ [0.5, 1] are the alarm value and 
the security threshold respectively. 𝑄 is random number.

The role of a follower is to follow the finder in order to acquire 
better adaptive ability. The equation for its position is as follows.

𝑿𝑖+1
𝑖,𝑗

=
⎧⎪⎨⎪⎩
𝑄 ⋅ exp

(
𝑿𝑡
𝑤𝑜𝑟𝑠𝑡

−𝑿𝑡
𝑖,𝑗

𝑖2

)
, 𝑖 >

𝑛

2

𝑿𝑡+1
𝑃

+ |||𝑿𝑡
𝑖,𝑗

−𝑿𝑡+1
𝑃

||| ⋅𝑨+ ⋅𝑳, 𝑖 ≤
𝑛

2

(18)

In equations (18), 𝑿𝑡
𝑤𝑜𝑟𝑠𝑡

is the worst position of finder; 𝑿𝑡+1
𝑃

is the 
best position the producer; 𝑨 is a matrix with each element being −1 
or 1; 𝑛 is the number of individual sparrows. In the above equation, 
𝐴+ =𝐴𝑇 (𝐴𝐴𝑇 )−1.

Some finders can act as vigilantes to help the finder with foraging. 
When danger is present, the vigilantes would counter-trap or approach 
other sparrows. The equation for its position is as follows.

𝑿𝑖+1
𝑖,𝑗

=
⎧⎪⎨⎪⎩
𝑿𝑡
𝑏𝑒𝑠𝑡

+ 𝜆 ⋅ |||𝑿𝑡
𝑖,𝑗

−𝑿𝑡
𝑏𝑒𝑠𝑡

||| , 𝑓𝑖 > 𝑓𝑔

𝑿𝑡
𝑖,𝑗

+ 𝐽 ⋅
[
𝑿𝑡
𝑖,𝑗
−𝑿𝑡

𝑤𝑜𝑟𝑠𝑡(
𝑓𝑖−𝑓𝑤

)
+𝜀

]
, 𝑓𝑖 = 𝑓𝑔

(19)

In equation (19), 𝑿𝑡
𝑏𝑒𝑠𝑡

is the global best position; 𝜆 ∼ N(0, 1) is the pa-

rameter used to control the step size; 𝐽 ∈ [−1, 1] is a random number; 𝑓𝑖
is adaptation degree of current sparrow; 𝑓𝑔 and 𝑓𝑤 are the global best 
adaptation degree value and the global worst adaptation degree value, 
respectively; 𝜀 is a constant close to 0 to avoid the denominator being 
0.

4.3. Performance metrics

To construct the optimal LSTM, the prediction results of different 
models are compared in this paper. The root mean square error (RMSE), 
correlation coefficient (𝑅), variance account for (VAF) and running time 
of model (𝑇 /s) are used as evaluation metrics [66, 67]. The equations 
of the first three metrics are as follows.

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

[
𝑦𝑖 − 𝑓 (𝒙𝑖)

]2
(20)

𝑅 =

∑𝑛

𝑖=1

[
(𝑦𝑖 − 𝑦𝑖)(𝑓 (𝒙𝑖) − 𝑓 (𝒙𝑖)

]
√∑𝑛

𝑖=1
(
𝑦𝑖 − 𝑦

)2
⋅

√∑𝑛

𝑖=1

(
𝑓 (𝒙𝑖) − 𝑓 (𝒙𝑖)

)2
(21)

𝑉 𝐴𝐹 =
[
1 −

𝑉 𝐴𝑅(𝑦𝑖 − 𝑓 (𝒙𝑖))
𝑉 𝐴𝑅(𝑦𝑖)

]
× 100 (22)

In equation (20)–(22), 𝑦𝑖 and 𝑓 (𝒙𝑖) are the measured values and pre-

dicted values; 𝑦 is the mean of the measured values; VAF is used to 
indicate the degree of fit between the measured and predicted values. 
In addition, VAR is the variance of the dataset and the range is [0, 1]. 
The closer the RMSE is to 0, the closer the 𝑅 is to 1 and the closer the 
VAF is to 100, the higher the prediction accuracy of the model.

Moreover, statistical evaluation of measured and predicted values 
using 95% confidence interval in this paper. The narrower the confi-

dence interval and the more sample points included, the more signifi-

cant the accuracy of the prediction results in the regression fitting fig.

5. Comparison and selection of networks

This section constructs 4 neural networks to characterize the map-

ping relationships between inputs and output based on data set in 
section 4 in conjunction with section 2. Also, the LSTM with the best 
mapping relationship is optimized using 4 optimized methods and the 
model with the best prediction effect applicable to this study is ob-

tained.
6

In this paper, 4 neural networks are trained based on the experi-

mental data in section 3. 80% of the experimental data is used as the 
training set to train networks and 20% is used as the validation set to 
test the reliability of the output of the neural networks.

The comparison of the results for validation set of the 4 networks 
is shown in Fig. 7. From Fig. 7, the RMSE of BPNN, RBFNN, GRNN 
and LSTM are 0.0703, 0.0719, 0.0883 and 0.0871, respectively. The 
R of BPNN, RBFNN, GRNN and LSTM are 0.8707, 0.8882, 0.8812 and 
0.8974, respectively. The VAF of BPNN, RBFNN, GRNN and LSTM are 
75.7899, 76.8267, 61.3377 and 99.9874, respectively. The T of BPNN, 
RBFNN, GRNN and LSTM are 9.28 s, 8.74 s, 5.46 s and 13.11 s, respec-

tively. The LSTM has a better fit of the predicted values to the measured 
values but the longest running time, which is because the complex struc-

ture of LSTM increases the amount of computation while enhancing the 
understanding of the data. Moreover, a ranking method for the perfor-

mance of different models proposed by Zorlu is utilized as shown in 
Table 6 [68]. From Fig. 7 and Table 6, LSTM and RBFNN have rela-

tively better prediction performance (the total rank are both 11) for 
UCS of CPB compared with BPNN and GRNN (the total rank are both 
10). For the prediction of UCS of CPB, the main focus in practical appli-

cation is on prediction accuracy and error. Although the running time 
of LSTM is longest, it is still the optimal model in this study. Therefore, 
LSTM is selected as the basic model and the next step of the research is 
conducted.

6. Optimization of LSTM and results

Two parameters, the hidden layer nodes and the learning rate, have 
important effects on the performance of LSTM [69, 70, 71]. Generally, 
the higher the hidden layer codes, the higher the computational accu-

racy and complexity of the LSTM. Therefore, selecting the appropriate 
the hidden layer codes is essential for LSTM. Similarly, the learning 
rate has a significant effect on the output of the LSTM. The learning 
rate is used to control the step size during gradient descent in order 
to optimize the output of the LSTM. So, selecting an appropriate learn-

ing rate can prevent the LSTM from missing the optimal solution and 
improve its robustness. For LSTM, the values of the above two parame-

ters were usually determined using trial-and-error or some experimental 
equations, which leads to an unstable performance of LSTM in practical 
applications. To improve the performance of LSTM and apply it to this 
study, the hidden layer nodes and the learning rate are optimized us-

ing trial-and-error, GWO, PSO and SSA. The optimization and modeling 
process is shown in Fig. 8. From Fig. 8, experimental data is randomly 
classified into training set and validation set. The training set is used to 
train the LSTM improved by different optimization methods to obtain 
the optimal hyperparameters and to construct the mapping relation-

ship between input and output. The validation set is used to validate 
whether the trained LSTM has generalizability and prediction accuracy. 
Moreover, the maximum iterations of LSTM and each optimization al-

gorithm are set to 100 and the population size of each optimization 
algorithm is set to 20 according to related literatures to ensure fairness 
in the comparison.

6.1. Results of trial-and-error-LSTM

Some researches have shown that the optimal performance can be 
achieved when the hidden layer nodes do not exceed 2 times the input 
plus 1. Similarly, the learning rate is set to a range of 0.1 to 1 (in steps 
of 0.1) according to previous researches [35, 72, 73]. Therefore, vari-

ous LSTM with the hidden layer nodes is from 1 to 9 and the range of 
learning rate is (0.1, 1) be constructed to select the optimal parameters 
for LSTM. In this process, the 10-fold cross-validation method is used to 
evaluate the generalization performance of the LSTM and to guide the 
selection of the parameters of the optimal LSTM. Using the mean abso-

lute error (MAE) as an evaluation metric, the performance of the LSTM 
with different combinations of the above parameters is shown in Fig. 9. 
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Fig. 7. The prediction results of networks for validation set (a) BPNN; (b) RBFNN; (c) GRNN; (d) LSTM.

Table 6. The performance indices of different networks.

Network Results Rank values Total rank

𝑅 RMSE VAF 𝑇 𝑅 RMSE VAF 𝑇

BPNN 0.8707 0.0703 75.7899 9.28 s 1 4 2 1 10

RBFNN 0.8882 0.0719 76.8267 8.74 s 3 3 3 2 11

GRNN 0.8812 0.0883 61.3377 5.46 s 2 1 1 4 10

LSTM 0.8974 0.0871 99.9874 13.11 s 4 2 4 1 11

Fig. 8. The optimization and modeling process.
7
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Fig. 9. The performance of the LSTM using trial-and-error.

From the Fig. 9, it can be seen that the effect of learning rate on MAE 
is more significant than that of hidden layer nodes. When the learn-

ing rate is lower than 0.65, MAE is low and basically in the interval 
(0.04, 0.08); when the learning rate is higher than 0.65, MAE increases 
significantly and is basically higher than 0.1. When the learning rate is 
between 0.4 and 0.65, the overall trend of MAE increases and then de-

creases with the increase of hidden layer nodes and shows a fluctuating 
change. Also, when the learning rate is between 0.9 and 1, the change 
of MAE is characterized by fluctuations. MAE obtains minimum when 
the hidden layer nodes is 8 and the learning rate is 0.1.

The results of the prediction of the validation set using trial-and-

error-LSTM are shown in Fig. 10. From the Fig. 10(a), the LSTM 
yield a prediction performance of 𝑅 = 0.9004, RMSE = 0.0657, VAF

= 79.5911 and 𝑇 = 18.61 s for validation set. From the Fig. 10(b), 
the narrowest and widest confidence intervals are (0.3521, 0.3856) and 
(0.6028, 0.7042), respectively; the narrowest and widest prediction inter-

vals are (0.2699, 0.4738) and (0.5409, 0.7661), respectively. This shows 
that the width of the prediction band is far wider than the confi-

dence band, which indicates that the error between the predicted and 
measured values is high using trial-and-error-LSTM for the validation 
set.
Fig. 10. The prediction performance of the trial-and-error-LSTM (a) the measure

prediction band of trial-and-error-LSTM.

8

6.2. Results of GWO-LSTM

To search for the optimal parameters of the LSTM, the search space 
of the hidden layer nodes and the learning rate are expanded to (1, 100)
and (0.01, 1), respectively. Same settings in both PSO-LSTM and SSA-

LSTM as above. The hidden layer nodes obtained using GWO is 25 and 
the learning rate is 0.0785.

The results of the prediction of the validation set using GWO-

LSTM are shown in Fig. 11. From the Fig. 11(a), the GWO-LSTM 
yield a prediction performance of 𝑅 = 0.9915, RMSE = 0.0204, VAF

= 98.2847 and 𝑇 = 16.37 s for validation set. From the Fig. 11(b), 
the narrowest and widest confidence intervals are (0.3563, 0.3689) and 
(0.7378, 0.7761), respectively; the narrowest and widest prediction in-

tervals are (0.3214, 0.4011) and (0.7145, 0.7994), respectively. This shows 
that both the prediction and confidence bands are narrow and overlap 
highly, which indicates the high prediction accuracy of GWO-LSTM for 
the validation set.

6.3. Results of PSO-LSTM

The hidden layer nodes obtained using PSO is 29 and the learn-

ing rate is 0.1475. The results of the prediction of the validation set 
using PSO-LSTM are shown in Fig. 12. From the Fig. 12(a), the PSO-

LSTM yield a prediction performance of 𝑅 = 0.9403, RMSE = 0.0507, 
VAF = 88.3365 and 𝑇 = 21.31 s for validation set. From the Fig. 12(b), 
the narrowest and widest confidence intervals are (0.3541, 0.3867) and 
(0.6901, 0.7888), respectively; the narrowest and widest prediction in-

tervals are (0.2719, 0.4701) and (0.6299, 0.8489), respectively. This shows 
that the width of the prediction band is wider than the confidence band, 
which indicates that the prediction error using PSO-LSTM for the vali-

dation set is higher than GWO-LSTM. In addition, the presence of misfit 
points outside the prediction band also demonstrates that the predic-

tion accuracy of PSO-LSTM is lower than that of GWO-LSTM. In PSO, 
the learning factors and inertia weights of PSO are referred to some re-

lated research results to obtain the optimal optimization performance 
[63, 74, 75].

6.4. Results of SSA-LSTM

The hidden layer nodes obtained using SSA is 6 and the learning 
rate is 0.0378. The results of the prediction of the validation set using 
SSA-LSTM are shown in Fig. 13. From the Fig. 13(a), the SSA-LSTM 
yield a prediction performance of 𝑅 = 0.9117, RMSE = 0.0586, VAF

= 83.0121 and 𝑇 = 15.19 s for validation data. From the Fig. 13(b), 
the narrowest and widest confidence intervals are (0.3401, 0.3758) and 
d and predicted results of trial-and-error-LSTM; (b) the confidence band and 
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Fig. 11. The prediction performance of the GWO-LSTM (a) the measured and predicted results of GWO-LSTM; (b) the confidence band and prediction band of 
GWO-LSTM.

Fig. 12. The prediction performance of the PSO-LSTM (a) the measured and predicted results of PSO-LSTM; (b) the confidence band and prediction band of 
PSO-LSTM.

Fig. 13. The prediction performance of the SSA-LSTM (a) the measured and predicted results of SSA-LSTM; (b) the confidence band and prediction band of SSA-LSTM.
(0.6286, 0.7366), respectively; the narrowest and widest prediction in-

tervals are (0.2494, 0.4665) and (0.5627, 0.8026), respectively. This shows 
that the width of the prediction band is wider than the confidence band, 
which indicates that the prediction error using SSA-LSTM for the vali-

dation set is higher than GWO-LSTM. In addition, the presence of misfit 
points outside the prediction band also demonstrates that the predic-

tion accuracy of SSA-LSTM is lower than that of GWO-LSTM. In SSA, 
9

the values of 𝑆𝑇 and 𝑃𝐷 in SSA are taken with reference to the rele-

vant literature [76].

6.5. Analysis of results

The running time of the 4 improved LSTMs and neural networks in 
section 5 are shown in Table 7. From Table 7, it can be seen that the 
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Table 7. The running time of different models.

Model 𝑇 Model 𝑇

BPNN 9.28 s trial-and-error-LSTM 18.61 s

RBFNN 8.74 s GWO-LSTM 16.37 s

GRNN 5.46 s PSO-LSTM 21.31 s

LSTM 13.11 s SSA-LSTM 22.19 s

running time of LSTM is significantly higher than that of other neu-

ral networks and the running time of the improved LSTM is higher 
than that of the original LSTM. The reasons for this phenomenon are 
analyzed as follows. First, the core of LSTM is a gating mechanism, 
which means that the network structure of LSTM is complex and re-

quires many parameters to be calculated. Second, LSTM is a time series 
model, which means that when processing data the results of the later 
moment are dependent on the information of the previous moment and 
cannot be executed in parallel. Lastly, the use of optimization algo-

rithms to improve the LSTM increases the amount of operations, which 
can increase the running time. Although running time is an important 
metric in machine learning, the prediction accuracy and error of the 
model are of more important in this study and in practical engineering 
applications.

An analysis of the errors distribution between the measured and pre-

dicted values of the 4 models is shown in Fig. 14. From the Fig. 14(a), 
the errors of trail-and-error-LSTM are concentrated between 0.25 and 
0.75 with mean and standard deviation of 0.0111 and 0.0644, respec-

tively. From the Fig. 14(b), the errors of GWO-LSTM are concentrated 
between −0.02 and 0.03 with mean and standard deviation of 0.0084 
and 0.0019, respectively. From the Fig. 14(c), it can be seen that the 
errors of PSO-LSTM are concentrated between −0.025 and 0.075 with 
mean and standard deviation of 0.0157 and 0.0491, respectively. From 
the Fig. 14(d), it can be seen that the errors of SSA-LSTM are concen-

trated between −0.075 and 0.075 with mean and standard deviation of 
Fig. 14. The comparison of errors distribution from different models (a)

10
0.0032 and 0.0593, respectively. The absolute value of the center er-

ror of GWO-LSTM is almost 0 (mean = 0.0084) and the minimum value 
of width value (standard deviation = 0.0019). All of above analysis in-

dicate that the GWO-LSTM has the lowest error between the predicted 
and measured values and the highest prediction accuracy.

In addition, Taylor diagrams with standard deviation, 𝑅 and RMSE 
as the core are plotted in Fig. 15. In the Taylor diagram, each model 
corresponds to a measured point according to the 3 metrics mentioned 
above. The radial line represents 𝑅, the solid arc represents standard 
deviation and the red dashed line represents RMSE in Fig. 15. From 
the Fig. 15, GWO-LSTM has not only the lowest RMSE and standard 
deviation but also the highest 𝑅, which indicates that GWO-LSTM has 
the highest prediction accuracy among the 4 optimized LSTMs.

According to the no free lunch theorem, the performance of the opti-

mization algorithm is equivalent due to the mutual compensation of all 
possible functions. This means that one algorithm (Algorithm A) outper-

forms another algorithm (Algorithm B) on a specific dataset and must 
be associated with Algorithm A outperforming Algorithm B on another 
specific dataset. Without certain assumptions about the prior distribu-

tion of training set in the feature space, there are as many cases of better 
performance as there are cases of worse performance, which means that 
if the algorithm wants to get a positive performance improvement on 
problems, a negative performance degradation on problems must to be 
paid. In this study, the prediction accuracy of LSTM for UCS is higher 
than other neural networks but the running time is long. In addition, 
the predictions of UCS using trial-and-error, GWO, PSO, and SSA op-

timized LSTM get higher accuracy but they have longer running time. 
Although GWO-LSTM is the optimal model in this study, this optimal 
effect exists at the sacrifice of running time. Therefore, it can only be 
said that GWO-LSTM has excellent performance in this research and it 
still has much room for improvement.
trail-and-error-LSTM; (b) GWO-LSTM; (c) PSO-LSTM; (d) SSA-LSTM.
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Fig. 15. The Taylor Diagram for performance from different model.

Fig. 16. The schematic representation for stowing gradient.

7. Engineering applications

In this section, the GWO-LSTM constructed in section 6 is used as 
the core model and combined with filling body of 153 underground 
approaches for 3 filled stopes to predict the UCS of CPB.

7.1. Engineering background

The transportation with gravity by pipelines is generally used to 
transport the filling slurry to the mining stope. The stowing gradient is 
applied to describe the filling range that the gravity system can reach. 
The stowing gradient characterizes the engineering characteristics of 
the filling pipeline, which is one of the critical factors for the trans-

portation with gravity of the filling slurry and is essential for the design 
and production management of the transportation system for the filling 
slurry. The stowing gradient is calculated and represented as shown in 
equation (23) and Fig. 16.

𝐿 =𝑁∕𝐻 (23)

In equation (23), 𝑁 is the stowing gradient; 𝐻 is the height difference 
from start and finish points of filling pipeline; 𝐿 is the total length of the 
filling pipeline including the converted length of fittings such as elbows 
and joints (𝐿 =𝐿1 +𝐿2 +𝐿3 +𝐿4 +𝐿5).

Due to the different stopes and depths of underground mining, the 
stowing gradients of different filled stopes are variant. If the filling 
slurry concentration is adjusted blindly under the above conditions, the 
strength of the filling body would be unstable. The gold mine studied 
in this paper is mined using the drift fill stopping and cemented filling 
method. The filling slurry is transported by gravity to the mined-out 
area and the stowing gradient of each filled stope ranges from 3 to 7. 
11
Filled stope with the range of stowing gradient of 3 to 4.5 are set up 
as filled stope A; the range of 4.5 to 6 are set up as filled stope B; the 
range of 6 to 7 are set up as filled stope C. The different filled stopes 
are zoned according to the stowing gradient as shown in Fig. 17.

7.2. Correction coefficient

Related researches have shown that the actual values of strength for 
the filling body in the filled stope with the same slurry mix proportion 
is significantly lower than the laboratory measured values. Although 
many of UCS prediction studies have been conducted by researchers, 
the predicted UCS measured in laboratory (UCSM) rather than the pre-

dicted UCS in actual engineering (UCSA) with engineering guidance. 
This means that the above studies have limitations in engineering appli-

cations. To accurately obtain the UCS of the filled stope and to provide 
guidance for safe production, a core machine is used to drill the filling 
body in filled stope and process it into standard specimens. The final 
UCS of filling body is obtained for different filled stopes and different 
curing time.

For the error between UCSM and UCSA, a correction coefficient (𝑘) 
is introduced to adjust for this error and is used to guide production. 
The correction coefficient is defined and calculated by the following 
equation.

𝑘 =UCSM∕UCSA (24)

The correction coefficients for the strength of different filled stopes 
are obtained by comparing UCSM and UCSA, which is as shown in 
Fig. 18. From the Fig. 18(a)-(c), 𝑘 for 5d, 7d and 28d in filled stope 
A are 1.63, 1.51 and 1.48, respectively; 𝑘 for 5d, 7d and 28d in filled 
stope B are 1.57, 1.46 and 1.41, respectively; 𝑘 for 5d, 7d and 28d in 
filled stope C are 1.48, 1.37 and 1.33, respectively. The 𝑘 = 1.63 is the 
maximum value, which is found in stope A with a curing time of 5d; 
𝑘 = 1.33 is the minimum value, which is found in stope C with a cur-

ing time of 28d. This indicates that there is still a certain error between 
UCSM and UCSA when using GWO-LSTM for prediction but the distribu-

tion of error is regular, which can be seen from the range of distribution 
of 𝑘 (1.33 ≤ 𝑘 ≤ 1.63). On the other hand, this can also demonstrate the 
rationality of using 𝑘 to correct error. From the Fig. 18(d), the mini-

mum value of 𝑘 is obtained in the filled stope C regardless of the curing 
time, which indicates that the error between UCSM and UCSA in filled 
stope C is lowest. In addition, 𝑘 of different filled stopes show a decreas-

ing trend when the curing time is extended. This means that with the 
stowing gradient increases, the 𝑘 increases gradually for different curing 
times. The reasons for the phenomenon above are analyzed as follows. 
The filling slurry in filled stope with high stowing gradient (e.g. filled 
stope C) is less fluid during gravity transport. To ensure the filling slurry 
can be transported to the filling stope by gravity, water is added to the 
stirred tank for the slurry to dilute in engineering practice. This leads to 
a decrease in filling slurry concentration and causes a decrease in UCS. 
Therefore, the larger the stowing gradient for filled stope, the larger the 
error between UCSM and UCSA and the larger the 𝑘.

7.3. Strength prediction of CPB in filled stope

In the production of mines using the filling mining, the strength 
of the filling body in the underground is directly determined by the 
safety of the mining work. Based on the high-precision UCS prediction 
model constructed in this paper, the strength of filling body in 153 
filling approaches in filled stopes filled with a horizontal height from 
330 m to 430 m is predicted to provide guidance for the safe mining. 
The slurry mix proportions for the 153 filling approaches (A:48, B:42 
and C:63) are input into GWO-LSTM to obtain the UCSM. Then UCSM
is divided by 𝑘 and the UCSA is obtained. According to safety standard 
of the mine, 5d UCS must not be lower than 0.3 MPa, 7d UCS must not 
be than 0.35 MPa and 28d UCS must not be lower than 0.5 MPa. The 
statistical distribution of the UCSA is shown in Fig. 19.
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Fig. 17. Filled stope zoning based on stowing gradient (a) the diagram of stowing gradient; (b) the filled stopes divided by different stowing gradient.

Fig. 18. The correction coefficients in different filled stopes (a) the results of UCSM and UCSA in stope A; (b) the results of UCSM and UCSA in stope B; (c) the results 
of UCSM and UCSA in stope C; (d) the correction coefficient of different stopes.

Fig. 19. The statistical distribution of the UCSA (a) 5d; (b) 7d; (c) 28d.
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From the Fig. 19(a), there are 44, 34 and 2 UCSA at 5d higher than 
0.3 MPa in filled stope A, B and C respectively. From the Fig. 19(b), 
there are 47, 36 and 5 UCSA at 7d higher than 0.35 MPa in filled stope 
A, B and C respectively. From the Fig. 19(c), there are 45, 33 and 41 
UCSA at 28d higher than 0.5 MPa in filled stope A, B and C respectively. 
This shows that the percent of UCSA compliant with safety standards ob-

tained using GWO-LSTM in combination with 𝑘 are 97.3%, 80.9% and 
65.1% at 5d, 7d and 28d in three filled stope, respectively. In addition, 
the strength of 3, 9 and 22 approaches in filled stope A, B and C respec-

tively cannot reach the safety standard and need to conduct some safety 
measures.

Although this study has made some progress in engineering appli-

cations, it still has some limitations. First, the dataset composed of 
UCS of CPB is usually homogeneous and heterogeneous, which makes 
it more difficult to perceive the working conditions in the engineer-

ing applications of the constructed models. Second, the mechanism 
of hydration reaction and mechanical properties of filling materials 
is extremely complex and have not been understood and recognized 
uniformly, which makes the modeling process lack of theoretical knowl-

edge to guide. Lastly, it is difficult for the model to balance real-time 
and dynamic with limited data sets, which can affect the reliability and 
robustness of the constructed model. Therefore, there is still room for 
progress in this study.

8. Conclusion

(1) The UCS database include 180 sets of mix proportion experi-

ments for filling slurry is constructed using tailings as aggregate and 
cement (PO.42.5) as binder from a gold mine in Guizhou, China. In 
the above database, the underflow productivity for tailings, slurry con-

centration, cement content and curing time are set as input and UCS 
as output. The experimental values of UCS were concentrated between 
0.265 MPa and 0.43 MPa (maximum value of 0.96 MPa and minimum 
value of 0.14 MPa).

(2) Four neural networks, BPNN, RBFNN, GRNN and LSTM, are 
trained to construct mapping relationships between input and output 
variables and are used to predict the UCS based on the constructed 
database. Although RMSE is not the lowest and the running time is 
higher than the other three neural networks, the LSTM is the optimal 
model in the prediction of UCS of CPB based on engineering practice. 
(𝑅 = 0.8974, RMSE = 0.0871, VAF = 99.9874, 𝑇 = 13.11 s and Total 
rank = 11).

(3) The learning rate and the hidden layer nodes in the LSTM are 
optimized using trial-and-error, PSO, GWO, and SSA to improve the 
prediction performance of the LSTM. The simulation results show that 
the prediction performance of the GWO-LSTM (learning rate = 0.0785 
and hidden layer nodes = 25) is optimal (𝑅 = 0.9915, RMSE = 0.0204, 
VAF = 98.2847 and 𝑇 = 16.37 s).

(4) The correction coefficient (𝑘) is defined to correct for the errors 
of UCSM and UCSA. The 𝑘 and GWO-LSTM are combined and success-

fully predict the strength of the filling body in 153 approaches for 3 
filled stopes with different stowing gradient. The results in section 7

demonstrate the rationality of 𝑘 and the high prediction accuracy of 
GWO-LSTM for UCS of CPB. This provides guidance for the safety min-

ing of filled stopes.

(5) Future studies will focus on the processing of multi-source het-

erogeneous data sets in machine learning modeling and the mechanistic 
modeling of hydration reactions of filling materials.
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