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Genetic ancestry in population pharmacogenomics
unravels distinct geographical patterns
related to drug toxicity

Kariofyllis Karamperis,1,2,3,* Sonja Katz,4,5 Federico Melograna,6,7 Francesc P. Ganau,2 Kristel Van Steen,6,7

George P. Patrinos,1,8,9,10,* and Oscar Lao2,11,*
SUMMARY

Genetic ancestry plays a major role in pharmacogenomics, and a deeper understanding of the genetic di-
versity among individuals holds immerse promise for reshaping personalized medicine. In this pivotal
study, we have conducted a large-scale genomic analysis of 1,136 pharmacogenomic variants employing
machine learning algorithms on 3,714 individuals from publicly available datasets to assess the risk prox-
imity of experiencing drug-related adverse events. Our findings indicate that Admixed Americans and Eu-
ropeans have demonstrated a higher risk of experiencing drug toxicity, whereas individuals with East
Asian ancestry and, to a lesser extent, Oceanians displayed a lower risk proximity. Polygenic risk scores
for drug-gene interactions did not necessarily follow similar assumptions, reflecting distinct genetic pat-
terns and population-specific differences that vary depending on the drug class. Overall, our results pro-
vide evidence that genetic ancestry is a pivotal factor in population pharmacogenomics and should be
further exploited to strengthen even more personalized drug therapy.

INTRODUCTION

Adverse drug reactions (ADRs) encompass a significant public health concern and a leading worldwide cause of morbidity and mortality,

ranking among the fourth to sixth most common causes of death.1,2 By definition, ADRs are characterized as detrimental and unintended

responses arising from an intervention with the utilization of a drug leading to a global expenditure.3 Notably, the pharmacokinetics of chem-

ical compounds exhibit inter-individual variability due to amixture of genetic, environmental, or other factors (age, ethnicity, gender) harness-

ing the recommended drug and dosage prediction.4–6 When these factors collectively lead to drug concentrations surpassing therapeutic

thresholds, they can potentially give rise to a spectrum of adverse events, ranging from mild to severe, or even life-threatening conditions.7

To address this challenge, pharmacogenomics (PGx) holds promise in customizing drug treatments and reducing the risk of drug-related

adverse events within the context of personalized medicine by optimizing efficacy while simultaneously minimizing the risk of drug-related

adverse events.8–10

Presently, the adoption of PGx in medical practice has garnered significant attention, driven by recent advancements in sequencing

methods and the growing accessibility of human genomics data. These developments have facilitated the identification and analysis of

numerous pharmacogenomic variants, serving as potential biomarkers with a profound impact on drug treatments.11–13 Up to date, the ma-

jority of PGx studies14–16 reflect the importance of identifying genetic variants modifying the risk of drug response and ADRs in important

pharmacogenes encoding drug-metabolizing enzymes (e.g., CYP450),17,18 drug transporters (such as ATP-binding cassette subfamilies),19,20

drug receptors, or targets with a key role in pharmacokinetics and pharmacodynamics of drugs.21 For instance, the CYP1A2, CYP2D6,

CYP2C19, and CYP3A4 enzymes belonging to the CYP1, CYP2, and CYP3 families, respectively, are extensively involved in the biotransfor-

mation (metabolism) of the majority of foreign compounds, encompassing approximately 70%–80% of all drugs in clinical use.22,23 Conse-

quently, any genetic variations or alterations in pharmacogenes can significantly impact enzyme function, affecting the metabolism of drugs

and potentially leading to different metabolizer status for particular medications to corresponding patients.21,22 According to most recent
1Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
2Group of Algorithms for Population Genomics, Department of Genetics, Institut de Biologia Evolutiva, IBE, (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
3The Golden Helix Foundation, London, UK
4Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
5Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
6Department of Human Genetics, KU Leuven, Leuven, Belgium
7GIGA-R Molecular and Computational Biology, University of Liège, Liège, Belgium
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studies, a significant number of pharmacogenes (i.e., CYP2C19, CYP2D6, CYP2C9, or CYP3A4, among others) encoding the corresponding

enzymes and beyond appear to be quite polymorphic not only among individuals but, most importantly, across different populations.24–26 In

the given context, population differentiation might be attributed, in part, to the intricate interplay of evolutionary forces such as natural se-

lection, genetic drift, and gene flow, which contribute to shaping genetic diversity within populations.27,28

PGx evidence-based recommendations are continuously updated by regulatory bodies such as the U.S. Food and Drug Administration

(FDA)29 and the European Medicines Agency (EMA)30 containing drug labeling information for more than 300 and 150 drug-biomarker pairs,

respectively.31–33 This dynamic process reflects the ongoing advancements in the field of PGx and the efforts to incorporate genetic informa-

tion into clinical practice. However, given the aforementioned considerations, pharmacogenomic recommendations and guidelines may not

adequately alignwith a specific cohort of patients, prompting the need to further stratify the risk individuals and explore alternative avenues or

possibilities before clinical implementation.16,26,34 Among others, the concept of population pharmacogenomics34–38 has been prioritized.

Contemporary evidence regarding this concept has emphasized the importance of proactively stratifying individuals, considering

additional biological information pertaining to population characteristics, such as ethnicity or ancestry.39–43 Based on previous studies, the

safety and effectiveness of drug treatment may differ based on the patient’s genetic ancestry, and therefore, population-related factors

should have a central role as guidance for personalized drug therapy.44–46 As a result, ethnic background knowledge could potentially

lead to better risk stratification.47 Recent findings48,49 in large, diverse populations with complex demographic and adaptation histories sug-

gest that current pharmacogenomic guidelines from regulatory bodies may not fully harness the predictive therapeutic outcomes. This un-

derscores the importance of accurately identifying genetic variants linked to ADRs in cohorts of human populations representing diverse

ancestry and sex.50 Additionally, investigating trends among populations with shared genetic backgrounds in specific drug categories

(such as cardiovascular, antidepressant, and antineoplastic agents) could further enhance the stratification of personalized medicine and

drug therapy.51–54

In essence, there is a strong recommendation to leverage the inherent genetic diversity within populations, in the context of PGx and

particularly, within the concept of population pharmacogenomics. This approach can be instrumental in unveiling population-specific variants

and providing guidance tailored to particular regions characterized by a prevalence of specific alleles, ultimately improving the stratification

of individuals.38,55,56

In this study, we employed genomic information from various datasets, encompassing individuals from diverse geographical

regions and locations. We developed a text-mining approach to extract risk alleles in genetic variants linked to adverse drug reactions

and more specifically to drug toxicity from various databases, enabling us to investigate the genetic patterns related to ADR-associated var-

iants. This allowed us to identify hidden patterns and similarities among populations in various drug classes by measuring the polygenic risk

score.
RESULTS

In the current study, we have applied a text-mining approach but also supervised and unsupervised machine learning methods. This multi-

faceted approachwas designed to unravel twomajor key aspects: first, to delineate the worldwide proximity of risk in the occurrence of ADRs,

and second, based on the results to further explore these geographical patterns and assess drug-gene interactions in commonly prescribed

medications. We thus developed a text-mining method for characterizing risk alleles from pharmacogenomic guidelines in the PharmGKB

database (Data S2/Methods S2). In total, we included 1,136 PGx variants, including haplotypes (star alleles), associatedwith drug-related toxic

events. These variants are distributed across 512 pharmacogenes and span evidence levels 1 to 3 (Data S1/Methods S1; Tables S1 and S2). To

assess the validity of the text-mining methodology, we subsequently conducted a comparison between the final reports (semiautomatic vs.

manually curated reports) for a subset of single nucleotide variants (SNVs) (n = 200) corresponding to multiple drugs, randomly selected

among hundreds of reports. The vast majority of the risk genotypes were successfully parsed (>80%). Apart from that, the developed meth-

odology has shown greater efficiency in comparison to the manual report in parsing risk alleles. In summary, our developed method has

shown a series of advantages such as time efficiency in data mining, handling of large data volumes, and most importantly, ensuring the reli-

ability and validity of our results.
Pharmacogenomic profile, variant annotation, and pathogenicity prediction

We first assessed the variant annotation and classification within a total of 1,136 PGx variants of significance. In our dataset, PGx variants are

located in pharmacogenes linked to drug targets (63.6%), encoding drug-metabolizing enzymes—phases I and II (15.2%), drug receptors

(11.5%), and transporters (9.7%) (Figure 1A). Depending on the variant position and signaling pathway, PGx variants represent alterations

in the amino acid and protein structure, mainly resulting in a decreased activity and hence, to alter drug response or increase the risk for

adverse drug reactions. In fact, most of these genetic variations are located in exonic regions (45.3%). Interestingly, missense variations repre-

sent 55.3% of the considered variants, following to a lesser extent the 30 prime UTR variants (14%) (Figure 1B). Following this, we proceeded to

predict the potential impact of missense variations (n = 285) using the PolyPhen-2 prediction tool (Figure 1C). The percentage of PGx variants

for being possibly or even probably damaging in the structure and function of proteins was found to be relatively high (76.1%) with an average

PolyPhen-2 score of 0.476 (see Table S3). This could lead to drug-related events and, in particular, an increased susceptibility to drug toxicity.

In summary, the aforementioned findings highlight the significance of the included PGx variants, and therefore, a deeper analysis is highly

recommended.
2 iScience 27, 110916, October 18, 2024



Figure 1. Pharmacogenomic profile, variant annotation, and pathogenicity prediction of the selected 1136 clinically relevant SNVs

(A) Distribution of SNVs located in genes encoding drug-metabolizing enzymes, transporters, receptors, and other drug targets.

(B) Variant annotation and consequences: the bar chart depicts the percentages of the SNVs typically located across four main genomic regions, within or

between the genes. The nested pie chart illustrates the distribution of exonic variants, the coding regions, and the different types of consequences based on

the genomic location. The category « other SNV consequences » includes the consequences of (a) stop gained, (b) frameshift variants, (c) inframe insertion,

(d) inframe deletion, and (e) start lost. Similarly, this analysis was implemented using the Bioconductor and the BiomaRt package.57,58

(C) A predictive analysis to assess the damaging effects of SNVs and therefore, the possible impact of amino acid substitutions on the structure and function of

proteins. Access to the biological databases was obtained through the Bioconductor, an open-source software, and the analysis was implemented with the

PolyPhen-2 score59 (Polymorphism Phenotyping v2) tool for missense variants using the BiomaRt package.57,58
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Dimensionality reduction reveals distinct clustering of superpopulations

We first analyzed the genetic relationships of PGx variants associated with ADRs between individuals from worldwide populations. For this

purpose, we consider the 1KGP3-ALL dataset due to its large number of individuals across diverse populations. We projected in two dimen-

sions the genetic relationship defined by IBS estimated from a subset of PGx variants (n = 440) between individuals from the 1KGP3-ALL data-

set using a classic MDS. The first two dimensions explained 9.12% of the variance present in the IBS distance matrix between pairs of indi-

viduals. Typically, a higher percentage of variance explained is recommended to achieve a more precise representation of the original

data. However, evenwith a lower percentageof variance explained, valuable insights into the underlying structure of the data can still emerge.

The first dimension (6.07% variance explained) distinguishes individuals from recent Sub-Saharan African ancestry compared to the other

populations. The second dimension (3.05% variance explained) distinguishes East Asian populations from the others (Figure 2). Although

a similar analysis was performed in the HGDP dataset, findings exhibited a high degree of similarity with the 1KGP3-ALL dataset,
iScience 27, 110916, October 18, 2024 3



Figure 2. Dimensionality reduction reveals distinct clustering of superpopulations (1KGP3-ALL dataset)

This computational analysis was performed on 2.504 individuals across 26 populations divided into 5 superpopulations derived from the 1KGP3-ALL dataset.

Centroids are depicted by black dots, whereas circular clusters (ellipses) are used to illustrate the calculated clusters, each distinguished by group-specific

colors. Statistical significance, evaluated using the ANOSIM test60 (Statistic R: 0.9019, significance: 0.001, number of permutations: 999), underscores the

distinct groupings observed within the dataset.
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demonstrating consistent patterns and supporting the presence of population structure between East Asian (first dimension, 3.38% variance

explained) and African sub-Saharan (second dimension, 2.71% variance explained) groups. However, the MDS analysis of the HGDP dataset

unveiled a notable proximity shared among the East Asian, Oceanian, and Native American populations, hinting at a compelling notion of

shared genetic ancestry (Figure S2). To further evaluate the differences between predefined superpopulations, we also applied the ANOSIM

test to both datasets, calculated from theMDS data. The ANOSIM test yielded an R statistic of 0.92 and a highly significant p value of 0.001 for

the 1KGP3-ALL dataset, whereas in the HGDP dataset an R statistic of 0.902 and a highly significant p value of 0.001 was found, indicating

substantial and statistically significant dissimilarities between the superpopulation groups at both datasets.

Polygenic risk score shows significant associations and disparities across diverse populations

Following the previous results, we computed a polygenic risk score (PRS) for each individual from the 1KGP3-ALL dataset using the previous

subset of PGx variants. For this analysis, PRS is defined as the average number of risk alleles per individual. We found statistically significant

differences in PRS across various populations and superpopulations, as confirmed by performing the Kruskal-Wallis test (Kruskal-Wallis chi-

squared = 534.73, df = 25, p-value <2.2e-16) in the 1KGP3-ALL dataset. Individuals from East Asian ancestry tend to show a significantly

lower PRS compared to other sub-continent groups (Figure 3). Similar findings were robustly replicated when extending the analysis to

the HGDP dataset (Kruskal-Wallis chi-squared = 211.21, df = 53, p-value <2.2e-16). Interestingly, individuals of East Asian ancestry, and to

a lesser extent theOceanians, have demonstrated a notably lower PRS compared to other superpopulations, indicating reduced genetic sus-

ceptibility to ADRs (Figure S3). On the contrary, Americans, Europeans, and South Asians, following to a lesser extent the Africans, represent a

higher PRS.

Unrevealing complex geographical patterns measuring the frequency of protective alleles across the globe

Given the previous findings, we further investigated and quantified the prevalence of protective alleles within each superpopulation. Via the

logistic regression with each superpopulation as an outcome and the SNVs as input, we identified the SNVs distinctive of each
4 iScience 27, 110916, October 18, 2024



Figure 3. Polygenic risk score shows significant associations and disparities across diverse populations (1KGP3-ALL dataset)

In this scatterplot, we represent the polygenic risk score (PRS) of experiencing adverse drug effects among 26 populations divided into 5 superpopulations

derived from the 1KGP3-ALL dataset. Acronyms are the following: Admixed American superpopulation: CLM, Colombians in Medellin, Colombia; MXL,

People with Mexican ancestry in Los Angeles, USA; PEL, Peruvians in Lima, Peru; PUR, Puerto Ricans in Puerto Rico. African superpopulation: ACB, African

Caribbean in Barbados; ASW, people with African Ancestry in Southwest USA; GWD, Gambian in Western Division; LKW, Luhya in Webuye, Kenya; MSL,

Mende in Sierra Leone; YRI, Yoruba in Ibadan, Nigeria. European superpopulation: CEU, Utah residents (CEPH) with Northern and Western European

ancestry; FIN, Finnish in Finland; GBR, British in England and Scotland; IBS, Iberian populations in Spain; TSI, Toscani in Italia. East Asian superpopulation:

CDX, Chinese Dai in Xishuangbanna, China; CHB, Han Chinese in Beijing, China; CHS, Southern Han Chinese; JPT, Japanese in Tokyo, Japan; KHV, Kinh in

Ho Chi Minh City, Vietnam. South Asian superpopulation: BEB, Bengali in Bangladesh; GIH, Gujarati Indians in Houston, TX, USA. ITU, Indian Telugu in the

UK; PJL, Punjabi in Lahore, Pakistan; STU, Sri Lankan Tamil in the UK. Statistical analysis was performed with the Kruskal-Wallis test (Kruskal-Wallis chi-

squared = 534.73, degrees of freedom (df) = 25, p value <2.2e-16).
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superpopulation. To illustrate our findings, we utilized a bar plot (Figure 4) and an UpSet plot (Figure S4)—an extended version of the Venn

Diagram—depicting the population-specific distribution of protective/risk-associated SNVs, using the 1KGP3-ALL dataset.

East Asians showed the highest number of protective alleles, i.e., low frequency of risk alleles (n = 329 SNVs) followed by Sub-Saharan

African ancestry individuals (n = 265 SNVs), Europeans (n = 197 SNVs), South Asians (n = 146 SNVs), and Admixed Americans (n = 111

SNVs). It should be noted that, in almost all cases except East Asians, the average of risk alleles at each individual was almost equal to the

protective ones, which constrained the interpretability of the results. Moreover, it was observed that, in particular cases, Admixed Americans,

South Asians, and Europeans showed a high level of admixture when compared to the other superpopulations (Figure 4). These findings indi-

cate that these particular superpopulations have a similar genetic background as referred to the selected SNVs of study andmost importantly,

a high level of admixture and heterogeneity, as previously identified. Of significant interest, individuals with Sub-Saharan African and East

Asian ancestry maintain relatively distinct genetic profiles. Nevertheless, Sub-Saharan Africans tend to exhibit a higher proximity to increased

risk in the occurrence of ADRs, whereas individuals of East Asian descent tend to show a decreased risk proximity.

Subsequently, our objective is to identify SNVs and evaluate their significance in terms of both protective and risk associations across mul-

tiple superpopulations. Notably, these SNVs exhibit distinctive frequencies within various superpopulations, prompting a detailed analysis of
iScience 27, 110916, October 18, 2024 5



Figure 4. Regression analysis of risk and protective allele frequencies across superpopulations (1KGP3-ALL dataset)

Estimation of the frequency of the protective alleles per superpopulation derived from a subset of PGx variants (n = 884 SNVs). For this analysis, we compared the

SNV average value within a superpopulation groupwith those of the remaining groups. In this bar plot, we represent the superpopulation groups and the number

of SNVs (y axis) that were found with a lower (colored green), higher (colored red), or not significantly different (colored turquoise) value than the mean. The p

value was calculated with a t test, and the results were adjusted for multiple testing with Bonferroni correction. These values with a lower mean suggest a

protective effect, whereas higher values indicate a risk effect associated with drug-related toxic events. Non-statistical significance (>0.05) indicates a high

admixture and similarity between superpopulation groups. East Asians have the highest number of protective alleles (frequency-beta), whereas Africans have

the highest number of risk alleles.
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their importance. In particular, 17 out of 826 SNVs have significantly different frequencies in every superpopulation, whereas 83 SNVs have

similar frequencies in every superpopulation, i.e., no significant differences. Among all the superpopulations, the AMR seems the most iso-

lated one, whereas Sub-Saharan ancestry African and East Asians share the highest number of predictive SNVs (Figure S4). Overall, these

observations reveal population differences among these SNVs. Specifically, these differences primarily involve a small number of SNVs dis-

playing extreme values, contributing to the emergence of a concealed pattern across two distinct dimensions.

A global map of genetic diversity reveals distinct geographical patterns linked to drug-related toxic events through spatial

interpolation

Considering the findings mentioned earlier, a logical question may revolve around defining the spatial boundaries of the PRS. Even though

the 1KGP3-ALL and HGDP datasets contain a relatively large population sampling size, they are both limited in terms of spatial coverage.

Therefore, for spatial analyses, we employed the SGDP dataset, which consists of a relatively small number of samples per site but is

more homogeneously geographically distributed. The geographic map of the mean of risk alleles suggests the presence of a sharp

geographic discontinuity dividing Central Asia and including all East Asian, Siberian, and Oceanian populations, with a trend toward lower

risk probability than the values found among the remaining global populations (Figure 5). To test this visual observation, we applied an un-

supervised analysis inspired by K-means to identify the presence of geographic barriers. Following the assumption of two distinct groups, we

applied a genetic algorithm (GA) to explore the space of possible solutions of spatial clusters in the SGDP, each group minimizing the dif-

ference in the PRS within the group and maximizing it between groups. Given the metaheuristic nature of the algorithm, we conducted mul-

tiple replicates, always obtaining the same spatial clustering at two groups. The Wilcoxon signed-rank p value between these two groups for

the PRS was 1.276e-12. The geographic barrier between the two groups identified by this approach divides East Asian populations from the

rest following the visual impression from the IWD-based map (Figure 5), supporting our previous findings with the 1KGP3-ALL and HGDP

datasets.

Assessing the influence of discovery bias on PRS across populations

The presence of differences in PRS across populations could reflect biases in the discovery population of these ADRs. In order to test this

hypothesis, we estimated the average number of derived alleles in SNVs that are polymorphic (minor allele frequency [MAF] >0.05) in Euro-

pean populations from HGDP and are classified as missense or 30 prime UTR variants and compared with the expected if no MAF bias was

applied. From the 875,428missense and 30 prime UTR variants SNVs with genotypes in all the HGDP individuals, 10,011 SNVs with a minimum
6 iScience 27, 110916, October 18, 2024



Figure 5. A global map of genetic diversity reveals distinct geographical patterns linked to drug-related toxic events through spatial interpolation

The mapping depicts the risk frequency in a set of pharmacogenomic variants involved in calculating the mean using logarithm (log) transformation in 281

individuals from 127 distinct populations and 7 superpopulations derived from the SGDP dataset. Each sampling region has been represented on the map

by circular data points, with the colors (dark blue or light red) denoting the risk estimation within the respective regions. The outliers of other regions were

interpolated using geospatial analysis and geostatistical modeling packages within R programming to estimate the interpolation and spatial distribution

based on the known surrounding regions. Moreover, we applied a genetic algorithm (GA) to identify two distinct clusters. The centroid (C1) of the first group

was lon = 107.17, lat = 26.8 (dark blue circular point featuring a cross at its center.), whereas, for the second centroid (C2), lon = 85.45 and lan = 7.69 (light

red circular point featuring a cross at its center). The statistical significance between these groups was p = 1.276e-12, as determined by the Wilcoxon signed-

rank test. The black line with square dots represents the geographical boundaries identified through spatial analysis and geostatistical modeling.
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allele frequency of 0.1 in Europeans were ascertained. For each of the superpopulations of HGDP, we generated 10,000 PRS. Results, as illus-

trated in Figure S5A, reveal that PRS computed on alleles derived frommissense or 30 prime UTR variants with highMAF in European ancestry

tends to be elevated in these populations. Conversely, PRS in other superpopulations tend to be lower. In contrast, in the absence of MAF

bias, a higher frequency of derived alleles inmissense and 30 primeUTR variants is observed in African populations. A similar result is observed

when the analysis is conducted only considering the pharmacogenes used in this study (see Figure S5B).
Geographic disparities in drug-gene interactions for commonly prescribed medications

Our previous findings provide compelling evidence for the presence of variance in the PRS across human populations. However, since we

calculated a PRS by pooling effects from different drug categories, we conducted further analyses after stratifying the ADR genetic variants

by the drug category that was targeted. In total, we analyzed more than 220 drugs linked to approximately 750 SNVs from both HGDP and

SGDP datasets and stratified them into six main drug categories (Table S5). Since this a subset of the SNVs used in the pooled analyses, we

first tested whether previous results could be replicated with this subset of SNVs. According to the results derived from the SGDP dataset,

initial analyses without stratifying each medication category have shown a relatively higher PRS on individuals with American, West Eurasian,

and South Asian ancestry while Africans followed to a lesser extent (Figure S6A). The statistical analysis revealed a significant Kruskal-Wallis
iScience 27, 110916, October 18, 2024 7
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chi-squared value of 55,478 (df = 6, p value = 3.711e-10), indicating substantial differences among the groups compared. On the other hand,

individuals with Central Asian and Siberian, and Oceanian ancestry represent a lower frequency, whereas East Asians have been observed

with the lowest PRS, consistent with the previous analyses. Similarly, the HGDP dataset with the same subset of SNVs revealed statistically

significant differences in distributions among the superpopulation groups (Kruskal-Wallis chi-squared = 55.478, df = 6, p value = 3.711e-

10, Figure S6B). In the secondary analysis with the SGDP dataset, population differences have been observed, depending on the medication

category.More specifically, AdmixedAmericans were foundwith a relatively higher risk in four out of sixmedication categories (cardiovascular

drugs, antidepressant and antipsychotic drugs, antimicrobial drugs, anesthetic and analgesic drugs), following the Western Eurasians (car-

diovascular drugs, antineoplastic agents, immunosuppressive and antimicrobial drugs) and, in a lower extent, South Asians (antidepressant

and antipsychotic drugs, immunosuppressive drugs, anesthetic and analgesic drugs). Conversely, Oceanians, Central Asians and Siberians,

Africans, and East Asians were found to be at a relatively lower risk compared to other populations, although we observed some exceptions

that do not follow this trend (Table S6). For example, individuals with Central Asian ancestry in anesthetic and analgesic drugs were found to

possess a considerably higher risk compared to others, while Africans tend to have a greater risk in antidepressant and antipsychotic drugs.

In the HGDP dataset, we observed relatively similar geographical patterns, although, compared to the SGDP dataset, some distinctions

among superpopulations cannot be captured due to the presence of different sub-continental groups (Figure S7). Summary statistics and

statistical significance among superpopulations from both datasets were performed using the Wilcoxon rank-sum test and can be found

in Tables S7 and S8.
DISCUSSION

The impact of ethnicity on pharmacogenetics is unquestionably a dynamic area of study. Heritability estimates of SNVs in particular pharma-

cogenetic studies, predominantly conducted in European cohorts, have shown variations in other ethnic groups.61 This indicates the possi-

bility of concealed associations linked to ethnic differences, potentially influenced by background genome or environmental effects, that

modify the drug response.62,63

Prior research examining the genetic diversity of specific genes, notablyCYP2D6, has indicated a lack of significant geographic structuring

in risk alleles associated with ADRs.64 Conversely, investigations into various PGx genes, including but not limited to CYP2D6, CYP2C19,

DPYD, TPMT,NUDT15, SLC22A1,CFTR,HLA-A,HLA-B, andG6PD, propose discernible distinctions both within and across continents.45,65–70

Furthermore, studies concentrating on particular ethnic groups (i.e., Asian population) and specific gene subsets on commonly prescribed

drugs provide evidence supporting divergences between these ethnicities and others.52

Nevertheless, to the best of our knowledge, a thorough examination of the impact of ancestry on ADRs has not been undertaken. In

this investigation, we devised a systematic text-mining process for extracting SNVs associated with ADRs from accessible text databases.

Subsequently, we spatially analyzed these variants to identify distinct geographic patterns in adverse drug events across global populations,

utilizing diverse publicly available datasets. This text-mining approach enabled us to retrieve ADR data for 1,136 different variants across 512

pharmacogenes, establishing themost extensive dataset studied to date.Our findings indicate that the vastmajority of consideredADR SNVs

in this study are functional and that their minor alleles are likely to be risk alleles, as Kido et al. (2018) have recently underlined for complex

diseases.71

From the MDS analysis using all ADR SNVs (Figure 2), we observed that the relative position of individuals at the 1KGP3-ALL and HGDP

datasets exhibited similar clustering patterns, primarily based on their continental ancestry. These continental patterns broadly recapitulate

the results obtained from analyses conducted using genetic variation from thewhole genome.72,73 Discrepancies observed in individuals from

the American ancestry group between both datasets can be explained by the admixed ancestries of American individuals in the 1KGP3-ALL

dataset compared to the HGDP dataset.72,73 In summary, these findings support that pharmacogenetic loci serve as ancestry-informative

markers, suggesting potentially significant differences in the genetic structure among diverse populations related to specific groups of

drugs.39

However, it is important to note that this outcome does not automatically define the existence of genetic differences in susceptibility to

ADRs across human populations. Analyses based on the average count of ADR alleles across all ADRs, as summarized by the PRS, reinforce

the idea that the distribution of ADR alleles is contingent on the population and specifically at the continental level. In particular, all the spatial

analyses in the SGDP dataset reflect distinct genetic profiles, especially among East Asian andOceanian populations and the rest; individuals

from East Asian and Oceania ancestry tend to have a lower PRS compared to the rest of individuals. It has been previously suggested that

Asian (considering both East Asian and South-Asian ancestry) populations show different ADRs profiles for particular drugs such as carbamaz-

epine or clopidogrel, among others.52,74 Our results support such observations but also highlight that clustering South-Asian populations and

East Asian populations to describe ADRs into a supra category such as ‘‘Asian’’ should be avoided, as these ancestries reflect different de-

grees of ADR susceptibilities. The observed disparities between East Asia and South Asia can be related to distinct genetic and ancestral

backgrounds, despite being geographically close to each other.75 South Asians have a unique genetic makeup influenced by historical mi-

grations, interactions, and a mix of ancestral populations while East Asians represent a relatively more homogeneous genetic profile.76

Interestingly, discernible genetic disparities quantified with the PRS of a subset of SNVs were identified among populations across various

medication categories. These disparities cannot be explained by a bias in the ascertained SNVs for conducting this analysis, as the PRS

computed with this subset of SNVs prior to stratification underlined quite a similar distribution (Figures S6A and S6B) to the PRS considering

all SNVs. When considering the PRS computed with the SGDP dataset for each drug category (Figure 6), Oceania, East, and Central Asia

groups tend to have lower ADR-PRS for antineoplastic agents, immunosuppressive, cardiovascular, or antimicrobial drugs (Table S6).
8 iScience 27, 110916, October 18, 2024



Figure 6. Faceted violin plot representing the polygenic risk scores of drug-gene interactions stratified into six main drug categories (SGDP dataset)

The medication categories refer to (1) cardiovascular drugs, (2) antidepressant and antipsychotic drugs, (3) antineoplastic agents, (4) immunosuppressive drugs,

(5) antimicrobial drugs, (6) analgesic and anesthetic drugs. Violin plots representing the distribution of Polygenic Risk Scores per superpopulation, highlighting

median values (0.50 quantiles) within each plot. The width of the violins denotes data density, whereas the upper and lower edges of the violins correspond to the

0.25 and 0.75 quantiles, respectively. We also performed the Wilcoxon rank-sum test (Mann-Whitney U test) to analyze all superpopulations. The statistical

hypothesis test was used to assess whether two independent groups differ significantly in their distributions or central tendencies. Summary statistics and

statistical significance can be found in Tables S7 and S8, respectively. To test whether there are statistically significant differences in the distribution among

the superpopulation groups for each medication category, we performed the Kruskal-Wallis test and Bonferroni correction method to adjust the significance

threshold. We also performed the Kruskal-Wallis rank-sum test (Kruskal-Wallis chi-squared = 52.845, df = 6, p value = 1.261e-09).
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Nevertheless, the well-recognized challenge of restricted PRS transferability across ancestries persists in genetic epidemiology. This issue

is attributed to various factors, with one of the primary considerations being the ancestral background of the population where the SNV-

phenotype association was first identified, along with limited comprehension of shared causal variants.77 This is particularly important in

PGx, where pharmacovigilance efforts and policies differ across countries78,79, and studies mainly focus on Eurocentric cohorts.9,10,69 This

bias implies a heightened ability to detect genetic variants that are more common in populations of European ancestry compared to other

populations, thereby accentuating the PRS within this particular ancestral group, as evidenced by our observations. However, several pieces

of evidence indicate that the identified differences in ADR-PRS are not a result of artifacts in the SNV discovery. Firstly, our study primarily

focused on functional variants, distinguishing it from PRS derived from GWAS, which typically prioritizes top independently associated

SNVs whose functional impact is unknown.77 Secondly, biases in drug trial studies, predominantly featuring individuals of (North) European

ancestry, lead to inadequate representation of individuals from ethnicminority groups.80 This bias implies a preference for drugs thatmitigate

ADRs in European ancestries, regardless of their impact on other ancestral groups. Consequently, any SNV at intermediate frequency pro-

moting ADR in Europeansmight impede the commercialization of the drug before its release. Furthermore, our analyses of PRS computed on

missense and 30 primeUTR SNVs from thewhole genomedo not replicate the observed patterns with ADR-associated SNVs.While biasing by

high MAF in European populations increases the PRS in this ancestry, all other ancestries tend to exhibit lower PRS values. This contrasts with

the observed pattern in ADR-associated SNVs, where only East Asian and Oceanian superpopulations show a lower PRS relative to other
iScience 27, 110916, October 18, 2024 9
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populations (see Figure S5B). On the contrary, in the absence of bias, the trends of increased enrichment of derived alleles in missense and 30

prime UTR SNVs are more pronounced in African populations. This correspondence is consistent with the expectations outlined in the Out of

Africa hypothesis,81 wherein higher effective population sizes are noted in African populations compared to others, and populations outside

Africa harbor a subset of the genetic variation present in Africa.82 Therefore, our observed discrepancies in ADR-PRS across populations may

truly reflect the average risk against ADRs and consequently, might also influence how individuals belonging to that population respond to

medications, potentially impacting drug efficacy or susceptibility to adverse drug reactions.35,83

The incorporation of ancestry information within a stratified medicine framework holds promising implications for advancing person-

alized medicine into clinical practice.44 Given the fact that the inter-population variability is distinctly present, the detection of clinically

actionable PGx variants and disparities in the prevalence of risk alleles among populations can lead to the development of population-

specific panels and genotype-guided prescriptions for common medications.84,85 This approach can be applied strategically either to

small geographic regions with a distinct genetic background compared to the surrounding areas,86,87 or to large but relatively homo-

geneous regions where individuals share a relatively common genetic background.33 In both cases, our findings indicate that the risk

probability prediction could be more efficient, enhancing even more the concept of genome-guided treatment55 for a corresponding

population.

The broad implementation of predictivemethodologies utilizing population sequencing data holds significant promise in mitigating chal-

lenges associated with the advancement of pharmacogenomics at a global scale.84,88 This is particularly relevant, especially for low-devel-

oping countries where the absence of infrastructure, sequencing technology, and proficient personnel impedes the establishment of phar-

macogenomic guidelines by regulatory bodies.89–91 The application of population pharmacogenomics holds the potential to successfully

overcome these challenges and play a pivotal role in advancing the adoption of pharmacogenomic guidelines, particularly in regions where

PGx information from the regulatory bodies is either limited or absent.31,92 Furthermore, it can serve to optimize existing frameworks, under-

scoring the critical influence of genetic ancestry in this process, prior to an individual’s genetic makeup.39 Overall, our results highlight the

necessity of tailoring personalizedmedicine to consider both the diverse genetic landscapewithin populations and extend to this, the distinct

pharmacological characteristics of various medication categories that might reflect hidden population discrepancies.

Limitations of the study

Our study contains a considerable number of SNVs-drug pairs, as well as, population sequencing data derived from three different publicly

available databases, each serving distinct aims and purposes. Our findings support the conclusion that genetic ancestry plays a critical role in

pharmacogenomics, although there are some limitations that need to be further discussed. At first, the majority of the SNVs-drug pairs re-

ports were classified as levels of evidence (LoE) of 3, indicating that the strength and reliability of the evidence supporting pharmacogenomic

associations are relatively low. Strengthening the evidence with mechanistic studies on those specific pharmacogenetic biomarkers and their

functional implications for adverse drug reactions would improve our understanding of their clinical applicability and population-based het-

erogeneity. Furthermore, this study focused on single nucleotide variants due to the challenges posed by the data structure to parse other

types of genetic variants. Improved data availability will allow us to further broaden our analysis beyond single nucleotide variants to include

copy-number variations and structural variants. Finally, a deeper analysis, including larger-scale studies with diverse populations, is needed to

strengthen the conclusions in order to validate patterns and ensure robustness, enhancing the depiction of risk disparities between popula-

tions and addressing gaps in regions with insufficient coverage. Additionally, heterogeneity in sequencing coverage, reference genome as-

sembly, population classification, and sample sizes were noted in the composite dataset. These discrepancies could introduce bias and

should be considered in future research endeavors.
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Jaraba-Álvarez, W.V., Torres, I., et al. (2019).
Population Pharmacogenomics for
Precision Public Health in Colombia. Front.
Genet. 10, 241. https://doi.org/10.3389/
FGENE.2019.00241.

35. Bachtiar, M., and Lee, C.G.L. (2013).
Genetics of Population Differences in Drug
Response. Curr. Genet. Med. Rep. 162–170.
https://doi.org/10.1007/S40142-013-0017-3.

36. Jordan, I.K., Sharma, S., and Mariño-
Ramı́rez, L. (2023). Population
Pharmacogenomics for Health Equity.
Genes 14, 1840. https://doi.org/10.3390/
GENES14101840.

37. Ji, X., Ning, B., Liu, J., Roberts, R., Lesko, L.,
Tong, W., Liu, Z., and Shi, T. (2021). Towards
population-specific pharmacogenomics in
the era of next-generation sequencing.
Drug Discov. Today 26, 1776–1783. https://
doi.org/10.1016/J.DRUDIS.2021.04.015.

38. Lakiotaki, K., Kanterakis, A., Kartsaki, E.,
Katsila, T., Patrinos, G.P., and Potamias, G.
(2017). Exploring public genomics data for
population pharmacogenomics. PLoS One
12, e0182138. https://doi.org/10.1371/
JOURNAL.PONE.0182138.

39. Yang, H.C., Chen, C.W., Lin, Y.T., and Chu,
S.K. (2021). Genetic ancestry plays a central
role in population pharmacogenomics.
Commun. Biol. 4, 171. https://doi.org/10.
1038/S42003-021-01681-6.

40. Rosenberg, N.A., Pritchard, J.K., Weber,
J.L., Cann, H.M., Kidd, K.K., Zhivotovsky,
L.A., and Feldman, M.W. (2002). Genetic
structure of human populations. Science
298, 2381–2385. https://doi.org/10.1126/
SCIENCE.1078311.

41. Nebert, D.W., and Menon, A.G. (2001).
Pharmacogenomics, ethnicity, and
susceptibility genes. Pharmacogenomics J.
1, 19–22. https://doi.org/10.1038/sj.tpj.
6500002.

42. Hernandez, W., Danahey, K., Pei, X., Yeo,
K.T.J., Leung, E., Volchenboum, S.L., Ratain,
M.J., Meltzer, D.O., Stranger, B.E., Perera,
M.A., and O’Donnell, P.H. (2020).
Pharmacogenomic genotypes define
genetic ancestry in patients and enable
population-specific genomic
implementation. Pharmacogenomics J. 20,
126–135. https://doi.org/10.1038/S41397-
019-0095-Z.

43. Mersha, T.B., and Abebe, T. (2015). Self-
reported race/ethnicity in the age of
genomic research: Its potential impact on
understanding health disparities. Hum.
Genom. 9, 1. https://doi.org/10.1186/
S40246-014-0023-x.

44. Krainc, T., and Fuentes, A. (2022). Genetic
ancestry in precision medicine is reshaping
the race debate. Proc. Natl. Acad. Sci. USA
119, e2203033119. https://doi.org/10.1073/
PNAS.2203033119.

45. Zhou, Y., and Lauschke, V.M. (2022).
Population pharmacogenomics: an update
on ethnogeographic differences and
opportunities for precision public health.
Hum. Genet. 141, 1113–1136. https://doi.
org/10.1007/S00439-021-02385-X.

46. Khoury, M.J., Gwinn, M.L., Glasgow, R.E.,
and Kramer, B.S. (2012). A population
approach to precision medicine. Am. J.
Prev. Med. 42, 639–645. https://doi.org/10.
1016/J.AMEPRE.2012.02.012.

47. Ramamoorthy, A., Kim, H.H., Shah-Williams,
E., and Zhang, L. (2022). Racial and Ethnic
Differences in Drug Disposition and
Response: Review of NewMolecular Entities
Approved Between 2014 and 2019. J. Clin.
Pharmacol. 62, 486–493. https://doi.org/10.
1002/JCPH.1978.

48. Runcharoen, C., Fukunaga, K., Sensorn, I.,
Iemwimangsa, N., Klumsathian, S., Tong, H.,
Vo, N.S., Le, L., Hlaing, T.M., Thant, M., et al.
(2021). Prevalence of pharmacogenomic
variants in 100 pharmacogenes among
Southeast Asian populations under the
collaboration of the Southeast Asian
Pharmacogenomics Research Network
(SEAPharm). Hum. Genome Var. 8, 7.
https://doi.org/10.1038/S41439-021-
00135-Z.

49. Suarez-Kurtz, G. (2005). Pharmacogenomics
in admixed populations. Trends Pharmacol.
Sci. 26, 196–201. https://doi.org/10.1016/J.
TIPS.2005.02.008.

50. Corpas, M., Siddiqui, M.K., Soremekun, O.,
Mathur, R., Gill, D., and Fatumo, S. (2024).
Addressing Ancestry and Sex Bias in
Pharmacogenomics. Annu. Rev. Pharmacol.
Toxicol. 64, 53–64. https://doi.org/10.1146/
ANNUREV-PHARMTOX-030823-111731.

51. Westervelt, P., Cho, K., Bright, D.R., and
Kisor, D.F. (2014). Drug–Gene Interactions:
Inherent Variability In Drug Maintenance
Dose Requirements. P T 39, 630–637.

52. Lo, C., Nguyen, S., Yang, C., Witt, L., Wen,
A., Liao, T.V., Nguyen, J., Lin, B., Altman,
R.B., and Palaniappan, L. (2020).
Pharmacogenomics in Asian
Subpopulations and Impacts on Commonly
Prescribed Medications. Clin. Transl. Sci. 13,
861–870. https://doi.org/10.1111/CTS.
12771.

53. Malki, M.A., and Pearson, E.R. (2019). Drug–
drug–gene interactions and adverse drug
reactions. Pharmacogenomics J. 20,
355–366. https://doi.org/10.1038/s41397-
019-0122-0.

54. Ortega, V.E., and Meyers, D.A. (2014).
Pharmacogenetics: Implications of Race and
Ethnicity on Defining Genetic Profiles for
Personalized Medicine. J. Allergy Clin.
Immunol. 133, 16–26. https://doi.org/10.
1016/J.JACI.2013.10.040.

55. Patrinos, G.P. (2018). Population
pharmacogenomics: impact on public
health and drug development.
Pharmacogenomics 19, 3–6. https://doi.
org/10.2217/PGS-2017-0166.

56. Patrinos, G.P. (2020). Sketching the
prevalence of pharmacogenomic
biomarkers among populations for clinical
pharmacogenomics. Eur. J. Hum. Genet. 28,
1–3. https://doi.org/10.1038/S41431-019-
0499-X.

57. Durinck, S., Spellman, P.T., Birney, E., and
Huber, W. (2009). Mapping identifiers for
the integration of genomic datasets with the
R/Bioconductor package biomaRt. Nat.
Protoc. 4, 1184–1191. https://doi.org/10.
1038/NPROT.2009.97.

58. Durinck, S., Moreau, Y., Kasprzyk, A., Davis,
S., De Moor, B., Brazma, A., and Huber, W.
(2005). BioMart and Bioconductor: a
powerful link between biological databases
and microarray data analysis. Bioinformatics
21, 3439–3440. https://doi.org/10.1093/
BIOINFORMATICS/BTI525.

59. Adzhubei, I., Jordan, D.M., and Sunyaev,
S.R. (2013). Predicting functional effect of

https://doi.org/10.3390/HT7040040
https://doi.org/10.3390/HT7040040
https://doi.org/10.1016/J.GENE.2019.144050
https://doi.org/10.1016/J.GENE.2019.144050
https://doi.org/10.1016/J.PHARMTHERA.2012.12.007
https://doi.org/10.1016/J.PHARMTHERA.2012.12.007
https://doi.org/10.3390/IJMS222413215
https://doi.org/10.3390/IJMS222413215
https://doi.org/10.1080/03602530902843483
https://doi.org/10.1080/03602530902843483
https://doi.org/10.1097/FPC.0000000000000172
https://doi.org/10.1097/FPC.0000000000000172
https://doi.org/10.1371/JOURNAL.PONE.0082562
https://doi.org/10.1371/JOURNAL.PONE.0082562
https://doi.org/10.1093/HMG/DDQ498
https://doi.org/10.1093/HMG/DDQ498
https://doi.org/10.1016/J.AJHG.2022.02.010
https://doi.org/10.1016/J.AJHG.2022.02.010
https://www.fda.gov
https://www.ema.europa.eu
https://www.ema.europa.eu
https://doi.org/10.3389/FPHAR.2023.1205624
https://doi.org/10.3389/FPHAR.2023.1205624
https://doi.org/10.1038/TPJ.2014.86
https://doi.org/10.1038/TPJ.2014.86
https://doi.org/10.1111/CTS.13153
https://doi.org/10.1111/CTS.13153
https://doi.org/10.3389/FGENE.2019.00241
https://doi.org/10.3389/FGENE.2019.00241
https://doi.org/10.1007/S40142-013-0017-3
https://doi.org/10.3390/GENES14101840
https://doi.org/10.3390/GENES14101840
https://doi.org/10.1016/J.DRUDIS.2021.04.015
https://doi.org/10.1016/J.DRUDIS.2021.04.015
https://doi.org/10.1371/JOURNAL.PONE.0182138
https://doi.org/10.1371/JOURNAL.PONE.0182138
https://doi.org/10.1038/S42003-021-01681-6
https://doi.org/10.1038/S42003-021-01681-6
https://doi.org/10.1126/SCIENCE.1078311
https://doi.org/10.1126/SCIENCE.1078311
https://doi.org/10.1038/sj.tpj.6500002
https://doi.org/10.1038/sj.tpj.6500002
https://doi.org/10.1038/S41397-019-0095-Z
https://doi.org/10.1038/S41397-019-0095-Z
https://doi.org/10.1186/S40246-014-0023-x
https://doi.org/10.1186/S40246-014-0023-x
https://doi.org/10.1073/PNAS.2203033119
https://doi.org/10.1073/PNAS.2203033119
https://doi.org/10.1007/S00439-021-02385-X
https://doi.org/10.1007/S00439-021-02385-X
https://doi.org/10.1016/J.AMEPRE.2012.02.012
https://doi.org/10.1016/J.AMEPRE.2012.02.012
https://doi.org/10.1002/JCPH.1978
https://doi.org/10.1002/JCPH.1978
https://doi.org/10.1038/S41439-021-00135-Z
https://doi.org/10.1038/S41439-021-00135-Z
https://doi.org/10.1016/J.TIPS.2005.02.008
https://doi.org/10.1016/J.TIPS.2005.02.008
https://doi.org/10.1146/ANNUREV-PHARMTOX-030823-111731
https://doi.org/10.1146/ANNUREV-PHARMTOX-030823-111731
http://refhub.elsevier.com/S2589-0042(24)02141-2/sref51
http://refhub.elsevier.com/S2589-0042(24)02141-2/sref51
http://refhub.elsevier.com/S2589-0042(24)02141-2/sref51
http://refhub.elsevier.com/S2589-0042(24)02141-2/sref51
https://doi.org/10.1111/CTS.12771
https://doi.org/10.1111/CTS.12771
https://doi.org/10.1038/s41397-019-0122-0
https://doi.org/10.1038/s41397-019-0122-0
https://doi.org/10.1016/J.JACI.2013.10.040
https://doi.org/10.1016/J.JACI.2013.10.040
https://doi.org/10.2217/PGS-2017-0166
https://doi.org/10.2217/PGS-2017-0166
https://doi.org/10.1038/S41431-019-0499-X
https://doi.org/10.1038/S41431-019-0499-X
https://doi.org/10.1038/NPROT.2009.97
https://doi.org/10.1038/NPROT.2009.97
https://doi.org/10.1093/BIOINFORMATICS/BTI525
https://doi.org/10.1093/BIOINFORMATICS/BTI525


ll
OPEN ACCESS

iScience
Article
human missense mutations using PolyPhen-
2. Curr Protoc Hum Genet. 76, 7–20. https://
doi.org/10.1002/0471142905.HG0720S76.

60. Oksanen, J., Simpson, G., Blanchet, F.,
Kindt, R., Legendre, P., Minchin, P., O’Hara,
R., Solymos, P., Stevens, M., Szoecs, E., et al.
(2022). vegan: Community Ecology
Package.

61. Perera, M.A., Gamazon, E., Cavallari, L.H.,
Patel, S.R., Poindexter, S., Kittles, R.A.,
Nicolae, D., and Cox, N.J. (2011). The
Missing Association: Sequencing-Based
Discovery of Novel SNPs in VKORC1 and
CYP2C9 That Affect Warfarin Dose in
African Americans. Clin. Pharmacol. Ther.
89, 408–415. https://doi.org/10.1038/CLPT.
2010.322.

62. Hatta, F.H.M., Lundblad, M., Ramsjo, M.,
Kang, J.H., Roh, H.K., Bertilsson, L., Eliasson,
E., and Aklillu, E. (2015). Differences in
CYP2C9 Genotype and Enzyme Activity
Between Swedes and Koreans of Relevance
for Personalized Medicine: Role of Ethnicity,
Genotype, Smoking, Age, and Sex. OMICS
19, 346–353. https://doi.org/10.1089/OMI.
2015.0022.

63. Shah, R.R., and Gaedigk, A. (2018). Precision
medicine: does ethnicity information
complement genotype-based prescribing
decisions? Ther. Adv. Drug Saf. 9, 45–62.
https://doi.org/10.1177/
2042098617743393.

64. Sistonen, J., Sajantila, A., Lao, O., Corander,
J., Barbujani, G., and Fuselli, S. (2007).
CYP2D6 worldwide genetic variation shows
high frequency of altered activity variants
and no continental structure.
Pharmacogenetics Genom. 17, 93–101.
https://doi.org/10.1097/01.FPC.
0000239974.69464.F2.

65. Zhou, Y., Dagli Hernandez, C., and
Lauschke, V.M. (2020). Population-scale
predictions of DPD and TPMT phenotypes
using a quantitative pharmacogene-specific
ensemble classifier. Br. J. Cancer 123, 1782–
1789. https://doi.org/10.1038/S41416-020-
01084-0.

66. Wright, G.E.B., Carleton, B., Hayden, M.R.,
and Ross, C.J.D. (2018). The global
spectrum of protein-coding
pharmacogenomic diversity.
Pharmacogenomics J. 18, 187–195. https://
doi.org/10.1038/tpj.2016.77.

67. Zhang, B., and Lauschke, V.M. (2019).
Genetic variability and population diversity
of the human SLCO (OATP) transporter
family. Pharmacol. Res. 139, 550–559.
https://doi.org/10.1016/J.PHRS.2018.
10.017.

68. Gaedigk, A., Sangkuhl, K., Whirl-Carrillo, M.,
Klein, T., and Leeder, J.S. (2017). Prediction
of CYP2D6 phenotype from genotype
across world populations. Genet. Med. 19,
69–76. https://doi.org/10.1038/GIM.
2016.80.

69. Mizzi, C., Dalabira, E., Kumuthini, J., Dzimiri,
N., Balogh, I., Basxak, N., Böhm, R., Borg, J.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper; Mendeley Data93 https://doi.org/10.17632/vtky42nggm.1

Population Sequencing data This paper; Mendeley Data https://doi.org/10.17632/vtky42nggm.1

Data from text-mining methodology This paper; Mendeley data https://doi.org/10.17632/vtky42nggm.1

1000 Genomes Project 1000 Genomes Project Consortium72 https://www.internationalgenome.org/data-

portal/data-collection, https://doi.org/10.

1038/nature15393

Human Genome Diversity Project Bergström et al.73 https://www.internationalgenome.org/data-

portal/data-collection, https://doi.org/10.

1126/science.aay5012

Simons Genome Diversity Project Mallick et al.94 https://www.internationalgenome.org/data-

portal/data-collection, https://doi.org/10.

1038/nature18964

Human reference genome NCBI build 38,

GRCh38

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

PharmGKB database National Institutes of Health (NIH);

Barbarino et al.95
https://www.pharmgkb.org/

dbSNP database National Center for Biotechnology Information https://www.ncbi.nlm.nih.gov/snp/

PharmVar database (version: 5.1.12) Gaedigk et al.96,97 https://www.pharmvar.org/

DrugBank database (version: 5.1.9) Wishart et al.98 https://go.drugbank.com/

Software and algorithms

R software (version: 4.2.1) R Core Team https://www.r-project.org/

Python software (version: 3.11) Python Software Foundation https://www.python.org/

JavaScript software (version: ES2022) Pluraslight https://www.javascript.com/

Ensembl API Ensembl99 https://rest.ensembl.org/

Bioconductor Huber et al.100 https://bioconductor.org, https://doi.org/10.

1038/nmeth.3252

BiomaRt (version: 2.54.1) Durinck et al.57,58 https://bioconductor.org/packages/release/

bioc/html/biomaRt.html/

gstat (version:2.1.1) Gräler; Pebesma101–103 https://github.com/r-spatial/gstat

stats (version: 4.2.2) R foundation https://www.R-project.org/

tidyverse (version: 2.0.0) Wickham et al.104 https://www.tidyverse.org/

sp (version 2.1.3) Pebesma et al.103 https://github.com/edzer/sp/

raster (version 3.6.26) Hijmans et al.105,106 https://github.com/rspatial/raster/tree/

master/

rstatix (version: 0.7.2) Kassambara et al.107 https://github.com/kassambara/rstatix/

vegan (version 2.6.4) Oksanen et al.60 https://github.com/vegandevs/vegan/

rworldmap (version: 1.3.8) South et al.108 https://github.com/andysouth/rworldmap/

GA (version:3.2.4) Scrucca109 https://github.com/luca-scr/GA/

Other

UCSC human genome assembly Kent et al.110 https://genome.ucsc.edu/

Ensembl database Ensembl111 https://www.ensembl.org/

CPIC Relling et al.112 https://cpicpgx.org/

DPWG Dutch Pharmacogenetics Working Group113 https://www.knmp.nl/
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Data sources and processing methods

Annotation of PGx variants from the PharmGKB database

A list of genetic variants-drug pairs was obtained from the Pharmacogenomics Knowledgebase (PharmGKB) database.114 PharmGKB in-

cludes thousands of clinical annotations and pharmacogenomic guideline recommendations95 published by the Clinical Pharmacogenetics

Implementation Consortium (CPIC)112,115 and Dutch Pharmacogenetics Working Group (DPWG)113 linked to SNVs and haplotype variants for

a number of drugs and drug-related phenotypes.116,117 More specifically, 1,514 out of 5,015 annotations pertaining to PGx variant-drug pairs

were selected, following certain criteria (see Figure S1). Any structural variants located in HLA, SLC6A4, GSTM1, and GSTT1 genes such as

gene insertions or deletions were excluded as this study was restricted to SNVs.

Overall, a set of 1,136 pharmacogenomic variants were meticulously curated and subsequently, selected for in-depth analysis. These var-

iants comprised SNVs and haplotype variants described by the star allele nomenclature system; a standardized method used to categorize

and designate genetic variations or alleles within pharmacogenes.118,119 Star alleles are described as the phenotypic outcome of a genetic

variant in terms of functionality. Therefore, an additional step was required to convert haplotype variants from PharmGKB that are written in

star allele nomenclature system119 into genetic variants with known dbSNP identifiers. The genomic position in the GRCh38 human genome

build of the selected PGx variants was retrieved using the Ensembl REST API,99 leveraging the Ensembl genomic data repository.111,120

Annotation of PGx haplotype variants using the PharmGKB and PharmVar databases

To convert star alleles into genetic variants with known dbSNP identifiers, we acquired data from the PharmVar database121 (downloaded

version 5.1.12). The aforementioned database serves as a comprehensive repository for pharmacogenetic variation, providing valuable in-

sights into haplotype structures and allelic variations.96,97 In cases where haplotype nomenclature was not available in the PharmVar database,

we subsequently used the PharmGKB as an alternative source. On occasion, data were absent in both of the previouslymentioned databases,

we then conducted an extensive review of the scientific literature to identify haplotype variants.65,122–124

Population sequencing data

For this study, genomic data were collected from three main publicly available datasets namely the 1000 Genomes Project Phase 3 (1KGP3-

ALL),72 Human GenomeDiversity Project (HGDP),73 and Simons GenomeDiversity Project (SGDP).94 Given the diversity of populations within

these datasets, the term « superpopulation» is used to systematically classify and group multiple geographically related populations. The

availability of multiple datasets enables a comprehensive exploration of a distinct set of populations, facilitating a detailed analysis, essential

for exploring various aspects of the study. This approach allows us to potentially replicate and reinforce our findings, thereby enhancing the

robustness of our conclusions. Related information about the population structure of the sampling individuals and the Superpopulation clas-

sification of the mentioned datasets can be found in Table S4.

The 1KGP 3-ALL dataset is one of the most comprehensive and largest data resources ofWGS providing a broad representation of human

genetic variation. More specifically, it includes the genotype information of 2.504 unrelated individuals from 26 populations and five super-

populations categorized as Admixed American (AMR), African (AFR), European (EUR), East Asian (EAS), and South Asian (SAS), following the

suggestion byHuddart et al.125 The dataset was built on the human reference genome assembly CRCh38 and sequencing coverageof 303 for

each individual’s genome.72

In addition, the HGDP dataset was also used as it provides a relatively large number of samples per population and a more geographic

homogeneous distribution across the globe. The HGDP includes the full genomes at high coverage of 929 individuals from 54 populations

(CRCh37), which can be classified into seven superpopulations (Native American, African, European, Oceanian, East Asian, Middle Eastern,

and Central South Asian).73

At last, SGDP provides a well-distributed geographical coverage of 281 individuals from 127 diverse populations (CRCh36) across seven

superpopulations (America, Africa, West Eurasia, Oceania, East Asia, Central Asia & Siberia, and South Asia), each individual sequenced at a

coverage of 303.94 The HGDP and SGDP datasets were lifted over to GRCh38 through the UCSC human genome assembly tool.110,126
Computational predictive tools and machine learning algorithms

Deriving risk alleles through a text-mining approach

Parsing risk alleles and genotypes for a specific genetic variant associated with a drug or chemical compound, as well as, drug phenotypes were

derived through thePharmGKBdatabase.95,114,116However, thecurrentdata structuredoesnot allowus toautomaticallypredictwhether apartic-

ular risk genotype and allele for a corresponding drug is classified as risk. To address this issue, we developed a semi-automatic text-mining

approach in order to parse risk genotypes from text-based clinical annotations and subsequently, to calculate the risk allele.

More specifically, the summary descriptions present in PharmGKB for each genotype were scanned for keywords indicating the direction of

effect. Indeed, we identified a direction of effects through keywords, enabling us to define the risk proximity for each variant based on text-based

clinical annotations, which corresponds to a particular drug or chemical compound. We differentiated between increased, decreased, and un-

known risk. Subsequently, the likely risk allele was derived following logic reasoning, which determined that the allele occurring most frequently

in all increased risk genotypes was most likely to be the causative allele. The textual descriptions for drug effects in PharmGKB greatly differ in

diversity and complexity of phrasing, implying that the use of multiple - also contradictory - keywords may occur. To assess the validity of the
16 iScience 27, 110916, October 18, 2024
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risk genotypes and alleles parsed by our approach, we included a confidence score ranging from1 to 4, as inspired by the level of evidence score

used in PharmGKB. This confidence score describes the complexity of the parsed text by estimating the number of keywords appearing in a pas-

sage. A score of 1 indicates the presence of only a single keyword, for which our parsing approach produces high fidelity results. The presence of

multiple keywords in a descriptionmay lead to lower scores and should therefore be interpreted cautiously. This step was critical in determining

the text-mining approach’s ability to accurately extract riskgenotypes, particularlywhena specific SNVmight corresponds todifferent drugs each

time and therefore, different PGx recommendationsmight be accompanied. Subsequently, the risk allele is calculated basedon the frequency of

the risk genotypes derived from the text-based clinical annotations for each genetic variant - drug pair. This step was implemented with Python

programming language. A comprehensive flowchart illustrating the procedure, along with predefined keywords and confidence scores, can be

found in Data S2/Methods S2.

Pharmacogenomic profile, variant annotation, and pathogenicity prediction

To further gain insight into the function of the retrieved PGx variants, we predicted the possible impact of amino acids substitutions of the

considered mutations on the structure and function of human proteins as described by the PolyPhen �2 score59; variant information was

retrieved fromBioconductor100 with the BiomaRt package.57,58 In addition, we classified the pharmacogenes associated with the PGx variants

in drug-metabolizing enzymes, drug transporters, etc., and their functional impact on the corresponding drug targets. Related data were ob-

tained from both literature21,127–131 and DrugBank database.98,132
Exploratory and quantitative data analysis

Dimensionality reduction analysis

In order to describe the genetic relationship between worldwide individuals at PGx SNVS, we computed an identical by-state (IBS) distance

matrix between individuals in a subset of SNVs from the 1KGP3-ALL (n = 440) and HGDP datasets (n = 437). In both datasets, our analysis

focused on a reduced set of SNVs, following specific parameters: SNVs should be located at least >100 kilobases to minimize the influence

of linkage–disequilibrium (LD). AT andCGalleles were excluded due to difficulty distinguishing whether they belong to the reverse or forward

strand of DNA.We applied a classical (metric) multidimensional scaling (MDS) approach, implemented using the cmdscale function in R soft-

ware133,134 to represent the IBS matrix in two dimensions. Statistical significance to evaluate the dissimilarity matrix was performed using the

ANalysis Of SIMilarity (ANOSIM) test.60

Quantitative analysis

To further characterize the differential impact of ADRs across human populations, we estimated themean number of ADR risk alleles for each

individual from the different considered datasets. This raw polygenic risk score (PRS) was used as a quantitative measure of an individual’s

genetic predisposition to the occurrence of drug-related toxic events to commonly prescribed medications. Additionally, from the

1KGP3-ALL dataset, our goal was to discern SNVs uniquely associated with a certain superpopulation. To accomplish this, we modeled

the superpopulations as a function of the SNVs via a logistic regression.

Inmore detail, our objective is to identify, for each superpopulation, the SNVs exhibiting varying frequencies of risk alleles. To achieve this,

we utilized regression analysis to classify a superpopulation according to the frequency of risk alleles associated with each SNV. We first im-

plemented a coding scheme where 0 value represented homozygous common (protective alleles), 1 represented heterozygotes (likely risk

alleles), and 2 represented homozygous (risk alleles). Subsequently, we iteratively singled out one superpopulation, e.g., EUR, to whom

we assigned the label ‘‘1’’, as opposed to all the other superpopulations, with a label of ‘‘0’’. Furthermore, we employed a logistic regression

to predict the binary superpopulation label mentioned above for each SNV. We employed the default ‘‘binomial’’ logit function from the glm

function in the stats package (R, version 4.2.2). The rationale behind this approach is that SNVs significantly predicting a specific superpopu-

lation exhibit a unique risk frequency profile for that superpopulation. To assess significance, wemonitored the p-values and test statistics for

each SNV.135 We repeat the analysis for each SNV in the dataset and for each superpopulation as target, i.e., with the label ‘‘1’’. The formula,

for an individual i, a generic SNVj and superpopulation, i.e., EUR in the example, can be expressed as follows:

log

�
isEURi

1 � isEURi

�
= b0 + b1SNPij + εi

where is EURi =

�
1; if i = EUR
0; otherwise

In the formula, our objective is to determine whether SNVj can predict if an individual belongs to the EUR population. Consequently, for

each superpopulation, we identified a collection of SNVs that exhibited a distinct frequency pattern exclusive to that particular superpopu-

lation. These distinctive SNVs, singled out as the ones with a significant p-value after Bonferroni correction (with the number of SNVs as a

correction) in the previous formula, could exert either a higher, i.e., positive (Beta1) or a lower, i.e., negative Beta1, influence on the super-

population. The interpretation of a positive significant Beta1 suggests that the SNV displays a uniquely high frequency of risk alleles within

that superpopulation, whereas a negative Beta1 indicates that the SNV is associated with a high frequency of protective allele-specific to that

superpopulation. We thereby label the significant SNVs as risk or protective alleles based on the sign of the Beta coefficient. This combined

approach provides significant insights into the complex patterns and connections, in terms of genetic variability, among superpopulations.
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A predictive global map: Spatial interpolation of the PRS

Expanding upon the preceding analyses related to the identification of population substructure among SNVs associated with ADRs, we

further described the spatial relationship of risk disparities associated with ADRs. We computed the PRS, on a subset of PGx variants

(n = 805) at each individual from the SGDP dataset. Geographic PRS interpolation for non-sampled points at the SGDP was conducted by

the inverse weighted distance (IWD). For a non-sampled point from the dataset, IWD calculates an interpolated estimate as a weighted

average considering the values at sampled locations. Essentially, the influence of nearby sampled locations is higher in shaping the interpo-

lated estimate. This geostatistical modeling was performed using a combination of R packages (sp, raster, tidyverse and, gstat).101–106,108

Inference of geographic barriers of the PRS

In order to further describe the spatial distribution of the PRS, we inferred geographic barriers following an approach related to the K-Means

algorithm.136 Specifically, when confronted with a predefined number of K spatial clusters, our research goal was to identify geographic clus-

ters such as the distance in the PRS between the individuals within each geographic cluster was as small as possible, and between clusters the

largest possible quantified by means of the Wilcoxon signed-rank p-value. We employed the GA package109 implemented in R to explore

from a metaheuristic point of view the space of possible cluster configurations. Following the canonical GA, we generated a set of initial so-

lutions, each coding the geographic coordinates for each of the K geographic clusters. Each solution is evaluated by assigning each

geographic sampling point of the SGDP dataset to its closest geographic cluster. Wilcoxon signed-rank test is applied to the PRS. The

best solutions, quantified in terms of the p-value computed for the given configuration in the Wilcoxon signed-rank p-value and then,

were selected for generating new solutions (mating step) by mixing their geographic positions (recombination step) and updating the

new solutions by adding innovations (mutation step). We considered a number of K geographic groups of two (centroid 1 and centroid 2),

following the suggestion from the spatial interpolation of PRS, and a population of solutions of 100 in each iteration. The algorithm was

run for 1000 generations. Recombination and mutation hyperparameters were set to default.

Generation of the null PRS under the assumption of European ADR discovery bias

Anticipating that a substantial proportion of adverse drug reactions (ADRs) variants were initially identified in individuals of European

ancestry, it is plausible that the calculated polygenic risk scores (PRS) may primarily reflect this bias rather than genuine variations across

diverse populations. To investigate this potential bias, simulated datasets of PRS were generated, leveraging the HGDP dataset. The meth-

odology involved extracting all missense mutations documented in Ensembl for humans as proxies for functional changes.111

From the 875,428missense and 30 prime UTR variants SNVs with genotypes in all the HGDP individuals, 31,976 SNVs with aminimum allele

frequency (MAF) of 0.05 in Europeans were ascertained out, recognizing that association studies often exhibit increased power in detecting

statistical associations at highly polymorphic markers.137 Adopting the assumption that derived missense changes are potentially detri-

mental138 a pseudo-functional-PRS expected for an individual was computed by sampling the number of derived alleles on the frequency

of each SNV in the population to which the individual belongs. The ancestral status of each SNV was retrieved from the information of the

HGDP (VCF. file). To enhance robustness, 10,000 replicates of these simulated datasets were generated for each superpopulation.

Classification of commonly prescribed medications using the DrugBank database

From the extracted PGx variants - drug pairs list, we further proceeded to refine the stratification of commonly prescribedmedications group-

ed into specific medication categories. Approximately, more than 400 drugs, chemical compounds, or combinations of drugs were assessed

and thereafter, divided into six main categories. The final list of the medication categories and drug classes includes 1. cardiovascular drugs:

(a. angiotensin drugs, b. anti-arrhythmic drugs, c. statins, d. cardioselective beta blockers, e. anticoagulant drugs, f. antiplatelet drugs and g.

diuretics), 2. antidepressant: (a. SSRIs, b. SNRIs, c. SARIs, d. TCAs, e. TeCA) and antipsychotic drugs: (typical and atypical antipsychotics,

phenothiazine antipsychotics), 3. antineoplastic agents: (a. antimetabolites, b. alkylating agents c. drug inhibitors, d. immunomodulatory

drugs, e. monoclonal antibodies, f. anthracyclines, g. other antineoplastic agents) 4. immunosuppressive drugs: (a. corticosteroids, b. anti-

metabolites, c. biological response modifiers, d. calcineurin inhibitors), 5. antimicrobial drugs: (a. antiviral drugs, b. antibiotic drugs), and

last but not least, 6. anesthetic and analgesic drugs: (a. opioid drugs, b. non-opioid drugs, and c. anesthetic). The grouping criteria of the

drugs mostly concern the mechanism of action and the chemical properties of the corresponding medications and most importantly, to

have been approved by at least one regulatory body (FDA,29 EMA,30 etc.). All the above drug-related information was extracted through

DrugBank98,132 and PharmGKB95,114,116 databases, publicly available and serve as comprehensive resources giving necessary information

on thousands of drugs.

In particular, we analyzed the PRS for commonly prescribed medications as a summary a) without stratifying the medication categories

across different superpopulation, (Figures S6A and S6B) either, b) by analyzing the PRS for each medication category between superpopu-

lations (see Figures 6 and S7). It’s important to highlight that we observed situations where duplicate data (SNVs – drugs pairs) were identified

multiple times within a medication category as they correspond to a different phenotype, each time. During the PRS analysis we excluded

them to avoid the repeating values to enhance the reliability and validity of our results. However, if a duplicate single nucleotide variant cor-

responds to a different drug each time we included it. Similarly, if a single nucleotide variant has been detected across different medication

categories corresponding to different drugs, we retained and integrated it into the analysis. Duplicate data were exclusively considered dur-

ing the PRS analysis. The final drug list contains information about the generic name of a drug or a chemical compound, drug class, and broad
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classification, as well as, the PGx variants - drug pairs permedication category, (see Table S5). For this analysis, we used as a primary source the

SGDP and as complementary the HGDP dataset, as both have a greater spatial sampling size compared to 1KGP3-ALL in Asian sub-conti-

nents in which significant differenceswere previously observed. To evaluate the significance levels across superpopulations, we calculated the

polygenic risk score for each medication category employing the Kruskal-Wallis test with Bonferroni correction (Table S6). Additionally, we

conducted pairwise t-tests107 to examine the differences between superpopulation groups (see Tables S7 and S8). All the above statistical

analyses were performed using a combination of packages within the R programming language.107,139
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were accomplished using R programming language (version: 4.2.1). To support our findings, a variety of statistical hy-

pothesis tests and algorithms were employed. During the dimensionality reduction analysis, we employed the Analysis of Similarities

(ANOSIM), a non-parametric statistical test to compare and assess the dissimilarities between superpopulation groups based on a distance

matrix. In this study, Euclidean dissimilarity was utilized as the distance measure, calculated from the multidimensional scaling (MDS) data.

The significance value associated with the ANOSIM statistic indicates whether the observed differences between groups are statistically sig-

nificant. Lower significance values (typically less than 0.05) suggest stronger evidence against the null hypothesis, indicating significant dis-

similarities between groups.

In this study, we also measured the Polygenic risk score for each individual, a composite measure of genetic risk based on the average

number of risk alleles identified from the text-mining approach we developed. To test whether there are statistically significant differences

in the distribution among the superpopulation and population groups, based on the polygenic risk score, we performed the Kruskal-

Wallis test and Bonferroni correction method to adjust the significance threshold. Similar statistical analysis was utilized to test the polygenic

risk score for eachmedication category to assess the drug-gene interactions. In the latter case, we also performed theWilcoxon rank-sum test

(Mann-Whitney U test) on all superpopulations. This statistical hypothesis test was used to assess whether two independent groups differ

significantly in their distributions or central tendencies. We have used the following convention for symbols indicating statistical significance:

ns% non-statistical significance; p > 0.05, *: p% 0.05, **: p% 0.01, ***: p% 0.001, ****: p% 0.0001. Polygenic risk scores for eachmedication

category are available in Table S6, whereas tables presenting Summary Statistics and Statistical Significance for Polygenic Risk Scores of drug-

gene interactions from the SGDP and HGDP datasets can be found in Tables S7 and S8. On the contrary, for the slope linear regression anal-

ysis, we utilized a t-test, a parametric approach and then adjusted for multiple testing with Bonferroni correction to compare the mean dif-

ferences between the superpopulations.

To depict worldwide risk probability, we employed geospatial analysis and geostatistical modeling packages in the R programming envi-

ronment. This facilitates the construction of a global map, enabling us to estimate interpolation and spatial distribution patterns based on

sampled regions from the SGDP dataset. Our methodology involves the utilization of algorithms such as K-means clustering and genetic al-

gorithms (GA) to delve into population variances and predict risk probability for the unsampled regions. For theGA, the statistical significance

between the centroids was performed with Wilcoxon signed-rank p-value.
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