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ABSTRACT

The libraries generated by high-throughput single
cell RNA-sequencing (scRNA-seq) platforms such as
the Chromium from 10× Genomics require consid-
erable amounts of sequencing, typically due to the
large number of cells. The ability to use these data
to address biological questions is directly impacted
by the quality of the sequence data. Here we have
compared the performance of the Illumina NextSeq
500 and NovaSeq 6000 against the BGI MGISEQ-2000
platform using identical Single Cell 3′ libraries con-
sisting of over 70 000 cells generated on the 10×
Genomics Chromium platform. Our results demon-
strate a highly comparable performance between
the NovaSeq 6000 and MGISEQ-2000 in sequencing
quality, and the detection of genes, cell barcodes,
Unique Molecular Identifiers. The performance of the
NextSeq 500 was also similarly comparable to the
MGISEQ-2000 based on the same metrics. Data gen-
erated by both sequencing platforms yielded similar
analytical outcomes for general single-cell analysis.
The performance of the NextSeq 500 and MGISEQ-
2000 were also comparable for the deconvolution of
multiplexed cell pools via variant calling, and detec-
tion of guide RNA (gRNA) from a pooled CRISPR

single-cell screen. Our study provides a benchmark
for high-capacity sequencing platforms applied to
high-throughput scRNA-seq libraries.

INTRODUCTION

The human genome project was an important achievement
in life sciences and paved the way for major technology de-
velopments in DNA and RNA-sequencing. The develop-
ment of synthesis-based next-generation sequencing (NGS,
also known as massively parallel or high-throughput se-
quencing) was pioneered by Solexa (1). After the company’s
acquisition by Illumina, this technology was refined further
and gave rise to a number of platforms that include the
NextSeq, HiSeq and NovaSeq sequencers. These platforms
have now produced the majority of the publicly available
human sequencing data. Over time the cost of sequencing
has decreased and the technology has become more accessi-
ble, both in terms of sequence hardware and tools for analy-
sis (2). Collectively, this has resulted in NGS being adopted
by many researchers, and used in clinical and industry set-
tings.

Until recently, the majority of libraries sequenced have
been generated on ‘bulk’ samples, consisting of the DNA or
RNA collected from millions of cells. However, advances in
single cell library preparation techniques (3,4) have made it
possible to produce sequencing libraries from tens of thou-
sands of individually barcoded cells, and even individually
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Figure 1. Experimental design. Preparation of single cell libraries and sequencing using Illumina and BGI platforms and subsequent analysis. (A) Human
iPSC were generated generated from a human donor and underwent SNP genotyping in addition to scRNA-seq. (B) Primary TMWC were screened with
a CRISPR-based molecular screen (CROP-seq). (C) PBMC. Single-cell libraries were prepared from two individual pools of PBMCs.

barcoded molecules. High-throughput library preparation
methods, such as the Chromium platform from 10× Ge-
nomics (5), are now widely available, enabling libraries con-
sisting of tens of thousands of cells to be generated in sev-
eral hours. The cDNA libraries from the Chromium ex-
periments differ from ‘bulk’ libraries in that each cDNA
molecule contains a Unique Molecular Identifier (UMI)
and shared cell barcode. After amplification cDNAs are
sheared, and adapter and sample indices are incorporated
into finished libraries, which are compatible with next-
generation short-read sequencing.

In 2015 BGI launched the BGISEQ-500 as an alterna-
tive to existing short-read sequencing technologies (6). The
technology underlying the BGISEQ-500 and subsequent
BGI platforms combines DNA nanoball (DNB) nanoar-
rays (6) with polymerase-based stepwise sequencing (DNB-
seq). The BGISEQ-500 was evaluated to be comparative
in performance to Illumina platforms when sequencing
small noncoding RNAs (7), bulk transcriptomes (8), whole
genome DNA (9), and recently, plate-based scRNA-seq
protocols (10). To fully explore this technology’s potential
for scRNA-seq, we undertook a direct performance com-
parison four single cell libraries generated with a droplet-
based scRNA-seq system––specifically, the Chromium by
10× Genomics. A total of 70 000 cells from all four scRNA-
seq libraries were sequenced with the MGISEQ-2000––a
newer sequencing platform by BGI, and the NextSeq 500
and NovaSeq 6000 sequencing platforms by Illumina. The

performance of each sequencing platform was evaluated
based on sensitivity, accuracy, clarity and consistency of
analysis outcomes (Figure 1).

MATERIALS AND METHODS

Description of the single-cell datasets and cell collection de-
tails

A total of four scRNA-seq libraries were generated from
three experimental scenarios, chosen to evaluate the abil-
ity of sequencing platforms to provide sufficient informa-
tion to detect features, such as germline genetic variation
and CRISPR inserts. All experimental work performed in
this study was approved by the Human Research Ethics
Committee (HREC) of the Royal Victorian Eye and Ear
Hospital (11/1031H; 13/1151H) or the Tasmanian Health
and Medical HREC (H0012902) and conformed with the
Declarations of Helsinki, under the requirements of the
National Health & Medical Research Council of Australia
(NHMRC).

iPSC. Consisted of undifferentiated human induced
pluripotent stem cells (iPSCs) maintained with StemFlex
(ThermoFisher Scientific) that were derived from two un-
related individuals (11). Colonies were harvested using Re-
leSR™ (Stem Cell Tech) and were dissociated into a single
cell suspension. Cells were counted and assessed for viabil-
ity with Trypan Blue using a Countess II automated counter
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(Thermo Fisher Scientific), then pooled at a concentration
of 391–663 cells/�l (3.91 × 105 − 6.63 × 105 cells/ml). Final
cell viability estimates ranged between 95 and 97%. The two
cell lines were then genotyped separately using the Infinium
HumanCore-24 v1.1 BeadChip assay (Illumina), and sin-
gle nucleotide polymorphisms (SNPs) were called from this
assay with GenomeStudioTM V2.0 (Illumina). To gener-
ate the libraries, cells were partitioned and barcoded using
high-throughput droplet 10× Genomics Chromium Con-
troller (10× Genomics, USA) and the Single Cell 3′ Library
and Gel Bead Kit (V2; 10× Genomics; PN-120237). The es-
timated number of cells in each well in the Chromium chip
was optimized to capture ∼10 000 cells. GEM generation
and barcoding, cDNA amplification and library construc-
tion were performed according to standard protocol.

TMWC. Comprised of cultured human trabecular mesh-
work cells (TMWCs) that had been transfected with a
CROP-seq (Addgene: 99248) guide RNA (gRNA) pool tar-
geting 128 loci, with the guides targeted to be inserted in
the 3′ end of the gene and thus detectable from short-
read sequence data. TMWCs were plated in T75 flasks and
transfected with a pooled single guide RNA (sgRNA) li-
brary lentivirus containing sgRNA for 128 targets, 10 of
which were control genes. Cells were harvested 7 days af-
ter virus transduction and were FACS sorted for EGFP-
positive and viable cells (propidium iodide-negative cells)
before applying to the Chromium System (10× Genomics)
single cell RNA-sequencing workflow. Single-cell suspen-
sions were used to generate a Chromium library using the
Chromium Single Cell 3′ v2 Library (10x Genomics; PC-
120237). The estimated number of cells in each well in the
Chromium chip was optimized to capture ∼10 000 cells.

PBMC1 and PBMC2. Consisted of peripheral blood
mononuclear cells (PBMCs) collected from a total of 28
unrelated individuals. Peripheral blood samples were col-
lected in Vacutainer Cell Preparation Tubes containing
sodium heparin and ficoll (BD Biosciences: 362753), and
were processed according to the manufacturer’s recommen-
dations. Following separation, PBMCs were cryopreserved
and stored. Samples were subsequently thawed, and each li-
brary contained a pool of PBMCs from 14 donors, with 40
000 cells loaded to achieve a targeted 20 000 cells per library.

Illumina NextSeq 500 and NovaSeq 6000 sequencing

iPSC and TMWC libraries were sequenced on an Illumina
NextSeq 500 (NextSeq control software v2.0.2/Real Time
Analysis v2.4.11) using a 150 cycle NextSeq High Output
Reagent Kit v2.5 (Illumina: 20024907) in stand-alone mode
as follows: 26 bp (Read 1), 8 bp (Index) and 98 bp (Read 2).
For each library, 1.8 pM concentration and 1300 �l volume
was loaded. The NextSeq 500 sequencing was performed by
the Institute of Molecular Bioscience Sequencing Core Fa-
cility. The two PBMC libraries were sequenced on an Illu-
mina NovaSeq 6000 (Software version: 1.4) using a 2 × 150
cycle S4 flowcell in standalone mode, and libraries loaded at
8 nM and a volume of 350 �l. The NovaSeq 6000 sequenc-
ing was performed by the Kinghorn Centre for Clinical Ge-
nomics Sequencing Core Facility.

BGI MGISEQ-2000 sequencing

Libraries generated using the 10× Genomics Chromium
system require a conversion step using the MGIEasy Uni-
versal Library Conversion kit (App-A) (Part Number:
1000004155) before sequencing can be performed on the
MGISEQ-2000 instrument. For each library, 10 ng was am-
plified using 10 cycles of polymerase chain reaction (PCR)
to incorporate a 5′ phosphorylation on the forward strand
only. Purified PCR product was then denatured and mixed
with a ‘splint’ oligonucleotide that is homologous to the
P5 and P7 adapter regions of the library to generate a cir-
cle (Supplementary Figure S1). A ligase reaction was then
performed to create a complete ssDNA circle of the for-
ward strand then an exonuclease digest was performed to
remove single stranded non-circularized DNA molecules.
Circular ssDNA molecules then underwent Rolling Circle
Amplification (RCA) to generate 300–500 faithful copies
of the libraries which then fold upon themselves to be-
come DNA Nanoballs (DNB). Each DNB library was then
flowed across a 1500 M feature patterned array flow cell
ready for sequencing using the MGISEQ-2000RS High-
Throughput Sequencing Set (App-A) (PE100) (Part Num-
ber: 1000005662). The custom cycle mode on the instru-
ment was run to allow 26 bp (Read 1) and 100 bp (Read
2) cycles without an index barcode read due to only one
sample being run per flow cell, and FASTQ files were gener-
ated locally on the instrument. Sequencing was performed
in BGI Shenzhen, MGI R&D facility.

Bioinformatic and computational analysis

Sequencing data from both platforms were processed into
transcript count tables using the Cell Ranger Single Cell
Software Suite version 2.2.0 by 10× Genomics (http://www.
10xgenomics.com/). Base calls from the NextSeq 500 and
NovaSeq 6000 Illumina sequencers were pre-processed as
described by Zheng et al. (5). Base calls from the MGISEQ-
2000 were pre-processed as described by Huang et al. (12)
into demultiplexed, processed reads. The BGI-formatted
headers of the resulting FASTQ reads were converted to
Illumina-formatted headers using custom Python scripts
that are included with this publication’s accompanying
repository. The quality of the raw sequencing data were as-
sessed with FastQC v0.11.7 (13). The FASTQ files for both
platforms were then processed with the cellranger count
pipeline, where each sample was processed independently to
generate the transcript count tables. Using STAR v2.5.1b
(14), the iPSC library was mapped to the GRCh37/hg19
Homo sapiens genome (release 84), while the PBMC li-
braries were mapped to the GRCh38 (release 88) H. sapiens
genome. The TMWC library was mapped to the GRCh38
(release 88) H. sapiens genome that was spiked with gRNA
and CROP-seq-associated sequences. This reference was
prepared as described by Datlinger et al. (15). We note
that, since the expression data are limited to the 3′ end of
a gene and we used gene-level annotations, differences be-
tween reference versions, such as GRCh38, are unlikely to
significantly alter conclusions. The resulting mapped counts
for each pair of samples were then depth-equalized using
the cellranger aggr pipeline, which downsampled raw reads
from the higher-depth BGI library until the mean read

http://www.10xgenomics.com/
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Table 1. Basic sequence quality and mapping metrics summary statistics and sequencing properties taken from the analysis of libraries sequenced on
Illumina and BGI sequencers (1Illumina NextSeq 500, 2BGI MGISEQ-2000, 3Illumina NovaSeq 6000 sequencers)

Sample iPSC TMWC PBMC1 PBMC2

Platform Illumina1 BGI2 |�| Illumina1 BGI2 |�| Illumina3 BGI2 |�| Illumina3 BGI2 |�|

Valid barcodes 97.8 96.4 1.4 97.9 96.8 1.1 98.0 97.0 1.0 98.0 97.0 1.0
Reads mapped to genome 94.0 97.8 3.8 93.7 98.0 4.3 95.3 98.1 2.8 95.2 97.9 2.7
Q30 barcode 96.1 87.9 8.2 97.8 87.8 10.0 96.1 91.8 4.3 96.1 90.5 5.6
Q30 UMI 95.5 87.3 8.2 97.7 87.1 10.6 95.9 91.8 4.1 95.9 90.0 5.9
Q30 RNA 85.9 86.6 0.7 86.6 88.0 1.4 92.0 89.0 3.0 92.2 88.0 4.2
Fraction of reads in cells 79.1 80.2 1.1 95.0 95.1 0.1 93.7 94.8 1.1 94.1 95.2 1.1

The percentage valid barcodes, reads mapped to the genome and fraction of reads in a cell are generated by CellRanger software. The Q30 metrics are supplied by BGI and
Illumina software.

depth per cell was equal to the mean read depth per cell
of the Illumina library. The alignment of reads from BGI
data were extracted based on the cell and UMI barcodes
of reads that were retained after downsampling. Downsam-
pling to the depth of 105 reads per sample was performed
with DropletUtils (16).

Post-processing and biological analyses were performed
on each sample using depth-equalized data. Statistical anal-
yses were performed in R, using the following packages:
Seurat (17), biomaRt (18), M3Drop (19) and MetaNeigh-
bor (20). First, count matrices for each sample were loaded
into R and separated by platform. Cell barcodes were ex-
tracted from the matrices and those detected by both plat-
forms were identified. The genes and UMIs of these cells
were then compared in terms of identity in a given cell from
both platforms. The concordance of genes and UMIs de-
tected in both platforms was high (96–98%), and we did not
find any evidence for gene length bias between platforms
(Supplementary Figure S2). Counts from both platforms
then underwent quality control as a single dataset. Filtering
thresholds were defined as measurements greater than the
3× median absolute median deviation value of the follow-
ing thresholds: total UMI counts, number of genes detected,
percentage of reads mapped to mitochondrial and riboso-
mal genes. Cells that lay outside these thresholds were re-
moved from subsequent analysis (Table 3). Remaining cells
that were detected by both platforms were retained for fur-
ther analysis. The NBFitModel function from the M3Drop
R package was used to calculate the dropout rate of genes
per platform. Cell–cell normalization was performed with
the SCTransform function from Seurat (21). The percent-
age of mitochondrial and ribosomal expression were used
as covariates and the platform was supplied as a dependent
variable. Pearson residuals from this step were then used for
dimensionality reduction via principal component analysis
(PCA), and the top 30 most variable principal components
were used to further reduce the dataset via Uniform Mani-
fold Approximation and Projection (UMAP) to two dimen-
sions. These values were then used to build a Shared Near-
est Neighbor graph for each cell, and clusters were inferred
using the Louvain method at the resolution of 0.8. These
cluster labels were then transferred to an aggregated, fil-
tered and normalized dataset. The similarity of correspond-
ing clusters was quantified with the unsupervised version of
MetaNeighbor (20) that used the top 3000 most variable
genes between sequencing platforms.

Additional analyses were conducted on the iPSC and
TMWC samples to evaluate the influence of sequencing
platform on properties specific to these experiments. Us-

ing genotype information from that was generated as de-
scribed in (11), SNPs were called from the iPSC sample
using demuxlet with the following arguments: ‘–tag-group
CB –tag-UMI UB –field GP –alpha 0 –alpha 0.5’ (22).
To account for the downsampling of read depth in the
MGISEQ-2000 data, only alignments from UMIs detected
in the downsampled data were used. These were extracted
using custom Python scripts that are included with this
publication’s repository, and the ‘subset-bam’ tool by 10×
Genomics (https://github.com/10XGenomics/subset-bam).
As the MGISEQ-2000 sequencer produced a longer insert
read at 100 bp, the iPSC sequencing data were re-mapped
to the reference using reads that were truncated to 98 bp.
The reads were also downsampled to the same depth as the
NextSeq 500 dataset. For the TMWC sample, gRNAs were
detected using transcriptome data. This information was
supplemented with read counts from the alignments using
custom Python scripts that can be found in the accompany-
ing repository.

RESULTS

Sequencing quality metrics

The total number of reads generated for the four libraries on
the Illumina platforms was 159–616 million, and 1086–1339
million using the BGI platform. Comparison of sequenc-
ing quality control metrics revealed similar percentages of
detectable valid cell barcodes (Table 1). A valid barcode is
one that is detected from the sequence data that matches a
whitelist of ∼737 000 possible barcodes for the 3′ assay (5).
Interestingly, Illumina sequencers exhibited 4.3–10% more
cell barcode-related base calls with a Q-score >30. If the
base’s Q-score does not meet this threshold, it is regarded
as an ambiguous base. Affected cell barcodes are salvaged
by the Cell Ranger pipeline if they are 1-Hamming-distance
away from a barcode present in a whitelist of known cell
barcodes and are corrected based on posterior probability
(5). A similar issue was observed with UMI-related reads,
where 4.1–10.6% more Q30 reads were detected by Illumina
platforms (Table 1). Quality(Q)-score > 30 (Q30). The Q-
score is a measure of base call accuracy, and a value of 30
translates to 99.9% accuracy (23).The Cell Ranger pipeline
rescues affected UMI barcodes by matching lower-accuracy
UMI sequences to higher-accuracy UMI sequences that are
1-Hamming distance away (5). With this correction, UMI
capture rates remain consistent between Illumina and BGI
sequencers (Figure 2B).

https://github.com/10XGenomics/subset-bam
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Figure 2. Cells and genes detected by platforms. Both technologies demonstrated similar sensitivity in the detection of cells and genes. (A) Capture efficiency
of each platform. Efficiency is evaluated based on the number of genes and molecules detected in a cell. (B) Total number of molecules detected in a cell.
Histograms on each axis represent the distribution of total UMIs in a cell, while the scatter plot represents the correlation of UMI detection for a cell,
between the two platforms. (C) Dropout rate across genes detected by platform. Dropout rates for each gene, per platform were calculated using NBDrop
from the M3Drop package.

The Q30 of the cDNA portion of the read also plays a sig-
nificant role as it directly affects the number of usable reads
that can be mapped to the reference genome. We also ob-
served comparable performance between the NextSeq 500
and MGISEQ-2000, while a 3.0 − 4.2% difference was ob-
served between the NovaSeq 6000 and MGISEQ-2000 (Ta-
ble 1). To note, a larger difference (20.1–30.7%) was ob-
served in the data generated from a NextSeq 500 High Out-
put v2.0 kit (Illumina: FC-404-2002) compared with the
MGISEQ-2000 (Supplementary Table S1). The reduction in
sequencing accuracy for scRNA-seq libraries on a NextSeq
500 has previously been discussed (24), and it has been hy-
pothesized that this is due to flow cell surface chemistry.

The combination of assigning reads to a given cell, a tran-
script molecule and aligning to a reference sequence directly
affects the number of usable reads that are obtained from se-
quence data. Collectively, differences in the sequencing ac-
curacy between platforms over the entire read length has
consequential effects on the percentage of reads that pass
quality control and that are able to be mapped to the refer-
ence genome. When we integrated the percentage of reads
that were able to be aligned to the GRCh38 (release 88) hu-
man reference genome, we obtain a 4.3% difference between

the NextSeq 500 and MGISEQ-2000, while the difference
between the NovaSeq 6000 and MGISEQ-2000 is only 2.7–
2.8% (Table 1). When aligned to the hg19 (release 83) hu-
man reference genome, we observed a difference of 3.8%
between the NextSeq 500 and MGISEQ-2000. The slightly
lower percentage of alignment observed from the NextSeq
500 libraries is most likely due to the lower sequencing accu-
racy in the RNA transcript part of the read, as supported by
the small difference in the Q30 of the RNA read. As thresh-
olds used to determine if a read aligns to the genome are
the same, the lower sequencing accuracy should not affect
the biological interpretation of the aligned data. However, it
does mean libraries sequenced on a NextSeq 500 will need
to be sequenced at a greater depth to obtain the same se-
quencing depth of aligned reads per cell.

Identification of cells, genes and transcript molecules

To evaluate the similarity in the ability of sequencing plat-
forms to identify the same cells, transcript molecules, and
genes, we standardized the read depth within each sample
by down sampling to the lowest read depth. As the same
cells from each sample had been sequenced on two plat-
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Table 2. Cell and gene capture metrics summaries of cell and RNA sequence data from all libraries

Experiment iPSC TMWC

Platform Illumina1 BGI2 BGI (Subsampled)2 |�| Illumina1 BGI2 BGI (Subsampled)2 |�|

Estimated number of cells 12 909 12 940 12 940 31 18 782 18 784 18 784 2
Total number of reads 580 398 477 1 122 883 312 581 782 400 1 383 923 425 891 295 1 119 142 907 425 927 200 35 905
Mean reads per cell 44 960 86 776 44 960 0 22 675 59 579 22 675 0
Median UMI counts per cell 16 800 22 431 14 998 1803 11 540 18 411 10 282 1258
Median genes per cell 3946 4655 3748 198 2878 3781 2709 169
Total number of genes
detected

24 202 24 799 23 941 261 23 212 23 999 23 943 731

Experiment PBMC1 PBMC1

Platform Illumina3 BGI2 BGI (Subsampled)2 —�— Illumina3 BGI2 BGI (Subsampled)2 —�—

Estimated number of cells 20 982 20 839 20 839 143 18 634 18 537 18 537 97
Total number of reads 588 565 199 1 086 836 730 584 533 950 4 031 249 616 115 423 1 339 580 496 612 907 368 3 208 055
Mean reads per cell 28 050 52 153 28 050 0 33 064 72 265 33 064 0
Median UMI counts per cell 2605 2282 2058 547 3004 2676 2357 647
Median genes per cell 855 790 732 123 956 897 814 142
Total number of genes
detected

21 671 21 832 21 296 375 21 860 22 188 21 516 344

All details were provided by the CellRanger software. To provide fair comparison between platforms we have also down sampled data from MGISEQ-2000 sequences to equal read depths
per library as obtained from Illumina sequencers.

forms, we evaluated cell identification based on the obser-
vation of the same cell barcode. Each of the two platforms
identified 98.9–99.5% of cells in common in the four sam-
ples (Supplementary Figure S2A). There was a strong cor-
relation between the total UMI counts of cells detected by
both platforms (r > 0.99 for all samples) (Figure 2B). For
cells identified by only one platform, the mean number of
UMIs were on average one log2 lower than the cells identi-
fied as common between platforms (Supplementary Figure
S2B). There was a lower concordance of shared genes for
these cells, suggesting that these ‘platform specific’ cells are
possibly cell free transcripts that have not been adequately
detected during quality control filtering by the cell singlet
detection algorithm. An alternative explanation is that these
are cells with low transcriptional abundance, although we
observe no evidence for this scenario.

Gene detection was similarly at high concordance with
92.0–96.6% of genes detected by both platforms for the four
samples (Supplementary Figure S2C). There was no differ-
ence between the percentage of genes detected by each plat-
form, for each experiment (Table 2). Details of the genes de-
tected from each platform are provided in Supporting Ma-
terial Tables S1–4. Genes that were only detected on a sin-
gle platform were on average, very lowly expressed (Supple-
mentary Figure S2D). To confirm this, we down sampled to
an average of 105 reads per sample and repeated the com-
parison of gene detection. The NextSeq 500 detected an ad-
ditional 0.4–1.4% genes in the iPSC and TMWC datasets,
while the MGISEQ-2000 detected an additional 0.6–0.7%
genes in the PBMC datasets. We speculate these genes are
technical artefacts. To investigate this further, we calculated
the dropout rates of detected genes and found that there
was no difference in the dropout rates of genes that were
identified by a single platform (Figure 2C). The capture ef-
ficiency of each platform was evaluated based on the total
UMIs and detected genes per cell (Figure 2A). Overall, sim-
ilar capture efficiency was observed across all platforms and
samples. Interestingly, we observed a slight increase in the
capture efficiency of the NextSeq 500 and NovaSeq 6000 in

the detection of cells with larger library sizes. This is likely
a function of the slightly higher sequencing accuracy in the
UMI region of the read (Table 1), corresponding to an in-
crease in the mean UMIs per cell from these sequencers (Ta-
ble 2). However, taken together, our analyses show that the
gene detection, and quantification of transcript molecules
via UMIs is highly consistent across platforms.

Concordance of scRNA-seq analysis between platforms

To determine if data generated by Illumina and BGI se-
quencers are comparable, we performed analyses that are
common to most scRNA-seq workflows: filtering, normal-
ization, PCA, clustering and differential expression (25).
Cells were filtered out based on three criteria: number of
UMIs, features and proportion of mitochondrial and ri-
bosomal gene expression to total expression. Filtering re-
moved 1.0–2.7% of cells sequenced by Illumina platforms,
while 0.7–3.7% of cells were removed in datasets sequenced
with the MGISEQ-2000 (Supplementary Table S2). The
correlation of gene expression between a given cell se-
quenced on both platforms was high, with mean r2 of 0.96
between NextSeq 500 and MGISEQ-2000 and 0.98 between
NovaSeq 6000 and MGISEQ-2000 (Figure 3A). We simi-
larly observed a high concordance of between the first two
principal components across all samples (Figure 3B). The
comparison of cluster identification revealed complete con-
cordance in clustering at the same resolution for all datasets
between platforms (Figure 3C). Finally, using 3000 of the
most variable genes, (Supplementary Tables S5–9) we im-
plemented MetaNeighbour (20) to evaluate the replicabil-
ity of cell types platforms for each sample. The area under
the receiver operator curve varied from 0.93 to 0.96, again
indicating very high similarities between platforms (Figure
3D).

Identification of genetic variation and CRISPR guides

The ability to call SNPs from scRNA-seq data allows re-
searchers to use multiplexing strategies in the library gen-
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Figure 3. Concordance of datasets sequenced by different platforms. (A) Pearson correlation of gene expression between cells identified by both sequencing
platforms. (B) PCA representation of each sequencing platform per dataset. (C) Cluster predictions projected on to UMAP plots separated by sequencing
platform. (D) AUROC scores measuring the similarity of corresponding clusters across platforms, for each dataset as calculated by MetaNeighbor.

eration stage, reducing the overall cost of running experi-
ments where large sample sizes are needed (22). The power
of demultiplexing a cell back to an individual donor is
partly a function of the number of SNPs that can confi-
dently be called from the short RNA section of the read.
Using the iPSC sample that comprised of cells multiplexed
from two unrelated donors, we assigned cells to the origin

donor by calling SNPs from the equalized total reads of se-
quence data generated by the NextSeq 500 and MGISEQ-
2000 using the demuxlet algorithm (22). Donor identity was
confirmed using genotyped SNPs from an Illumina Global
Screening array that had been imputed to the Haplotype
Reference Consortium panel (26). At equalized read depths
across platforms, we identified 1 048 912 SNPs from the
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Figure 4. Experiment-specific metrics. (A) Metrics related to guide RNA assignment in TMWC. This excludes cells that were not affiliated with a guide
RNA and cells that with ambiguous assignments. (B) Number of SNPs called per cell in iPSCs. SNPs were called from alignments of cells found in NextSeq
500 and MGISEQ-2000 datasets.

NextSeq 500 data and 1 550 680 SNPs from the MGISEQ-
2000 data. This difference may be due to the higher sequenc-
ing quality of the RNA read by the MGISEQ-2000 (Table
1), as the detection of a SNP is dependent on the number
of unique reads overlapping a variant and the phred-scale
quality score of the observed base call (22). The additional
SNPs enabled demuxlet to assign an additional 123 cells to
the correct donor (Table 3 and Figure 4). To verify that this
was not a function of differences in the base-pair length of
the RNA section of the read, we trimmed the BGI data to
a total RNA-read length of 98 bp and re-called SNPs, and
could still correctly identify an additional 173 cells (Supple-
mentary Table S3). This is further supported by data gen-
erated by the NextSeq 500 using the NextFlow version 2.0
sequencing reagent kit, which yielded lower quality RNA
reads (Supplementary Table S1) and subsequently identi-
fied 3,085 less correctly assigned cells, in comparison to the
NextFlow version 2.5 kit (Supplementary Table S3).

Finally, we evaluated the ability to detect the inserted
guide RNAs (gRNA) from the TMWC that had been trans-
fected with a CRISPR pool targeting 128 loci with the
CROP-seq protocol. The guides are targeted to be inserted
in the 3′ end of the gene and thus detectable from short-read
sequence data. Despite differences in the read coverage of
gRNAs, we observed consistent detection of the number of
cells per guide, and the number of UMIs per guide across
both the NextSeq 500 and MGISEQ-2000 (Figure 4).

DISCUSSION

To our knowledge, this study is the first to utilize MGISEQ-
2000 platform for scRNA-seq, and the first to compare se-
quence performance for the widely used 10× Chromium
platform against Illumina platforms. Our comprehensive

benchmarking utilizes data from over 70 000 cells, and
shows that the MGISEQ-2000 has to be highly compara-
ble performance across a range of modalities to the Illu-
mina NextSeq 500 and NovaSeq 6000 platforms at equal
read depth, while being more cost effective (Supplemen-
tary Table S4). For single cell RNA-sequencing-specific
metrics, such as read quality, cell detection and RNA
molecule detection, we found the Illumina NovaSeq 6000
and BGI MGISEQ-2000 platforms generated highly com-
parable data, and similar observations were made between
the Illumina NextSeq 500 and MGISEQ-2000 platforms.
Identical subpopulations were identified in each set of sam-
ples using general scRNA-seq analysis. The study compared
the performance of the NextSeq 500 and the MGISEQ-
2000 for specialized single cell analyses––specifically, vari-
ant calling and gRNA detection from pooled CRISPR sin-
gle cell screens. While the MGISEQ-2000 detected 501 768
more SNPs, a similar number of cells were correctly as-
signed to a donor. The performance of both platforms was
also alike in the pooled CRISPR study, where similar fre-
quencies of gRNAs were detected. This work provides a
benchmark for high capacity sequencing platforms applied
to high-throughput single cell RNA-seq libraries.

DATA AVAILABILITY

We have made available both the raw and processed data on
ArrayExpress under accession E-MTAB-9024.

CODE REPOSITORY

https://github.com/powellgenomicslab/
BGI vs Illumina Benchmark.

https://github.com/powellgenomicslab/BGI_vs_Illumina_Benchmark
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Table 3. Predicted assignments of cells to donor from iPSCs assignment of cell identify to donors using default settings in demuxlet14

Prediction NextSeq 500 MGISEQ-2000 (down sampled) MGISEQ-2000 (down sampled, 98 bp reads)

Unassigned 5552 5403 5379
Correctly assigned 7357 7480 7530

To provide fair comparisons between platforms, data generated from MGI platforms was (i) down sampled to equal read depth as the NextSeq, and (ii) the reads were trimmed
to match the same RNA read length as obtained from the NextSeq flowcell.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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