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Abstract: Alcohol consumption can increase the risk of chronic diseases, such as myocardial infarction,
coronary artery disease, hyperlipidemia, and hypertension. We aimed to assess the association
between genotype, DNA methylation patterns, alcohol consumption, and chronic diseases in Korean
population. We analyzed 8840 subjects for genotypes and 446 for DNA methylation among the
9351 subjects from the Korean Genome and Epidemiology Study (KoGES). We further divided both
groups into two sub-groups according to the presence/absence of chronic diseases. We selected
genes whose methylation varied significantly with alcohol consumption, and visualized genotype
and DNA methylation patterns specific to each group. Genome-wide association study (GWAS)
revealed single nucleotide polymorphisms (SNPs) rs2074356 and rs11066280 in HECT domain E3
ubiquitin protein ligase 4 (HECTD4) to be significantly associated with alcohol consumption in both
the presence. The rs12229654 genotype also displayed significantly different patterns with alcohol
consumption. Furthermore, we retrieved differentially methylated regions (DMRs) from four groups
based on sex and chronic diseases and compared them by drinking status. In genotype analysis,
cardiovascular diseases (CVDs) showed a higher proportion in drinker than in non-drinker, but not
in DMR analysis. Additionally, we analyzed the enriched Gene Ontology terms and Kyoto Gene and
Genome Encyclopedia (KEGG) pathways and visualized the network, heatmap, and upset plot. We
show that the pattern of DNA methylation associated with CVD is strongly influenced by alcoholism.
Overall, this study identified genetic and epigenetic variants influenced by alcohol consumption and
chronic diseases.

Keywords: alcohol consumption; chronic diseases; DNA methylation; genotype

1. Introduction

Alcohol use disorder or alcoholism ranks sixth among factors that increase the risk of
disease-related mortality and disability [1]. Moreover, alcoholism is a prevalent lifestyle
factor relevant to chronic cardiovascular diseases (CVDs) such as myocardial infarction,
coronary artery, hyperlipidemia, and hypertension [2]. The correlation between alcohol
consumption and chronic diseases is well known, and restriction of alcohol intake is
commonly recommended for the management of chronic diseases. To date, many studies
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have analyzed the association of alcohol-induced chronic diseases in preventive medicine
and epidemiologic studies. However, a new approach based on omics data and data
integration is required.

CVD is the leading cause of global morbidity and mortality in both men and women [3–6].
Monogenic conditions can also lead to severe premature CVD and early death, if unrecog-
nized and untreated [7]. CVD also inflicts a significant economic burden on countries [6,8]
as well individuals. Although alcohol-dependent people may have diverse medical con-
ditions or diseases, the major cause of their death is CVD [9,10]. The association between
alcohol intake and CVD is explained as the J-shaped curve. Since alcohol exerts complex
effects on the cardiovascular system, elaborating the major pathways involved is chal-
lenging. Epidemiology-based, genetic, and epigenetic approaches have been employed to
explain the relationship between alcoholism and cardiovascular diseases, and an integrated
analysis is relevant.

A mendelian randomization study provides an alternative approach to establish the
causal role of moderate alcohol use in a suitable population and reveals that a genetic
variant affects alcohol metabolism and thereby alcohol use. Genetic variants of the several
genes affect alcohol metabolism [11]. Cook and colleagues (2021) identified subgroups
among Asian Americans at high risks of CVD-related conditions associated with excessive
alcohol consumption—females of Chinese, Japanese, Korean, and Vietnamese ethnicities
in higher ALDH2*2 groups. Overall, members of the higher ALDH2*2 ethnic groups
were associated with lower risks of CVD-related conditions [12]. The genotype of the
alcohol metabolism genes is related to alcohol-related CVD, and the relationship requires
verification under other conditions.

DNA methylation, a major type of epigenetic modification, is associated with vari-
ous complex human diseases and traits [13] and is potentially an important mechanism
to regulate gene expression [14]. DNA methylation patterns are modulated by several
diseases, including CVD [15]. DNA methylation affects the cytosine within CpG sites in
the entire genome [7], and different diseases are associated with varying DNA methylation
patterns. Previous studies have reported a genome-wide increase in the levels of DNA
methylation in patients diagnosed with CVDs [16], as well as confirmed coronary artery
disease (CAD) [17]. DNA methylation status is also affected by the environment [18], and
the variation is associated with alcohol consumption [19]. Alcohol modulates the DNA
methylation machinery [20] as well as the metabolism [21]. Hence, CpGs can serve as
useful biomarkers for this disease, and the identification of a subset of CpGs involved
in the disease can provide insights into the etiology of this disease [22]. In addition,
identification of differentially methylated regions (DMRs) is necessary to understand the
relationship between DNA methylation and its function in organisms. Epigenome-wide
association studies (EWAS) have been performed to reveal the effects of DMRs on various
diseases [21,22].

The genetic and behavioral differences between males and females need to be consid-
ered before analysis. From an epidemiological perspective, the prevalence and prognosis of
chronic diseases based on large cohorts are sex dependent [23]. In addition, drinking habits
differ according to sex. Epigenetically, female-specific hypermethylation is observed as a
result of X-chromosome inactivation [24]. Therefore, in order to circumvent the sex bias,
male and female populations should be analyzed separately. Alternatively, genes located
on the sex chromosomes X and Y should be excluded before analysis. In this study, we
separated the subjects into four groups based on the incidence of CVDs and sex.

So far, the associations have been studied between drinking and CVD, and the geno-
type has been reported to be correlated with alcoholism. However, very few studies have
been undertaken to screen and analyze the genotypes and epi-genotypes in Koreans. In
this study, we investigated the correlation between the occurrence of CVD and genotypes
in alcoholic and non-alcoholic subjects. Our goals are to identify the SNPs associated with
CVDs induced by alcohol. We also tried to find DMRs from four groups based on sex and
CVDs by drinking status.
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2. Materials and Methods
2.1. Study Subjects and Data Source

The epidemiological and genomic data sets of the present study were collected from
a survey during 2001–2002 and were obtained from the Ansan and Ansung cohort of
the Korean Genome and Epidemiology Study (KoGES) released by the Korea Center for
Disease Control & Prevention [25]. Among the baseline participants (n = 10,030, Ansung:
5018; Ansan: 5012) of the Ansan and Ansung cohort, the DNA samples of 10,004 of the
participants were available and genotyped. After the data were filtered using standard
quality control procedures, the genotype data of 8840 participants were considered for
further analysis [26].

Participants were 40–69 years of age and belonged to the Ansan and Ansung com-
munities located in Gyeonggi province, South Korea. All participants signed an informed
consent form. This study was approved by the Institutional Review Board (IRB) of Yonsei
Wonju Severance Christian Hospital (Approval Number: CR320355) and Korea Univer-
sity (Approval Number: KUIRB-2020-0191-01) and performed in accordance with the
Declaration of Helsinki.

2.2. Study Design

This study investigated the genetic and epigenetic risk factors of CVDs [27]. We
divided the subjects into two groups based on the incidence of CVDs (myocardial infarction,
coronary artery, hyperlipidemia, and hypertension) and an absence of CVDs. A flowchart
of how subjects for genotype and methylation analyses were selected from 9351 participants
is presented in Figure 1. As a case–control study, we compared drinkers and non-drinkers
in the two groups, CVD and non-CVD groups. We then identified the frequently detected
genotypes and epigenotypes via association studies.
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Figure 1. Flowchart for selection of the study population. The study population included 8840
genotypes and 446 methylation analysis results among 9351 subjects. Chronic cardiovascular dis-
eases (CVDs) were considered as present when there was at least one of the following four chronic
diseases: myocardial infarction, coronary artery, hyperlipidemia, and hypertension. “AS1_PDMI”,
“AS1_PDCD”, “AS1_PDLP”, “AS1_PDHT”, and “AS1_DRINK” indicate the variable codes of my-
ocardial infarction, coronary artery, hyperlipidemia, hypertension, and drinking status, respectively.
Analysis was performed on 8468 subjects for genotyping and 423 subjects for methylation, which
correspond to the intersection of the four aforementioned CVD-affected and drinking sample groups.
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Among 8468 people in the genotype analysis, 4579 were drinkers and 3889 were
non-drinkers. A confusion matrix was developed for 1543 CVD subjects and 6925 non-CVD
subjects (Figure 1). For the presence or absence of CVD, a genome-wide association study
(GWAS) between drinkers and non-drinkers was performed.

To avoid sex-biased DNA methylation differences, we also divided the groups by two
sexes. Of the 423 patients divided into the aforementioned groups, 202 were drinkers and
221 were non-drinkers. The female group with CVDs consisted of 45 individuals: nine
drinkers and 36 non-drinkers. The female group with no CVDs consisted of 165 subjects:
42 drinkers and 123 non-drinkers. Among 30 males with CVDs, there were 15 drinkers and
15 non-drinkers (Figure 1). One hundred and eighty-three subjects with non-CVDs were
identified among men, of which, 136 were classified as drinkers and 47 as non-drinkers.

2.3. Definition and Measurement of Lifestyle Factors

The incidence of alcohol consumption and CVD were assessed using questionnaires
designed by well-trained investigators. Questionnaires about alcohol consumption specif-
ically investigated the presence or absence of alcohol, and the question was precisely
framed as “Can’t you drink alcohol or don’t you drink from the beginning (for religious
reasons, etc.)?” The subjects were required to respond in either “Yes, I do not drink alcohol”
or “No (currently drinking)”.

CVD was considered as the dependent variable, and the CVDs were investigated
in patients with myocardial infarction, coronary artery, hyperlipidemia, or hypertension.
Questionnaires about the presence and absence of each condition were composed as “Have
you ever been diagnosed with the following by a clinician?“, with the possible responses
“Yes” or “No”. In all categorical questionnaire items, “Yes” was coded as 2 and “No” was
coded as 1. If there was no answer, it was marked as a missing value, and “NA” was
indicated when coding.

In the questionnaires of exercise intensity, the time spent per day was written by the
subjects in minutes. Questions were separated by intensity, and the levels were stable,
sedentary, light, moderate, and vigorous.

2.4. SNP Genotypes

The genotypes were obtained using Affymetrix Genome-Wide Human SNP array 5.0
(Affymetrix Inc., Santa Clara, CA, USA), which contains 500,568 SNPs constructed by the
Korea Biobank Array. To examine the relationship between genetic polymorphism and
CVD, we selected the significant SNPs by p-values.

2.5. DNA Methylation Analysis

In this study, genomic DNA extracted from the peripheral blood of the subjects was
used for the evaluation of DNA methylation levels. Total 500 ng genomic DNA of each
sample was modified by treatment with sodium bisulfite provided in the EZ DNA methy-
lation kit (Zymo Research, Irvine, CA, USA), according to the manufacturer’s manual.
Genome-wide DNA methylation was profiled using Illumina Infinium Human Methyla-
tion 450 k BeadChip (Illumina, San Diego, CA, USA), which contains over 485,000 CpG
probes covering 99% of the RefSeq genes. Each CpG probe has a β value ranging between 0
and 1; higher methylation of CpG gives rise to a value closer to 1. We analyzed 364,050 CpG
probes from 423 subjects, excluding the missing values Furthermore, the gene symbol and
genomic location corresponding to each CpG probe of the Illumina 450k methylation chip
were obtained using the “get Annotation” function of the IlluminaHumanMethylationEPI-
Canno.ilm10b2.hg19 library provided by Bioconductor (https://www.bioconductor.org,
accessed on 6 December 2021).

2.6. Statistical Analysis of Genotypes and Methylation

Statistical analyses were performed using the PLINK software (version 1.9) (https:
//www.cog-genomics.org/plink2, accessed on 6 December 2021) and R software 4.0.5.

https://www.bioconductor.org
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
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The PLINK software was used to filter irrelevant SNPs, including those on the X and Y
chromosomes and the mitochondrial genome. During PLINK analysis, genotyping call rate
(0.05) was used as the SNP filtering parameter to remove missing genotypes of the SNPs [28].
Male and female subjects were analyzed in stratification. The association between SNPs
and CVD disease related to alcohol consumption is represented by a Manhattan plot. The
R software was used to generate the Manhattan plot using qqman package version 0.1.8
for genome-wide association studies (http://cran.r-project.org/web/packages/qqman/,
accessed on 6 December 2021).

The DMRs were identified using a t-test performed between drinkers and non-drinkers
in each of the four groups. The filtered DMRs were visualized as volcano plots and
heatmaps. Enrichment analyses were performed using DMRs and visualized as KEGG
and GO dot plots and gene-concept networks and heatmaps. To design the classification
models, two machine learning methods, that is, decision trees and random forests were
applied using the “rpart” and “randomForest” packages, respectively. Enrichment analysis
was performed using the “pathfindR” package, and enrichment terms were subsequently
retrieved as an upset plot.

3. Results
3.1. Study Processes

The process followed in this study for selection and classification of the study subjects
has been represented as a flowchart in Figure 1. We recruited 9351 subjects. Five variables
were used to distinguish between patients with CVDs and drinkers, and subjects with miss-
ing values were excluded. Therefore, 8953 subjects were finally followed. The GWAS was
performed on 8468 subjects, which is the intersection of 8840 subjects whose genotype was
analyzed and 8953 subjects with no missing values in the five variables. DNA methylation
analysis was performed on 423 subjects, which is the intersection of 446 subjects whose
methylation patterns was analyzed and 8953 subjects with no missing values in the five
variables. A confusion matrix classifying drinkers and non-drinkers in the GWAS and
methylation analyses is presented at the end of the flowchart.

3.2. Identification of Genotype Patterns between the Four Selected Conditions

The GWAS results between drinking status were summarized as top three most signifi-
cant SNPs in two separated groups (Table 1) and visualized as two Manhattan plots (Figure 2).
CVD had the lowest odds ratio (OR) of 0.2402 in rs2074356 belonging to HECTD4, which
was the most significant genotype. On the contrary, without CVD, rs2074356 was also the
most statistically significant genotype. Therefore, HECTD4 showed statistically significant
values in both classes. The top three genotypes were in the same order by OR (Table 1).
In the Manhattan plot of the CVD group, a region with −log10 (p-value) > 8 was found on
chromosome 12, and a region with log10 (p-value) > 5 was found on chromosome X (Figure 2,
top). In the Manhattan plot of non-CVD group, a region with −log10 (p-value) > 8 was found
on chromosomes 12 and X, and a region with log10 (p-value) > 5 was found on chromosome 4
(Figure 2, bottom). The two groups showed a similar pattern but a more significant statistical
difference because more subjects were included in the non-CVD group.

Table 1. The most significant SNPs associated with chronic cardiovascular diseases (CVDs) and
without CVD between drinking status.

Class Location (hg38) dbSNP ID Gene Odds Ratio p-Value

With CVD chr12:112207597 rs2074356 HECTD4: Intron Variant 0.2402 1.49 × 10−26

With CVD chr12:112379979 rs11066280 HECTD4: Intron Variant 0.2919 1.15 × 10−24

With CVD chr12:110976657 rs12229654 None 0.308 2.01 × 10−20

Without CVD chr12:112207597 rs2074356 HECTD4: Intron Variant 0.3013 1.41 × 10−107

Without CVD chr12:112379979 rs11066280 HECTD4: Intron Variant 0.3326 1.95 × 10−106

Without CVD chr12:110976657 rs12229654 None 0.3689 1.43 × 10−75

http://cran.r-project.org/web/packages/qqman/
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Figure 2. Manhattan plot of the association between drinkers and non-drinkers. (Top) Among
8468 subjects, 1543 subjects had at least chronic cardiovascular diseases (CVDs). In the CVD group,
923 were drinkers and 620 were non-drinkers. (Bottom) In the non-CVD group, 3656 were drinkers
and 3269 were non-drinkers. The plot shows −log10 p value for each SNP against the chromoso-
mal location.

3.3. DNA Methylation Analysis of Various Groups

We examined demographic variables to classify the subjects based on the incidence
of CVD and drinking habits for methylation analysis, as shown in Table 2. Total 14 demo-
graphic and sociological variables, such as sex and age, associated with CVDs caused by
drinking were analyzed. Among the remaining 423 participants, 75 (17.7%) were identified
as CVD patients. Among female subjects, the 45 participants with CVD were classified into
9 drinkers (20.0%) and 36 non-drinkers. Among male subjects, the 30 participants with
CVD were classified into 15 drinkers (50.0%) and 15 non-drinkers. Furthermore, among the
165 female participants with non-CVD, 42 were classified as drinkers (25.5%) and 123 as
non-drinkers (74.5%). Among male subjects, 183 participants with non-CVD were classified
as 136 drinkers (74.3%) and 47 non-drinkers.

Table 2. Basal characteristics of participants classified according to drinking and chronic cardiovascu-
lar diseases (CVDs) for methylation analysis.

Variable

CVDs (n = 75) Non-CVDs (n = 348)

Never
Drinkers Drinkers p-Value Never

Drinkers Drinkers p-Value

Sex 15/36/29.41 15/9/62.5 0.011 47/123/27.65 136/42/76.4 <0.001
Age 56.75 ± 7.63 53.62 ± 6.97 <0.001 53.12 ± 8.37 49.57 ± 7.95 <0.001
BMI 26.58 ± 3.05 25.5 ± 3.27 <0.001 23.91 ± 3.21 24.53 ± 3.39 <0.001
Area 34/17/66.67 14/10/58.33 0.607 102/68/60.00 72/106/40.45 0.001

Education 37/13/74.00 11/13/45.83 0.022 112/58/65.88 68/108/38.64 <0.001
Income 33/16/67.35 8/16/33.33 0.011 97/69/58.43 70/108/39.33 0.001

Exercise1 33/17/66.00 13/11/54.17 0.443 114/55/67.46 100/77/56.50 0.046
Exercise2 12/37/24.49 7/17/29.17 0.778 43/125/25.60 35/141/19.89 0.246
Exercise3 20/29/40.82 9/15/37.50 1.000 55/113/32.74 46/129/26.29 0.195
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Table 2. Cont.

Variable

CVDs (n = 75) Non-CVDs (n = 348)

Never
Drinkers Drinkers p-Value Never

Drinkers Drinkers p-Value

Exercise4 37/10/78.72 19/5/79.17 1.000 120/47/71.86 127/48/72.57 0.904
Exercise5 32/16/66.67 18/6/75 0.591 111/58/65.68 125/52/70.62 0.356

Myocardial infarction 1/50/1.96 0/24/0 <0.001 0/170/0 0/178/0 1.000
Coronary artery disease 3/48/5.88 3/21/12.50 0.377 0/170/0 0/178/0 1.000

Hyperlipidemia 3/48/5.88 4/20/16.67 0.201 0/170/0 0/178/0 1.000
High blood pressure 45/6/88.24 20/4/83.33 0.717 0/170/0 0/178/0 1.000

Continuous variables are indicated as “average ± standard deviation”, and categorical variables are indicated as
“Counted samples in group 1/Counted samples in group 2/Ratio of group 1 in total samples”. Sex: Male = 1,
Female = 2; Area: Ansung = 1, Ansan = 2; Education: Below middle school =1, Over high school = 2; Income:
Under 1.5 million won =1, over 1.5 million won = 2; Exercise status: Under 60 min/day = 1, over 60 min/day = 2.
Exercise levels are indicated as 1, 2, 3, 4, and 5 corresponding to stable, sedentary, light, moderate, and vigorous,
respectively.; Four CVD diseases: disease group = 1, normal group = 2.

The mean and standard deviation of age and BMI according to the drinking status in
the CVD and non-CVD groups are presented. Exercising for more than 60 min per day by
area, education, income, and intensity is presented. The most common chronic disease in
the CVD group was high blood pressure, and coronary artery disease and hyperlipidemia
were high in the drinkers group, but there was no statistically significant difference. Only
one patient in the CVD group had myocardial infarction.

3.4. Identification of DMRs

Owing to the differences in DNA methylation patterns between female and male
subjects, the groups were divided according to sex to avoid bias. Volcano plots (Figure 3)
depict DNA methylation matrices of the four groups (classified by sexes and CVDs). Points
that meet the conditions are marked in pink (highly methylated in drink conditions) or
sky-blue (highly expressed in no-drink conditions). In each plot, the X-axis represents
the fold-changes (FC) and the Y-axis represents the p-value on a −log10 scale. The area
that satisfies the threshold of FC and p-value is represented with two vertical lines and
one horizontal line. Based on these criteria, the differences in methylation levels were
confirmed across the female, CVD and male, CVD groups (Figure 3A,B); and the female,
non-CVD and male, non-CVD groups (Figure 3C,D). Four pairs of DMRs were finally
screened from each group based on the methylation patterns and were represented as a
heatmap (Figure 4). Heatmaps were generated for the female, CVD and male, CVD groups
(Figure 4A,B) as well as the female, non-CVD and male, non-CVD groups (Figure 4C,D).
The heatmap shows the variation in DNA methylation between the four groups. Column
annotation bars indicate the two parameters in the samples; i.e., alcohol consumption
(drink and no-drink), and sex (male and female). The pink and sky-blue bars indicate
sex and drinking, respectively. The row annotation bars represent p-value and FC, and
a clustering pattern is observed. In the FC bar, pink indicates a pattern indicating high
methylation under drink conditions, whereas sky-blue indicates high methylation under
non-drinking conditions. The PV bar indicates the p-value, and the intensity of gray bars
indicates the significance of the difference between two groups.
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Figure 3. Volcano plot of differentially methylated regions (DMRs) indicating difference between
four pairs of four groups. Total 423 subjects were divided into four groups based on the cardio-
vascular diseases (CVDs) (at least one of myocardial infarction, coronary artery, hyperlipidemia,
and hypertension) or non-CVDs, and sex (male or female). (A) In females with CVD, t-test was
performed on nine drinkers versus 36 non-drinkers, and 19 DMRs were found to satisfy the criteria
|fold change| > 0.2 and p-value < 0.01. (B) In males with CVD, t-test was performed on 15 drinkers
versus 15 non-drinkers, and 22 DMRs were found to satisfy the criteria |fold change| > 0.15 and
p-value < 0.01. (C) In females with non-CVD, 42 drinkers versus 123 non-drinkers and 19 DMRs
satisfied the criteria |fold change| > 0.09 and p-value < 0.01. (D) In females with CVD, the pairs of
136 drinkers versus 47 non-drinkers were subjected to t-test, and 27 DMRs satisfied the criteria |fold
change| > 0.06 and p-value < 0.01. In the volcano plot, higher methylated regions between drinkers
and non-drinkers of four groups are indicated as pink dots.
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Figure 4. Heatmap of DMRs indicating the difference between four pairs of the four groups. Total
423 subjects were divided on the basis of presence of chronic cardiovascular diseases (CVDs); at
least one of myocardial infarction, coronary artery, hyperlipidemia, and hypertension) or non-CVDs,
and sexes (male or female). You may consider reporting this data in the body of results, rather than
in the figure legends. This would help in avoiding the repetition between Figures 3 and 4. (A) In
females with CVD, t-test was performed on 9 drinkers versus 36 non-drinkers, and 19 DMRs were
found to satisfy the criteria |fold change| > 0.2 and p-value < 0.01. (B) In males with CVD, t-test
was performed on 15 drinkers versus 15 non-drinkers, and 22 DMRs were identified as satisfying
the criteria |fold change| > 0.15 and p-value < 0.01. (C) In females with non-CVD, 42 drinkers
versus 123 non-drinkers, and 19 DMRs were identified as satisfying the criteria |fold change| > 0.09
and p-value < 0.01. (D) In females with CVD, the pairs of 136 drinkers versus 47 non-drinkers were
subjected to t-test, and 27 DMRs were identified as satisfying the criteria |fold change| > 0.06 and
p-value < 0.01. In the heatmaps, higher methylated regions between drinkers and non-drinkers of the
four groups are indicated as red annotation bars in drinkers. A higher significance deduced from a
lower p-value is indicated as darker gray annotation bar. Sexes and CVD are indicated as column
annotation bars.

3.5. Enrichment Analysis of DMRs

We obtained a list of results from the KEGG pathway and GO analyses for the four
groups (Figure 5). The KEGG dot plots of female, CVD and male, CVD groups are repre-
sented in Figure 5A,B, while those of female, non-CVD and male, non-CVD groups are
presented in Figure 5C,D. The KEGG pathways with a difference among four pairs of the
four groups were significantly enriched by the DMRs. In the CVD group, the neuroactive
ligand-receptor interaction was the most enriched in females and was statistically signifi-
cant. In the same group, males were most enriched with multiple diseases associated with
neurogeneration pathways, which was statistically significant. In the non-CVD group, the
MAPK signaling pathway showed the common top gene ratio values in the two sexes.
Pathway-related genes were enriched in the non-CVD group. Changes in the pathways
of genes related to DMR between drinkers and non-drinkers were determined by the
presence or absence of CVD rather than differences between the two sexes. Interestingly,
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disease-related pathways have been presented in the male and female CVD groups, and
will be applied to study each disease, alcoholism, and CVD.
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Figure 5. Enriched KEGG pathways of the DMRs indicating the difference between four pairs of the
four groups. The top 30 enrichment KEGG pathways for DMRs satisfying the criteria p-value < 0.05
in each of the four pairs are presented. Color of the plot represents the p-value, and the size represents
the count of genes. (A) In females with chronic cardiovascular diseases (CVDs), the pairs of 9 drinkers
versus 36 non-drinkers were compared. (B) In males with CVD, the pairs of 15 drinkers versus
15 non-drinkers were compared. (C) In females with non-CVD, the pairs of 42 drinkers versus
123 non-drinkers were compared. (D) In females with CVD, the pairs of 136 drinkers versus 47 non-
drinkers were compared.

3.6. Network Analysis of DMRs

Based on the network analysis, gene-concept heatmaps were generated (Figure 6).
In each heatmap, x and y axes indicate the genes and included terms, respectively. In
addition, the highly expressed genes in the drinking group are indicated in red, while the
genes showing low methylation are indicated in blue. In female groups, 17 and 11 terms
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were obtained, and their related genes were identified along with their methylation levels
(Figure 6A,C). In male groups, only three terms were revealed in the gene-concept heatmaps
(Figure 6B,D). Furthermore, a difference in terms was recorded between female and male
groups. Two GO terms in male group were found to contain numerous genes (systemic
arterial pressure and blood pressure finding).
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Figure 6. Gene-concept heatmap of the DMRs indicating the difference between four pairs of the
four groups. The X-axis represents each gene, and the Y-axis represents the terms corresponding
to each gene. Color ranges from red (high methylated in drinkers) to blue (high methylated in
non-drinkers). (A) In females with chronic cardiovascular diseases (CVDs), the pairs of 9 drinkers
versus 36 non-drinkers were included in the enrichment test, and each term satisfying the criteria
|fold change| > 0.08 and p-value < 0.05 was retrieved. (B) In males with CVD, the pairs of 15 drinkers
versus 15 non-drinkers were included in the enrichment test, and each term satisfying the criteria
|fold change| > 0.08 and p-value < 0.05 was retrieved. (C) In females with non-CVD, the pairs of
42 drinkers versus 123 non-drinkers were subjected to the enrichment test, and each term satisfying
the criteria |fold change| > 0.04 and p-value < 0.05 was retrieved. (D) In males with non-CVD, the
pairs of 136 drinkers versus 47 non-drinkers were subjected to the enrichment test, and each term
satisfying the criteria |fold change| > 0.04 and p-value < 0.05 was retrieved.
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3.7. Machine Learning Approaches for Analyzing DMRs

Random forest analysis was performed to describe classification criteria such as deci-
sion tree (Figure 7). Two plots were obtained from the random forest model. In the first
plot, the number of trees grown for random forest models of four groups was ranked by
permutation accuracy importance. In the plot, the x axis indicates the number of grown
trees (n = 500), and the y axis represents the out-of-bag classification error. Four random
forest models were designed, and the number of pre-training tree models was 500. The
second plot was a variable importance plot. The top 30 genes retrieved after a random
forest analysis were ranked as per the classification parameters. X axis indicates “mean
decrease in Gini coefficients”. Gini means inequity, and Gini importance was calculated by
the average gain of purity from the given genes. Similar to a high Gini importance, high-
weighted genes indicate that the impurity at the decision node is lower at the bottom node.
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Figure 7. Random forest analysis results classifying the four groups from 423 samples. Each of
the four random forest outputs was provided as an error plot and variable importance plot. Three
conditions (sex, drinking, and chronic cardiovascular diseases; CVDs) were considered as criteria
for classification. Subjects afflicted with at least one of the diseases, including myocardial infarction,
coronary artery, hyperlipidemia, and hypertension, were included as subjects with CVDs. Variable
importance plot of the random forest analysis resulted from the integration of a large number of
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models built by classification of each of the four groups. The variables are ordered top-to-bottom
as most-to-least important in classifying the four groups. The ranked list of variables indicates the
importance of each variable in classifying the data. The figure shows the top 30 variables important in
the classification of the four groups. Four groups were divided based on the drinking and CVD status
(A) from 210 female samples and (B) from 213 male samples. Similarly, four groups each were divided
based on the drinking status and sex (C) from 75 CVD samples and (D) from 348 non-CVD samples.

In the 210 female subjects, the presence of drinking and CVD were used as factors
to classify four groups by random forest. CDH22, DPYSL5, and WSB2 were identified as
the top three high weighted genes. In the random forest analysis, DMRs that classify four
categories based on two variables were extracted. In 348 subjects belonging to the non-CVD
group, five genes with a high mean decrease in the Gini coefficient were observed in the
genes that suitably explained drinkers and the two sexes (PSMD10, ERCC6L, MCART6,
NKRF, and DGKK).

4. Discussion
4.1. DNA Methylation in Male vs. Female

EWAS are a powerful way to understand the relationships between epigenetic varia-
tion and human diseases. In this study, we investigated the epigenetic differences associated
with drinking status, and provided DMRs related to alcoholism in two sexes [29,30]. Dif-
ferential methylation patterns of the two X chromosomes lead to distinction between the
inactive X and active X chromosomes [30]. Since the males have one Y and one X chromo-
somes, the overall methylation patterns of the X chromosomes of both sexes are distinct.
A few studies have attempted to compensate for these X chromosome differences [31,32].
In addition, besides sex chromosomes, thousands of CpG sites on autosomes also show dis-
similar DNA methylation patterns between males and females [33,34]. Hence, the two sexes
are considered an important covariate while undertaking methylation and phenotype asso-
ciation studies. In this study, we attempted to separate the two sexes during classification
of the groups to eliminate the bias arising from using information from both sexes.

When extracting DMR from each of the four groups, similar numbers were ob-
served when fold change and p-value criteria were similar. This can be visualized in
Figures 3 and 4, and the genes included in the DMR, presented in Figure 4, will be helpful
for future research related to alcohol consumption and CVD. In the KEGG pathway enrich-
ment analysis, terms with a similar pattern were enriched for both sexes of the CVD and
non-CVD groups, respectively (Figure 5).

4.2. Alcohol Consumption and DNA Methylation

DNA methylation may play a role in the progression from normative to problematic
drinking and is responsible for several adverse health outcomes associated with alcohol
misuse [32,33]. Several studies have attempted EWAS of alcohol consumption by examin-
ing alcohol-related DNA methylation patterns among young adults at a heightened risk of
alcohol use and associated health problems [19,34,35]. Previous research also showed that
the process of alcoholic cirrhosis may directly influence DNA methylation [36]. Further-
more, alcohol cirrhosis has been associated with a multitude of comorbidities, including
cardiovascular disease [37].

We divided two groups according to the presence or absence of CVDs, and then
obtained genotypes and DMRs that were significantly different according to alcohol con-
sumption in each group. By dividing each group according to sex when identifying DMR,
sex-specific bias was removed and each sex-specific pattern was presented. The enriched
KEGG pathways and gene-concept heatmap show that the presence of CVD reflects the
enriched terms better than the sex (Figures 4 and 6). In four random forest analyses, it was
confirmed that the four groups could be classified with similar grades (Gini coefficient)
using DMRs (Figure 7). A high mean decrease in the Gini coefficient was observed in the
non-CVD group, because the non-CVD group had the highest number of subjects, that is,
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348. Although there were 75 subjects with CVD, DMRs were presented to explain male and
female, and drinker status. Among them, TIMM17B showed the highest Gini coefficient.
For genes such as CDH22, DPYSL5, WSB2, SNORA80, GDK7, and KCNK2, which are located
in the top of the list, follow-up studies related to alcohol use and CVD are likely necessary.

Therefore, if we combine our results with previous study results, the presence or
absence of CVD will be an important relevant factor when studying DNA methylation for
alcohol use.

4.3. SNP and DNA Methylation

The GWAS and EWAS conducted to date have discovered genotypes and DMRs that
explain alcohol use and CVD. Techniques such as methylation quantitative trait loci (mQTL)
for correlating SNPs and DMRs have been introduced and applied in several studies [38,39].
In particular, studies that integrate SNPs and DMRs have been conducted in many cases
related to mental health. As it is difficult to explain mental health as a complex phenomenon
with a single omics data, several integrated studies have been performed.

Although this study did not progress to mQTL, there was no commonality between
the genotypes and DMRs discovered in our classification group. If the factors related to
alcohol use and CVD in our study are identified in future studies and mQTL analysis is
performed, a stronger explanation can be provided.

4.4. Limitations of This Study

A strength of our study was the discovery of genotypes and DMRs according to
alcohol use and CVD in Koreans using various methods. However, our study has the
following limitations, which should be further investigated.

First, when classifying drinkers and non-drinkers, former drinkers were included as
non-drinkers. In a previous study, DMRs were classified into three groups, but statistically
significant results were not obtained due to the limitation of the number of samples. Cur-
rently, the KoGES cohort is being expanded, and methylation analysis will be additionally
performed. In the future, DMRs for the three groups will be extracted and compared with
the results of this study.

Second, there were no common results between genotypes and DMRs, and mQTL
analysis was not performed. This will be further analyzed and verified in future extended
cohorts. Finally, there were more drinkers than non-drinkers in non-CVD males. In
addition, drinkers showed relatively high education and income among males. There was
a bias in cohort collection, and it is expected to be corrected with more cohorts in the future.

5. Conclusions

In summary, we show that genetic variation in HECTD4 is associated with CVD risk
in the presence and absence of alcoholism and that alcoholism significantly influences the
pattern of DMR methylation associated with CVD in DNA prepared from whole blood.
DMRs from four groups based on sex and CVDs were identified and compared by drinking
status. Statistical methods (t-test), KEGG enrichment analysis, and random forests were
used to obtain DMRs for classification. In CVD, enriched terms were found to be related
to neuron and MAPK pathway in non-CVD. This study is expected to provide important
clues regarding the relationship of GWAS and EWAS with alcohol use and CVD.
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