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et al., 2000; Brown et al., 2004). In particular, whether or not 
coincident spikes of pairs of neurons participate in synchronized 
“cluster-events” cannot be decided on measurements of pairwise 
correlation alone; this can only be achieved by the systematic 
assessment of higher-order correlations, i.e., statistical couplings 
among triplets, quadruplets, and larger groups (Martignon et al., 
1995; Staude et al., 2010). Importantly, the nonlinear dynamics of 
spike generation makes neurons extremely sensitive for synchrony 
in their input pools (Softky, 1995; König et al., 1996). Ignoring 
these higher-order correlations in the statistical description of 
spiking populations is therefore hardly advisable (Bohte et al., 
2000; Kuhn et al., 2003).

Initially, the main obstacle for assessing the higher-order struc-
ture of neuronal populations were limitations in experimental 
methodology, as until recently state-of-the-art electrophysiologi-
cal setups allowed to record only few neurons simultaneously. The 
advent of multi-electrode arrays and optical imaging techniques, 
however, now reveals fundamental shortcomings of available analy-
sis tools (Brown et al., 2004). Mathematical frameworks to model 
and estimate higher-order correlations typically assign one “interac-
tion parameter” for every subgroup of the population, leading to a 
2N − 1 dimensional model for a population comprising N neurons 
(Martignon et al., 1995, 2000). The associated estimation problem 
greatly suffers from this combinatorial explosion: the number of 
parameters to be estimated from the available sample size (a popu-
lation of N = 100 neurons implies ∼1030 parameters while 100 s of 
data provide only ∼106 samples) illustrates the principal infeasibil-
ity of this approach. In fact, the estimation of such higher-order 

IntroductIon
It has long been suggested that fundamental insight into the nature 
of neuronal computation requires the understanding of the coop-
erative dynamics of populations of neurons (Hebb, 1949). A con-
troversial issue in this debate is the role of correlations among 
nerve cells. On the one hand, an increasing body of both experi-
mental (e.g., Gray and Singer, 1989; Vaadia et al., 1995; Riehle et al., 
1997; Bair et al., 2001; Kohn and Smith, 2005; Shlens et al., 2006; 
Fujisawa et al., 2008; Pillow et al., 2008) and theoretical (Abeles, 
1991; Diesmann et al., 1999; Kuhn et al., 2003) literature supports 
the concept of cooperative computation on various temporal and 
spatial scales. On the other hand, the mostly detrimental effect of 
correlations on rate-based information transmission and process-
ing (Abbott and Dayan, 1999; Averbeck and Lee, 2006; Josić et al., 
2009) has generated a strong opposition toward correlation-based 
concepts of cortical coding (Shadlen and Newsome, 1998; Averbeck 
et al., 2006; Schneidman et al., 2006; Ecker et al., 2010). Evidently, 
a thorough description of the correlation structure of neuronal 
populations is an indispensable prerequisite to resolve these oppos-
ing theoretical viewpoints (Brown et al., 2004).

Experimental reports on coordinated activity at the level of 
spike trains resort almost exclusively to correlations between pairs 
of nerve cells (e.g., Eggermont, 1990; Vaadia et al., 1995; Kreiter 
and Singer, 1996; Riehle et al., 1997; Kohn and Smith, 2005; Sakurai 
and Takahashi, 2006; Fujisawa et al., 2008; Ecker et al., 2010). Such 
pairwise correlations cannot, as a matter of principle, resolve the 
cooperative activity of neuronal populations to the extent required 
for rigorous hypothesis testing (Gerstein et al., 1989; Martignon 
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 correlations runs into severe practical  problems even for populations 
of N ∼ 10 neurons (Martignon et al., 1995, 2000; Del Prete et al., 
2004; Shlens et al., 2006; Montani et al., 2009). The severeness of this 
limitation is further underscored by the fact that the significance 
of higher-order correlations computed from small populations 
(N ∼ 10; Schneidman et al., 2006; Shlens et al., 2006) can generally 
not be extrapolated to large populations (Roudi et al., 2009). Taken 
together, while recent progress in experimental technique allows 
for the simultaneous recording of the spiking activity of tens to 
hundreds nerve cells, a faithful statistical description of the resulting 
activity that includes correlations of higher order is greatly ham-
pered by the limitations of available data analysis techniques.

We have recently presented a novel method for a cumulant-based 
inference for the presence of higher-order correlations (CuBIC) 
that avoids the need for extensive sample sizes (Staude et al., 2007, 
2009). Instead of directly estimating correlation parameters from 
all subgroups, CuBIC aims only at population-average correlations, 
estimated via the cumulants of the pooled and discretely sampled 
spiking activity of all recorded neurons (population spike counts). 
The presence of higher-order correlations is then inferred from 
measured cumulants of low order by exploiting certain constrain-
ing relations among correlations of different orders in a statistical 
model of correlated spiking. CuBIC avoids the direct estimation 
of higher-order correlations, but decides whether or not lower 
order cumulants require the presence of higher-order correla-
tions. Focusing on such less specific questions drastically reduces 
the requirements with respect to the sample size: when applied to 
artificial data, CuBIC reliably infers higher-order correlations from 
large (N  100), even weakly correlated populations (pairwise cor-
relation coefficient c ∼ 0.01) that were generated with reasonable 
sample sizes (T < 100 s, Staude et al., 2009).

As a statistical model, CuBIC employs the compound Poisson 
process (CPP), where correlations are induced by the insertion of 
coincident events in continuous time, i.e., before binning is applied 
(Ehm et al., 2007; Johnson and Goodman, 2007; Brette, 2009; Staude 
et al., 2010). Interestingly, this model of correlation fits perfectly to 
measuring (higher-order) correlations via connected cumulants of 
the binned spike trains (Staude et al., 2010), a common framework 
for (higher-order) correlation measures. The simple relationship 
of the unknown model parameters, i.e., the orders of correlation 
present in the data, and the observable cumulants of the popula-
tion spike count allows to devise null-hypotheses concerning the 
orders of correlation in the data (the details of the CPP and CuBIC 
are explained in Section “The Stationary Case”). Combining tests 
against different null-hypothesis yields a lower bound ξ for the 
maximal order of correlation in the data.

A central assumption in the original presentation of CuBIC 
(Staude et al., 2009) was that the statistics of spiking in the popula-
tion does not change over time (stationarity). As both experimental 
cues and/or internal processes often induce transients or fluctua-
tions of firing rates, this central assumption is frequently violated 
in electrophysiological data.

In the present study, we describe a non-stationary version of 
the CPP by decoupling the correlation structure from the spike 
intensity of the population (see Section “The Non-stationary Case”). 
Using the “law of total cumulance” we are able to incorporate non-
stationarities in firing rate into the computation of the cumulants of 
the population spike counts. These rate-adjusted cumulants are then 

used to adapt CuBIC to infer higher-order correlations also from 
non-stationary data. This adaptation requires a specification of the 
kind of non-stationarity in terms of a parametric family of distribu-
tions for the bin-wise mean firing rates (the “carrier distribution”). 
Allowing for uniform rate fluctuations, for instance, yields as a result 
that the data must have correlations of some minimal order ξ  even 
if firing rates fluctuated uniformly from bin to bin. In this sense, the 
choice of a family for the carrier distribution implies a demarcation 
line between “genuine” correlation and “artifacts” due to rate (co-)
variation (Staude et al., 2008). Numerical simulations reveal that 
the adaptation corrects for false positive inference of correlations 
in data with pure rate co-variation, while allowing for potential 
variations in firing rates has a surprisingly small effect on CuBIC’s 
sensitivity for correlations (see Case Studies). Furthermore, we find 
that a perfect match between the true carrier family and the family 
allowed in the adapted CuBIC does not seem to be fundamentally 
important to guarantee reliable test performance.

the statIonary case
cumulants and the compound poIsson process
Population spike count
The basic observable of this study is the pattern vector 
X(s): = (X

1
(s),…,X

N
(s)), where X

i
(s) is the discretized spike count 

of the ith neuron in the bin [sh,(s + 1)h) of width h (a complete list 
of symbols is provided in Section “List of Symbols” in Appendix). 
Given X(s), we define the population spike count Z(s) as the total 
number of spikes in the population in the sth bin (Figure 1)

Z s X si
i

N

( ) ( ).=
=
∑

1

In the case where the X
i
 are binary (“1” for one or more spikes in 

the bin, “0” for no spike), Z(s) is simply the number of neurons that 
spike in the sth bin. As opposed to other frameworks for correlation 
analysis (e.g., Aertsen et al., 1989; Martignon et al., 1995; Grün et al., 
2002a; Nakahara and Amari, 2002; Shlens et al., 2006), however, the 
method presented in this study does not assume binary variables.

We here assume that Z(s) and Z(s + k) are independent for 
k ≠ 0 (zero memory). Furthermore, let us for now assume that 
the distribution of Z(s) does not depend on the time bin s (sta-
tionarity). This critical assumption will be relaxed in Section “The 
Non-stationary Case”.

Correlations and cumulants
In the present framework, correlations among the variables X

i
 are 

measured by mixed or “connected” cumulants. Like the more famil-
iar (raw) moments E[Zm] of a random variable Z, the univariate 
cumulants κ

m
[Z] characterize the shape of its distribution (see, e.g., 

Stratonovich, 1967; Gardiner, 2003). For the first two cumulants, 
the expectation value and the variance, the latter can be expressed 
in terms of the former by the well-known expressions κ

1
[Z] = E[Z] 

and κ
2
[Z] = E[Z2] − E[Z]2 = Var[Z]. Similar equalities for higher 

cumulants are exceedingly complicated, but algorithms for their 
computations are available (see Stuart and Ord, 1987 for explicit 
expressions for m ≤ 10, Section “Cumulants of the Non-stationary 
CPP” for a straightforward, and Di Nardo et al., 2008 for a more 
advanced algorithm). For notational consistency, we will from now 
on use the cumulant notation, e.g., use the terms “first/second 
cumulant” instead of the more familiar “mean/variance”.
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Theorem 1 The mth cumulant κ
m
[Z] of Z Xi

N
i= =Σ 1  depends on the 

summed correlations among the X
i
 of all orders ≤m, but is independ-

ent of correlations of orders >m.
By the above theorem, κ

m
[Z] is a measure for the total cor-

relation in the population of all orders ≤m. While a correction 
of the second cumulant for the influence of the single proc-
ess statistics would be straightforward (subtracting Σi

N
iX=1Var[ ] 

in Eq. 1, see Staude et al., 2009), correcting higher cumulants 
for the influence of correlations of lower order is exceedingly 
complicated. We therefore employ a parametric model for Z, 
the CPP (see next section), the parameters of which can be 
interpreted straightforwardly in terms of higher-order correla-
tions among the X

i
.

Before a discussion of our model, we wish to stress that the 
cumulant correlations presented here do not comply with the 
interaction parameters of the more familiar log-linear model. In 
particular, data sets can have higher-order log-linear interactions 
without having higher-order cumulant correlations and vice versa 
(see Staude et al., 2010 for concrete examples, and e.g., Darroch 
and Speed, 1983; Streitberg, 1990; Staude et al., 2009 for more 
general discussions).

The compound poisson process
As opposed to the discretized, binned population spike count Z(s) 
of the previous section, the proposed model operates in continuous, 
i.e., unbinned time. That is, we model the process z t x ti

N
i( ) ( )= =Σ 1 , 

where x t t ti j j
i( ) ( )= −Σ δ  denotes the ith unbinned, continuous-time 

spike train with spike event times t j
i  (i = 1,…,N, j ∈ N). The model 

we propose for z(t) is that of a CPP

z t t t aj j
j

( ) ,= −( )∑δ
 

(2)

Multivariate, or “connected”, cumulants arise when the variable 
under consideration is a sum of correlated variables. For m = 2 and 
Z Xi

N
i= =Σ 1 , for instance, we have the well-known formula

κ2
1 1

[ ] [ ] [ ] [ , ]Z Z X X X Xi
i

N

i
i

N

i j
i j

= =








 = +

= = ≠
∑ ∑ ∑Var Var Var Cov

 
(1)

   
= +

= ≠
∑ ∑: [ ] [ , ].,κ κ2

1
1 1X X Xi

i

N

i j
i j

Hence, the second-order cumulant correlations 
Cov[X

i
,X

j
] = κ

1,1
[X

i
,X

j
] measure the degree of additive linearity of 

κ
2
[Z]. Higher-order cumulant correlations are generalizations of the 

covariance in exactly this sense, and mth order correlations arise when 
κ

m
[Z] is decomposed into expressions involving the individual X

i
. The 

following definition fixes the notation used in the remainder of this 
study, for a precise definition we refer to the literature (e.g., Stuart and 
Ord, 1987; Gardiner, 2003; Staude et al., 2009; for details on cumulant 
correlations see also Streitberg, 1990; Staude et al., 2010).

Definition 1 Let X = (X
1
,…,X

N
) be an N-dimensional  random varia-

ble, e.g., the spike counts of N parallel spike trains, let M = {m
1
,…,mκ} 

be a subset of {1,…,N} of size k, and denote by σ(M) ∈ {0,1}N the 
binary indicator vector of the set M, whose ith component is 1 if 
i ∈M and 0 otherwise. Then we measure kth order correlations among 
( , , )X Xm mk1

…  by the connected cumulant κσ(M)
[X]. We say that X has 

correlations of order k if and only if at least one kth order connected 
cumulant of X is non-zero.

The following generalization of Eq. 1 is a straightforward 
 consequence of the construction of connected cumulants (Staude 
et al., 2010).

Figure 1 | Schema of the compound Poisson process and its 
measurement. Left: spike event times (horizontal bars) of individual neurons 
x1(t),…,xN(t) and tick marks of the carrier process z(t) (top) with the associated 
amplitudes (numbers above the ticks). The population spike count Z(s) (below 
the spike trains) counts the number of spikes across all neurons in bins of width 
h (dotted lines). Right: distributions of the amplitudes aj, fA (top) and of the 
population spike counts, fZ, (bottom; blue bars: fZ from 100 s of data with the 
given amplitude distribution, estimated using a bin size of h = 5 ms; dashed line: 

Poisson fit, corresponding to an independent population with the same firing 
rates). To construct a population of correlated spike trains, amplitudes aj are 
drawn for all events tj in the carrier process i.i.d from fA. Individual processes xi(t) 
are constructed by assigning subsequent events of the carrier process z(t) into aj 
“child” processes xi(t) (here, events are assigned randomly to the specific 
process IDs). Correlations of order ξ are induced, whenever events in the carrier 
process are copied into more than ξ processes, i.e., if the amplitude distribution 
assigns non-zero probabilities for amplitudes ≥ ξ.
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cuBIc
This section summarizes the stationary version of CuBIC to the 
extent that is needed to understand its adaptation to non-stationary 
populations (see Staude et al., 2009 for details). In brief, CuBIC 
quantifies the following thought experiment. Consider the situation 
of four simultaneously recorded neurons, where all neuron pairs 
have a correlation coefficient of c = 1. As c = 1 implies identity for 
all pairs of spike trains, all four spike trains must in fact be identi-
cal. In the framework of the CPP, this translates to the existence 
of events of amplitude a

j
 = 4, and hence correlation of order 4 

(Theorem 1). This illustrates that it is possible, in principle, to infer 
the existence of fourth order correlations from estimated pairwise 
correlations. In Staude et al. (2009), this inference was generalized 
by a hierarchy of statistical hypothesis tests H m

0
,ξ , labeled by the 

order m of the correlation estimated from the population spike 
count, and the test parameter ξ, which indicates the maximal order 
of correlation allowed in the null hypothesis. For given m and ξ, the 
rejection of a hypothesis H m

0
,ξ means that estimated correlations of 

order m in the data imply the presence of correlations of at least 
order ξ + 1. Combining tests for different values ξ then provides 
ξ ξ ξ


m
mH= +max is rejected{ | },
0 1 as a lower bound on the order of 

correlation in the data. In the thought experiment above, we esti-
mated pairwise correlation, hence m = 2, and rejected tests with 
ξ = 1,2,3, such that ξ 2 4= . In principle, the order of the estimated 
correlation m is a free parameter. However, as shown in Staude et al. 
(2009), tests with m = 3 are already extremely sensitive, such that 
we will present both the stationary CuBIC and the non-stationary 
adaptation only for the case m = 3.

Assume one is given the first three cumulants of a population 
spike count variable Z′. Then, for a fixed value of the test parameter 
ξ, consider the following constrained maximization problem

     κ κ∗
ν3 3, ,: [ ]ξ = { }max fA

Z  (5)

subject to κ
2
[Z′] = κ

2
[Z]

    κ
1
[Z ′] = κ

1
[Z]

      f
A
(k) = 0 for k > ξ,

where Z is the population spike count of a model with parameters 
ν and f

A
. The model that solves Eq. 5 has the maximal third cumu-

lant, i.e., triplet correlations, among all models that do not have 
any correlations beyond order ξ, and have the same population-
averaged first- and second-order properties, i.e., firing rates and 
pairwise correlations, as the given spike count variable Z ′. As a 
consequence, κ κ ′3 3> [ ]Z  implies that the third order correlations 
in Z ′ cannot be realized with correlations of orders ≤ξ. Thus Z ′ 
must have correlations of order ≥ξ + 1.

To solve Eq. 5, we use Eq. 4 and obtain the equivalent problem

      
κ ν

ν3 3,
*

ξ ξ
ξ

ξ= ⋅{ }max






h
 

(6)

subject to κ ′ ν

κ ′ ν
2 2

1

Z h

Z h

[ ] = ⋅

[ ] = ⋅

ξ

ξ
ξ

ξ









1 .

In Eq. 6, the objective function and the constraints depend linearly 
on the model parameters 



νξ. Problems of this type, so-called Linear 
Programming Problems, are uniquely solvable, e.g., by the Simplex 

where the event times t
j
 constitute a Poisson process, and the marks 

a
j
 are i.i.d. integer-valued random variables, drawn independently 

for all t
j
 (Figure 1, left). The marks a

j
 determine the number of 

neurons that fire at time t
j
, and will be referred to as the “ampli-

tude” of the event at time t
j
. The probability that an event has a 

specific amplitude is determined by the amplitude distribution 
f

A
, i.e., f

A
(ξ) = Pr{a

j
 = ξ} for all j ∈ N (Figure 1, top right). The 

Poisson process that generates the events t
j
 is called the “carrier 

process” of the model and its rate ν is the “carrier rate”. Processes 
of this type are also referred to as generalized, or marked, Poisson 
processes (see e.g., Snyder and Miller, 1991 for a general defini-
tion, and Ehm et al., 2007 for an alternative application to spike 
train analysis).

With the above model, the generation of a population of spike 
trains proceeds in two steps. First, realize a Poissonian carrier 
processes m(t) = Σ

j
δ(t = t

j
) and draw for each of its events t

j
 

an i.i.d. amplitude a
j
 from the amplitude distribution f

A
. In the 

second step, assign the spike at t
j
 to a

j
 individual processes, where 

the process IDs are determined from a separate “assignment dis-
tribution”. The simplest scenario assumes uniform assignment, 
where the a

j
 neuron IDs that receive the spike at t

j
 are drawn 

randomly from {1,…,N}, resulting in a homogeneous population. 
As CuBIC only aims for a lower bound on the order of correla-
tion, irrespective of the neuron IDs that realize these correlations, 
we here ignore the assignment distribution, and focus on the 
amplitude distribution only. The following theorem clarifies the 
relationship between cumulant correlations and the amplitude 
distribution in the framework of the CPP (see Staude et al., 2009 
for a proof).

Theorem 2 Let z t x ti
N

i( ) ( )= =Σ 1  be a CPP with amplitude  distribution 
f
A
 and carrier rate ν, and let X = (X

1
,…,X

N
) be the vector of counting 

variables obtained from the x
i
(t) with bin width h. Then:

1. The components of X have correlations of order m (in the sense 
of Definition 1) if and only if f

A
 assigns non-zero probabilities to 

amplitudes ≥m.
2. With µ ξm

m
k
N m

AA k f: [ ] ( )= = =E Σ 1 , the cumulants of Z are 
given as

κ νm mZ h[ ] .= µ  (3)

Note that correlations in the above theorem are measured strictly 
on the basis of the discretized counting variables X

i
. As a conse-

quence, they do not resolve (and do not depend on) the perfect 
temporal precision of the coincident events in the CPP. That is, if 
the events of z(t) were assigned to the individual processes with a 
temporal jitter that is small with respect to the bin size h, the effect 
of the jitter on the correlations is negligible.

Now let ξ ≤ N be the maximal order of correlation in the model, 
i.e., f

A
(k) = 0 for k > ξ, and denote by ν

k
 (k = 1,…ξ) the compound 

rates of events of amplitude k, i.e., ν
k
 = ν·f

A
(k). Then Eq. 3 can be 

written as

κ νm mZ h[ ] ,= ⋅ξ ξ





 
(4)

where ξ ξ


m
m m= …( , , )1 , 



ν ν νξ ξ: ( , , )= …1 , and ξ ξ
ξ





m i
m

ii⋅ = =ν ν: Σ 1  is the 
vector dot product.
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be included into the CPP by allowing a time-dependent  carrier 
rate, amplitude distribution, assignment distribution, or 
 combinations thereof.

Rather than presenting a general model for non-stationary 
populations, the focus of this study is to adapt the analysis tech-
nique CuBIC for potential variations in the firing rates. CuBIC, 
however, aims only at the population-average correlation struc-
ture f

A
, and inference is based on the population spike count Z. 

Time dependencies in the assignment distribution only change 
the neuron IDs that realize correlations over time, but do no alter 
the order of correlations. As a consequence, the population spike 
count Z is not influenced by potential temporal variations of the 
assignment distribution (see Figure 2A). Furthermore, CuBIC 
aims only at a lower bound for the maximal order of correlation, 
not on the precise values of correlations of different orders. As 
such, it aims for the largest entry with non-zero probability in 
the amplitude distribution, irrespective of whether this entry was 
present in the whole data stretch or if it occurred only within a 
short period. Taken together, CuBIC is blind for non-stationarities 
in the amplitude distribution and the assignment distribution. 
We therefore assume both these objects to be constant over time 
and consider only time-varying carrier rates ν(t) (see top panels 
in Figures 2B,C).

cumulants of the non-statIonary cpp
To relate the model parameters to the cumulants of Z for time  varying 
ν(t), observe that the value of Z(s) in the window [sh,(s + 1)h) does 
not depend on the precise time course of the carrier rate ν(t) in this 
window, but only on the integral R h t dts sh

s h: / ( ) .( )= ∫ +1 1 ν  Substituting 
the carrier rate ν(t) with a piecewise constant function whose value 
in the interval [sh,(s + 1)h) is R

s
 thus results in an identical popula-

tion spike count Z. Furthermore, CuBIC ignores the temporal order 
of Z(1),…,Z(L) and assumes subsequent values of Z to be i.i.d. 
variables. As a consequence, CuBIC is also blind for the temporal 
order of the rate values R

s
, and we therefore assume them to be 

i.i.d. with a common “carrier distribution” f
R
 (compare panels B 

and C of Figure 2).
The above setting characterizes the population spike count Z 

as a parameter-dependent random variable, where the outcome 
of Z in the sth bin depends not only on the outcome of the CPP 
realization, but also on the (random) value of the rate variable 
R

s
. For such “doubly stochastic” variables, the raw moments are 

given as

µm
m R mZ Z Z R m[ ]: [ ] [ | ] ( ),= =   ∈E E E N

where the inner expectation is the expectation value of Zm for 
a given value of the rate R, and the outer expectation is with 
respect to the distribution f

R
. Now recall the definition of the 

moments as the coefficients of the Taylor series expansion of the 
characteristic function

φZ
isZs e( ) :=  E

 
(10)

   
= ∑i

s

m
Zm

m

m

m!
[ ],µ

 
(11)

Method or any of its variants (Press et al., 1992, Chapter 10.8). The 
solution yields an upper bound for the third cumulant κ∗

3,ξ  and the 
corresponding parameter vector 



ν∗
ξ. As it turns out, the only non-zero 

components of the solver 


ν ν ν∗ ∗ ∗
ξ ξ= …( , , )1  are ν∗

1
 and ν∗

ξ, i.e., ν∗
k = 0 for 

all k ∉{1,ξ} (see The Solution of the Maximization in Appendix). The 
carrier rate and amplitude distribution of the CPP that maximizes 
Eq. 6 are then given by ν ν ν∗ ∗ ∗= +1 ξ  and f l

A l∗ ν ν∗ ∗( ) /= .

With the solution of Eq. 5, the null hypothesis H0
3,ξ is

H Z0
3

3 3
,

,: [ ] .ξ
ξκ ′ κ∗≤

To test a sample { } { , , }Z Z ZL′ ′ ′= …1  against H0
3,ξ , we estimate its 

cumulants by the so-called k-statistics k
m
 (Stuart and Ord, 1987; 

the well-known sample mean and unbiased sample variance are 
the first two k-statistics). To derive the required distribution of 
the test statistic k

3
 under H0

3,ξ, we assume that Z ′ is the popula-
tion spike count of the model with parameters ν∗  and fA

∗ , i.e., the 
solution of Eq. 6 after the unknown cumulants κ

1
[Z ′] and κ

2
[Z ′] 

have been replaced by their estimates k
1
 and k

2
. Thus, under H0

3,ξ  
the distribution of k3 has expectation value κ∗

3,ξ, and its variance is 
given as (e.g., Stuart and Ord, 1987)

Var[ ]
[ ] [ ] [ ] [ ]

( )( )
,k

Z

L

Z Z

L

Z

L L3
6 2 4 2

3

9
1

6
1 2

= +
−

+
− −

κ ′ κ ′ κ ′ κ ′
 

(7)

where κ
i
[Z ′] are the cumulants of Z ′, obtained by inserting ν* and 

fA
∗ into Eq. 3. Finally, with sample sizes of L > 10000 (corresponding 

to a data set of 10 s duration, sampled with a bin width of h = 1 ms), 
the distribution of k

3
 is well approximated by a normal distribution, 

such that the p-value of H0
3,ξ is given by

p
k

t

k
dt

km
3

3

3

2

3

1

2 2,

,

[ ] [ ]
.ξ

ξ

π
= −

−( )











∞

∫ Var
exp

Var

κ∗

 

(8)

As mentioned above, the rejection of a specific hypothesis 
H0

3,ξ implies that the data have correlations beyond order ξ or, 
in other words, that ξ + 1 is a lower bound for the order of cor-
relation. The final result of CuBIC is the maximum of these 
lower bounds

ξ ξ αξ
 : { | } ,,= < +max p3 1

 
(9)

where α is a predefined test level (see Staude et al., 2009 
for details).

the non-statIonary case
the model
In the previous section, the CPP was presented as a model for 
populations with constant firing rates. However, (co-)varia-
tions in firing rate are a common feature of neuronal popula-
tions. To incorporate potential non-stationarities into the CPP, 
recall its central ingredients: the intensity of the population is 
described by the carrier rate ν, the population-averaged correla-
tion structure is determined by the amplitude distribution f

A
, 

and the precise composition of spikes and correlations within 
the population is determined by the assignment distribution. 
Given this parametrization, non-stationarities can in  principle 
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κm m mZ G Z Z[ ] [ ], , [ ] .= …( )µ µ1  
(16)

With these maps at hand, the mth cumulant of the non- stationary 
CPP can be computed by the following procedure.

1. For i = 1,…,m express the conditional moment μ
i
[Z | R] in 

terms of the first i cumulants, i.e., write 
 μ

i
[Z | R] = F

i
(κ

1
[Z | R],…,κ

i
 [Z | R]).

2. Apply Eq. 3 to the individual cumulants, such that 
μ

i
[Z | R] = F

i
(μ

1
Rh,…,μ

i
Rh), where, as before, μ

i
 = μ

i
[A] are the 

moments of the amplitude distribution f
A
.

3. Compute the mth cumulant of Z by applying G
m

  
κm m m mZ G F Rh F Rh Rh[ ] ( ), , ( , , ) .= … …( )1 1 1µ µ µ

 
(17)

The results are summarized as the “law of total cumulance”. The 
first three orders read

κ κ1 1 1[ ] [ ]Z R h= µ  
(18)

κ κ κ2 2 1 1
2

2
2[ ] [ ] [ ]Z R h R h= +µ µ  (19)

κ κ κ κ3 3 1 1
3

3
3

1 2 2
23[ ] [ ] [ ] [ ] .Z R h R h R h= + +µ µ µ µ  (20)

A similar parameter transformation that leads from Eq. 3 to 
Eq. 4 simplifies Eqs. 18–20. In slight abuse of notation, we use the 
same symbol for the expected compound rates as for the constant 
compound rates of Eq. (4), i.e., write ν

k
: = f

A
(k)·κ

1
[R]. Using the 

such that the moments can be obtained from φ
Z
 via

µm m

m
Z
m

s

Z
i

s

s
[ ]

( )
.= ∂

∂ =

1

0

φ

Analogously, cumulants are the coefficients of the logarithm of 
the characteristic function

ψZ
isZs( ) [ ]= logE e  

(12)

   
= ∑i

s

m
Zm

m

m

m!
[ ],κ

 
(13)

such that

κm m

m
Z
m

s

Z
i

s

s
[ ]

( )= ∂
∂ =

1

0

ψ

 
(14)

A straightforward strategy to relate cumulants to moments is to 
insert Eq. 11 into the right hand side of Eq. 12, writing the logarithm 
as a power series, and collecting coefficients for identical powers of 
s. This procedure illustrates in particular that the mth cumulant is 
a function of the first m raw moments only, and, reversely, that the 
mth moment can be expressed as a function of the first m cumu-
lants. We denote the maps relating cumulants to moments and 
moments to cumulants by F

m
 and G

m
, respectively, such that

µm m mZ F Z Z[ ] [ ], , [ ]= …( )κ κ1  
(15)
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Figure 2 | Non-stationarities in the CPP. Panels (A–C) show carrier rates ν(t) 
in Hz (top panels), the distributions of the bin-wise mean carrier rates (“carrier 
distributions” fR, small panels on the right; bin size h = 20 ms), the event-times 
of the carrier process z(t) (second panels from top), raster plots (third panels 
from top) and population spike counts Z(s) (bottom panels) for three different 
data sets. (A) Time varying assignment distribution produces non-stationary 
single processes, although the carrier process z(t) is stationary (constant carrier 
rate ν(t) = 50 Hz; all carrier events with tj < 1 s are assigned randomly, all carrier 
events with tj ≥ 1 and amplitude aj = 1 are assigned to neuron 3). (B) Cosine 
carrier rate results in non-stationary carrier process z(t), the subsequent uniform 
assignment to N = 25 neurons generates a homogeneous, non-stationary 

population. (C) The carrier rate is constant in bins of length h = 20 ms and 
subsequent values of ν(t) are i.i.d. realizations with the carrier distribution of the 
cosine carrier rate in (B). Carrier events in (C) are assigned uniformly to N = 50 
neurons. As illustrated by the virtually identical population spike count 
distributions shown in (D) (estimated from 1000 s of artificial data, color code as 
in B,C; note logarithmic y-scale), the differences in both the carrier rate, in 
particular the temporal order of the bins, and the assignment, in particular the 
number of neurons of the generated population, do not influence the statistics 
of the population spike count Z. (e) Amplitude distributions of all three data sets 
are superpositions of a “background-peak” at ξ = 1 and a binomial distribution 
B(10,0.3) (color code as in A–C).
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a convex quadratic maximization problem. Problems of this type 
have a unique solution, and effective implementations of numerical 
solvers are available.

Gamma-distributed carrier rate
If the carrier variable R follows a Gamma-distribution, the 
third cumulant can be expressed in terms of the first two as 
κ κ κ3 2

2
12[ ] [ ] / [ ]R R R= . For the normalized third cumulant β

3
 

we thus have β β3 2
2

1
4

2
22 2= =κ κ[ ] / [ ]R R . The objective function 

then reads

F h k k kν ν ν1 2 3 2 1 2 1
3

2
23, , , .…( ) = ⋅ + −ξ ξβ ξ β β





 
(27)

As for symmetric carrier distributions, the objective function in 
Eq. 25 is linear in the expected component rates ν

k
 (k = 1,…,ξ) and 

quadratic in β
2
. Thus, the resulting problem is also a convex quadratic 

programming problem and can be solved with the same solvers.
We wish to stress once again that the choice made here concerns 

only the family of the carrier distribution, not its particular shape. 
That is, if we chose e.g., a uniform distribution, we only deter-
mine that κ

3
[R] = 0 but do not fix the support of the distribution. 

Finally, we note that the only non-zero components of the solution 


ν ν ν∗ ∗ ∗
ξ ξ= …( )1 , ,  to the maximization problem are ν∗

1  and ν∗
ξ , i.e., 

ν∗
k = 0 for all k ∉{1,ξ}, as in the stationary case (see The Solution 

of the Maximization in Appendix).

Variance of test statistic
As a final ingredient, CuBIC requires the variance of the test statistic k

3
 

in order to be able to compute the p-values. Assuming that the solution 
of Eq. 25 is available, we compute the second, fourth and sixth cumu-
lant of the solution by inserting the solving 



ν∗
ξ and β2

∗ into the algorithm 
leading to Eq. 17. Plugging these cumulants into Eq. 7 yields Var[k

3
], 

the variance of the test statistic k
3
 under the non- stationary null-

 hypothesis. Insertion into Eq. 8 yields the corresponding p-value.

case studIes
To illustrate the application of the adapted CuBIC, we consider here 
two typical experimental situations. In the first situation, data are 
recorded in early sensory systems, where characteristic firing rate pro-
files closely follow the stimulus. In such a scenario, information about 
the rate distribution can be obtained from the type of the stimulus. 
In the second situation, there is no direct relation between the experi-
mental paradigm and non-stationarities in firing rates. In this case, ad 
hoc assumptions of the family of carrier rate are the only option. We 
illustrate both scenarios and the steps required when applying the non-
stationary version of CuBIC by analyzing simulated spike trains.

stImulus-drIven non-statIonarIty
Pure non-stationarity
Our first example mimics a recording in visual cortex with a ori-
ented sinusoidal grating as stimulus. We model the population 
response in such an experiment by a CPP model with sinusoidal 
carrier rate ν(t), i.e.,

ν( ) cos( ),t B C t d= + −2πw  (28)

where B is the offset, C ≤ B is the amplitude of the modulation, 
ω is the temporal frequency of the stimulus and d is the phase, 
i.e., the sum of the stimulus phase and the delay it takes for the 
stimulus-driven activity to propagate to the recording electrodes 

standardized cumulants of the rate variable βk k
kR R: [ ]/ [ ]= κ κ1  and 

the vector notation 


ν ν νξ ξ: ( , , )= …1  and ξ ξ


m
m m= …( , , )1 , Eqs. 18–20 

can be written as

κ ν1 1[ ]Z h= ⋅ξ ξ





 
(21)

κ ν ν2 2 1

2
2

2[ ]Z h= ⋅ + ⋅( )ξ ξ βξ ξ









h
 

(22)

κ ν ν ν ν3 3 1

3
3

3 1 2
2

23[ ]Z h h h= ⋅ + ⋅( ) + ⋅( ) ⋅( )ξ ξ β ξ ξ βξ ξ ξ ξ

















 
(23)

cuBIc for non-statIonary data
To adapt CuBIC to non-stationary populations, we need to formu-
late the general maximization problem (Eq. 5) for the case of time-
 dependent carrier rates. Using Eqs. 21–23 instead of Eq. 4, we obtain

κ ν ν ν∗

ν3,ξ β β ξ ξ ξ
ξ

ξ ξ β ξ ξ,

, ,
maxns h h= ⋅ + ⋅( ) + ⋅( )
















2 3
3 1

3
3

3 1 13 22
2

2⋅( ){ }

νξ βh
 

(24)

subject to κ ′ ν ν2 2 1

2
2

2[ ]Z h h= ⋅ + ⋅( )ξ ξ βξ ξ









    
κ ′ ν1 1[ ] ,Z h= ⋅ξ ξ





with 


νξ
ξ∈ ∞[ , )0 , β

2
 ∈ [0,∞) and β

3
 ∈ (−∞,∞). After some algebra 

and substitution of the unknown cumulants κ
i
[Z′] by their esti-

mates k
i
, we arrive at the equivalent problem

κ ν∗

ν3 3 1
3

3 1
3

2
2

1 2 2
2 3

3 3,
,

, ,
ξ β β ξ

ξ

ξ β β βns h k k k k= ⋅ + − +{ }max






 
(25)

subject to k h k

k h

2 2 1
2

2

1 1

= ⋅ +

= ⋅

ξ β

ξ
ξ

ξ









ν

ν .

As opposed to the Linear Programming Problem of the station-
ary case (Eq. 6), the constraints in Eq. 25 do not apply to all free 
variables: the third standardized cumulant of the rate variable β

3
 

can, in principle, be arbitrarily large. As a consequence, also the 
objective function in Eq. 25 is unbounded. We therefore have to 
impose additional constraints on the carrier distribution f

R
 in order 

to ensure convergence of the maximization. The approach taken 
here is to prescribe a two-dimensional parametric family for the 
distribution of the rate variable, such that its third (standardized) 
cumulant can be expressed in terms of its first two cumulants. The 
choice for the family of carrier distributions determines the form of 
the objective function. Let us present two specific cases (see Section 
“Discussion” for more details on the role of this choice).

Symmetric carrier distributions
If the carrier distribution is symmetric about its mean, like e.g., the 
uniform distribution, we can exploit the fact that the third cumulant 
κ

3
[R] of symmetric distributions vanishes1. As a consequence, also 

β
3
 = κ

3
[R]/κ

1
[R]3 = 0. The objective function of the maximization 

problem (Eq. 25) for symmetric carrier distributions thus becomes

F h k k kν ν ν1 2 3 2 1 2 1
3

2
23 3, , , .…( ) = ⋅ + −ξ ξβ ξ β β





 
(26)

This objective function is linear in the (expected) compound 
rates ν

k
 (k = 1,…,ξ) and quadratic in β

2
. As the constraints are 

also linear, using Eq. 26 as the objective function in Eq. 25 yields 

1Generally, κ
3
[R] is a measure for the skewness of f

R
, such that κ

3
[R] < 0 for  

left- skewed, κ
3
[R] = 0 for symmetric, and κ

3
[R] > 0 for right-skewed distributions.
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panel). We found that only the p-value with ξ = 1 fell below the 
chosen significance level of α = 0.05 (Figure 3, green arrowhead 
in bottom left panel). Hence, H0

3 1,  was rejected while all hypotheses 
with ξ > 1 were retained. As a consequence, the stationary CuBIC 
yields ξ ξ αξ

 = < + =max{ | },p3 1 2  (Eq. 9) as a lower bound for the 
maximal order of correlation. As the data do not contain correlations 
beyond those induced by the population-wide non-stationarity, the 
stationary CuBIC thus leads to false positive inference.

Application of the adapted CuBIC requires the specification of a 
parametric family of carrier distributions f

R
 (“carrier family”). We 

put ourselves in the position of an experimenter, to whom the carrier 
rate is unknown and cannot be estimated directly; the only observ-
able quantity is the population activity, which is a combination of 
the carrier rate and potential events of high amplitude. However, 
as the stimulus was a cosine, we assume also the carrier rate to be a 
cosine as in Eq. 28, only that the parameters B, C and d are unknown 
(ω can be estimated from the stimulus frequency). Now recall that 
the adaptation of CuBIC does not require knowledge of the exact 
time-course of the carrier rate: what matters is a model for the dis-
tribution of the average rate values in the bins R h t dts sh

s h= ∫ +1 1/ ( ) .( ) ν  
Given h << 1/ω, we can assume that the sequence of rate values R

s
 

(Figure 3, top panels of left and right columns). The first data set of 
this example models the case of pure rate non-stationarity (Figure 3, 
left column). The amplitude distribution is a delta-peak at ξ = 1, 
such that all events of the marked process z(t) have amplitude a

j
 = 1. 

As a consequence, z(t) is a simple Poisson process with rate ν(t). 
Setting B = C = 500 and ω = 500 ms, d = 0, and assigning the carrier 
spikes uniformly to a population of N = 50 spike trains, we obtain a 
homogeneous population where each neuron oscillates with a tem-
poral frequency of 2 Hz, assuming firing rates between 0 and 20 Hz 
(second panel from top of Figure 3, left). Note that assigning the 
events of z(t) to individual spike trains was done only for illustrative 
purposes, as it does not influence the results of CuBIC.

To analyze the data, we chose a bin size of h = 5 ms, computed 
the population spike count Z(s), and estimated its distribution 
f
Z
(k) = Pr{Z = k} from a total simulation time of T = 100 s (Figure 3, 

third and fourth panels from top, respectively). Note that the popula-
tion spike count Z does not provide unambiguous information about 
the carrier rate. Next, we applied the stationary version of CuBIC 
with m = 3. That is, we ignored the apparent non- stationarities that 
are present in the data and computed p-values p

3,ξ for ξ = 1,…,7 
as described in Section “CuBIC” (Figure 3, green bars in bottom 

0

1000

2000

ν 
[H

z]

Pure non−stationarity

0

25

50

N
eu

ro
n 

ID

0 2
0

10

Z(
s)

Time [s]

0 20
0

0.1
0.2
0.3

P
r{

Z=
k}

k0 20

1 3 5 7
0

0.5

1

ξ

p 3,
ξ

Pure correlation

0 2Time [s]

0 20k0 20

1 3 5 7
ξ

Non−stationarity & correlation

0 2Time [s]

0 20k0 20
10

−4

10
−2

10
0

1 3 5 7
ξ

Figure 3 | Population statistics and CuBiC results for cosine-like non-
stationarity for three data sets. Shown are the carrier rate ν(t) (top panels), 
raster plots of N = 50 spike trains (second panels from top) and population spike 
counts Z(s) obtained with a bin width of length h = 5 ms (third panels from top) 
for the first 2 s of a data stretch of length T = 100 s. Below are the empirical 
distributions fZ(k) = Pr{Z = k} estimated from the entire data set (second panel 
from bottom; blue bars: linear y-scale with axes on the left, green solid line: 
logarithmic y-scale with axes on the right). Bottom panels show p-values of the 
stationary CuBIC (green), the adapted CuBIC with cosine-like rate variations (red) 
and with bimodal rate variations (blue), where rejected null-hypotheses, i.e., 
p-values below a significance level of α = 0.05, are marked by arrowheads. 

Outlined bars and arrowheads in bottom panel show results of data where 
interspike intervals below 2 ms were removed before the analysis. Data with 
pure rate non-stationarity (left column) have a sinusoidal carrier rate ν(t) (top 
panel) and an amplitude distribution with mass concentrated at ξ = 1 (fA(k) = 0 for 
k >1; see text for details). Pure correlation (middle column) is modeled with a 
stationary carrier rate and correlation up to order 7 (ν(t) = const., fA(k) = 0 for 
k∉{1,7}). The probability for the high-amplitude events results in a pairwise 
correlation coefficient of c = 0.01 if the events of the carrier process are 
distributed uniformly among the processes N = 50. The combined data set with 
non-stationarity and correlation (right column) has the same correlation structure 
as the data in the middle column, and the same carrier rate as in the first column.



Frontiers in Computational Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 16 | 9

Staude et al. Non-stationary higher-order correlations

In this data set, the stationary CuBIC rejects all hypotheses up 
to a value of ξ = 6. Hence, CuBIC performs optimally in this data 
set, as the resulting lower bound ξ = 7 corresponds to the maximal 
order of correlation ξ

syn
 = 7 in this data set.

To our big surprise and satisfaction, p-values for the adapted ver-
sion of CuBIC were very similar to those of the stationary CuBIC 
(Figure 3, bottom panel in middle column, red and green bars respec-
tively). In particular, the adapted CuBIC rejected the same hypoth-
eses, and, as a consequence, also yielded the same lower bound ξ = 7. 
Contrary to our assumption, the proposed adaptation thus did not 
compromise CuBIC’s sensitivity in this stationary data set.

Combined effects
Finally, we generated a third data set that combined the properties 
of the first two examples (Figure 3, right column). The amplitude 
distribution was the same as in the example of pure correlation, 
i.e., with an additional entry at ξ

syn
 = 7, while the carrier rate was 

the same cosine as in the data with pure non-stationarity (Figure 3, 
top panels of right and left columns, respectively).

For this data set, we expected the stationary CuBIC to overestimate 
the order of correlation, i.e., to yield ξ ξ > =syn 7, as the considerable 
rate co-variation produces correlation among the X

i
 in addition to 

the events of high amplitude (Staude et al., 2008). To the contrary, 
however, p-values for the stationary CuBIC fell below the significance 
level only up to ξ = 4 (Figure 3, green arrowheads in the bottom 
panel of the left column), yielding ξ = 5. Allowing for cosine-like 
non-stationarities in the null-hypotheses reduces the lower bound 
to ξ = 3 (Figure 3, red arrowheads in the bottom panel of the left 
column). Thus, rather than a false positive inference of correlation, 
the additional non-stationarity resulted in a reduction of the inferred 
order of correlation as compared to the stationary scenario.

Different carrier family
To investigate the robustness of the proposed adaptation with 
respect to faulty choices for the carrier family, we also analyzed the 
data under the assumption that the carrier rate switches between a 
state of low rate, ν

min
, and of high rate, ν

max
. This can be described 

by a bimodal carrier distribution

f
R
(ν;ν

min
,ν

max
,η) = (1 − η)δ(ν − ν

min
) + ηδ(ν − ν

max
),

where δ(ν) is the Dirac-delta function and η∈[0,1] parametrizes 
the relative proportion of bins where ν(t) is in the low (high) rate 
state. Inspecting the time course of Z(s), we chose the mass of 
the two peaks identical (η = 0.5), which leaves a two-parameter 
family for f

R
 (its cumulants are derived in Section “Cumulants 

of Carrier Distributions” in Appendix). For the data shown in 
Figure 3, allowing for such drastic rate dynamics hardly changed 
p-values as compared to the cosine carrier rate (compare red with 
blue bars in bottom panel of Figure 3). Most importantly, the 
bimodal adaptation resulted in the same lower bounds ξ  as the 
cosine adaptation.

Internally generated non-statIonarItIes
Gamma-distributed carrier rate
In the examples of the previous section, we inferred the type of 
non-stationarity from the experimental paradigm, i.e., from the 
properties of the stimulus. In many experimental situations, such 

samples the cosine faithfully, such that both the phase offset d and the 
oscillation frequency ω do not influence f

R
. In this case, the moments 

(and cumulants) of all orders can be computed from the parameters 
B and C in a straightforward manner (see Cumulants of Carrier 
Distributions in Appendix). In our example, f

R
 is symmetric, which 

implies β
3
 = 0 (see Symmetric Carrier Distributions). Furthermore, 

as the carrier rate ν(t) has to be non-negative, the model parameters 
must satisfy B ≥ C, which implies β

2
 ≤ 1/2. The red bars of the lower 

left panel in Figure 3 show the p-values computed from Eq. 8, after 
(a) the solution of stationary problem, κ∗

3,ξ , has been substituted 
with the solution of Eq. 25 with objective function Eq. 26 and addi-
tional constraint β

2
 ≤ 1/2, and (b) Var[k

3
] was computed with the 

algorithm explained in Section “Variance of Test Statistic” with the 
cumulants of the rate variable R given in Section “Cumulants of 
Carrier Distributions ” in Appendix. We find that p

3,ξ > 0.05 for all 
ξ = 1,…,7, hence no hypothesis is rejected and the lower bound is 
ξ = 1. Thus, the adapted CuBIC does not infer correlation in this data 
set, and the adaptation successfully corrects for the faulty inference 
of correlation of the stationary version.

Reduced sensitivity in stationary data?
In the first data set, the stationary CuBIC assigned the rate-generated 
correlation among the counting variables X

i
 to events of ampli-

tude ≥2. Allowing for potential (co-)variations of firing rates in the 
adapted CuBIC corrected for this faulty inference of correlations. 
Mathematically, allowing for rate (co-)variations allows non-zero 
values of the parameter β

2
 in the maximization of the third cumu-

lant (Eq. 25). Maximizing over a larger parameter space may then 
increase κ∗

3,ξ
,ns  as compared to the stationary maximum κ∗

3,ξ . Thus, 
hypotheses that are rejected by the stationary CuBIC may be retained 
by the adapted version, as the latter can produce larger maximal 
third cumulants for a given value of ξ. Consequently, we expected 
the adapted version to be generally less sensitive for existing events 
of high amplitude. To investigate this issue, we generated a data set 
of pure correlation by choosing a constant carrier rate, but allow-
ing for events of amplitude ξ

syn
 = 7 on top of the “background 

spikes” with ξ = 1 (Figure 3, middle column). The probability of 
these events was set to f

A
(7) = 0.0125, which resulted in a average 

pairwise correlation coefficient of c = 0.01 if the events of z(t) were 
assigned homogeneously to a population of N = 50 spike trains. The 
value for ν = 500 Hz was chosen to match the average carrier rate 
of the first example. Note that the additional events of amplitude 
ξ = 7 resulted in a slight increase of the population spike count 
from κ

1
[Z] = κ

1
[R]hμ

1
 = 500·0.005·1 = 2.5 in the first example to 

κ
1
[Z] ≈ 500·0.005·1.0753 ≈ 2.7 in this example, and thereby also 

increased the firing rates of the N = 50 spike trains. The remain-
ing parameters in this and all following examples were: bin width 
h = 5 ms, simulation time T = 100 s.

Compared to the size of the population (N = 50), the rate of 
the high-amplitude events (ν

7
 = κ

1
[I]·f

A
(7) ≈ 6 Hz) is relatively 

small. As a consequence, these are hardly visible in the raster 
displays and population spike counts (Figure 3, second and third 
panels from top in the middle column). In the distributions of 
the population spike count, they lead to a slight increase for the 
frequency of patterns of size k ≈ 10, visible only on a logarithmic 
scale (Figure 3, middle column, green solid line in fourth panel 
from top).
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the three examples shown in Figure 4 are as in those of Figure 3. 
In data with pure rate non-stationarity (Figure 4, left column) 
the amplitude distribution has an isolated peak at ξ = 1. For pure 
correlation (Figure 4, middle column), the carrier rate is constant 
[ν(t) = 500 Hz] and the amplitude distribution has an additional 
peak at ξ

syn
 = 7 that resulted in a pairwise correlation coefficient 

of c = 0.01 among the N = 50 spike trains. Finally, the combined 
data set has the same time-varying carrier rate as the purely non-
stationary data, and the same amplitude distribution as the data 
with pure correlation (Figure 4, right column).

The gamma-distributed rate variable generates strongly fluc-
tuating rate profiles, with peak values of the carrier rate above 
3000 Hz. This leads to strong fluctuations in the population spike 
count even in the case of pure rate non-stationarity (Figure 4, 
third panel from top in left column), such that its distribution 
has a fairly elongated tail (Figure 4, fourth panel from top in 
left column).

Results of the stationary CuBIC
Despite quantitative differences, stationary CuBIC performs quali-
tatively similarly for gamma- and cosine-like carrier rate. For pure 
rate non-stationarity, it wrongly interprets the rate-induced cor-
relations among the X

i
 as events of high amplitudes. The null-

hypotheses are rejected up to ξ = 3, yielding a lower bound of 
ξ = 4 (Figure 4, green arrowheads in the bottom panel of the 
left column). Similarly, adding gamma-like non-stationarities to 
a data set with correlation decreases the inferred lower bound, 
here from ξ = 7 in the stationary data (Figure 4, green  arrowheads 

a priori assumptions on the rate variable cannot be justified, 
and changes in firing rates can have diverse statistical properties. 
General excitability of the tissue can change firing rates either in 
the form of slow drifts or abrupt transitions between so called 
up- and down-states. Furthermore, both local computations and 
additional cortical or sub-cortical inputs may change firing rates 
of the recorded population.

A further feature of the previous examples was that the carrier 
rate ν(t) changed rather slowly. As mentioned above, however, the 
temporal dynamics of the carrier rate does not influence the sta-
tistics required for CuBIC, i.e., the population spike count Z, as 
long as the distribution of the rate values per bin, f

R
, is not altered. 

The carrier rate ν(t) of the second class of examples is a piecewise 
constant function that changes its value in subsequent bins, i.e.,

ν( ) ( ),t R ts s
s

L

=
=

∑ Π
1

where L = T/h is the sample size (number of bins) Π
s
(t) = 1 for 

t∈[sh,(s + 1)h) and Π
s
(t) = 0 otherwise, and the R

s
 are the rate values 

drawn i.i.d. from the carrier distribution f
R
 (compare the model 

of rate-covariations in Staude et al., 2008 and the carrier rate in 
Figure 2C). Here, f

R
 is a gamma distribution, i.e., f r kR

r
k

rk

k( ; , )
( )

/θ
θ

θ= − −1

Γ
e  

where Γ(k) is the gamma function. As in the previous section, the 
parameters of the carrier rate (k and θ) are such that distribut-
ing the events of the carrier process z(t) uniformly among N = 50 
spike trains leads to time varying firing rates λ(t) with mean value 
10 Hz, and we set its variance to 40 Hz2. The maximal value of λ(t) 
in the entire simulation was ≈79 Hz. The remaining parameters in 
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Figure 4 | Population statistics and CuBiC results for non-stationarities with gamma-distributed carrier rate. The figure has the same setup as Figure 3, only 
that the bottom panels show results for stationary CuBIC (green bars and arrowheads), allowed uniform carrier distribution (red bars and arrowheads) and 
gamma-distributed carrier rate (blue bars and arrowheads).
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If p-values changed, they increased, which makes CuBIC more 
 conservative but does not generate false positives. From all simu-
lation, the increased p-value reduced the lower bound ξ only in a 
single instance (cosine rate modulation with correlation, analyzed 
with stationary CuBIC at ξ = 4; green arrowhead in bottom right 
panel of Figure 3); in all remaining cases the refractory period 
changed p-values where they were above the significance level of 
α = 0.05. We thus conclude that CuBIC is reasonably robust if 
spike deviate from Poisson processes in terms of short refractory 
periods (here 2 ms).

dIscussIon
The analysis of massively parallel spike trains for higher-order cor-
relations is a prerequisite for understanding the mechanisms of 
cooperative neuronal computation in the brain. However, analysis 
techniques to estimate higher-order correlations typically require 
enormous sample sizes, rendering the analysis of large (N > 10) pop-
ulations for higher-order effects extremely difficult. In Staude et al. 
(2009), we have presented a novel method (CuBIC) that avoids the 
need for extensive sample sizes. Numerical simulations illustrated 
that CuBIC reliably infers correlations of very high order (>10) 
from recordings of large (N ∼ 100), even weakly correlated neuronal 
populations (average pairwise correlation coefficient c < 0.01) with 
sample sizes corresponding to 10–100 s recording time.

As a statistical model, CuBIC assumes the CPP, where correlation 
among the spike trains is modeled by the insertion of additional 
coincident events (Ehm et al., 2007; Johnson and Goodman, 2007; 
Brette, 2009; Staude et al., 2010). The linear relation between the 
model parameters, i.e., the orders of correlation present in the 
data, and the cumulants κ

m
[Z] of the population spike count Z 

allows the computation of the maximal value of κ
m
[Z] under the 

assumption that the orders of correlation in the data do not exceed 
a predefined value ξ. Comparing the estimated cumulants to these 
upper bounds then yields a collection of statistical hypothesis tests 
H m

0
,ξ, labeled by m, the order of the estimated cumulant, and ξ, 

the maximal order of correlation allowed in the null-hypothesis. 
In this paper, we chose a fixed value of m = 3, and for given ξ, the 
rejection of H0

3,ξ  implies that the data must have correlations of 
order at least ξ + 1 (for a discussion on the choice of m see below). 
A combination of tests with different values for ξ finally yields a 
lower bound for the maximal order of correlation, denoted by ξ . 
For a discussion of the properties and limitations of the CPP (e.g., 
positivity of correlations), general issues concerning CuBIC, and 
the relationship between cumulant-correlations and the higher-
order parameters of the log-linear model used by, e.g., Martignon 
et al. (1995), Schneidman et al. (2006), Shlens et al. (2006), we 
refer to the extensive discussion of Staude et al. (2009). The latter 
point is discussed in more detail also in Staude et al. (2010). In 
this section, we focus on issues that relate directly to the novelties 
of the present study.

Before going into detail, we need to make a general remark. 
CuBIC is a parametric procedure, and assumes that the data, i.e., 
the population spike count, can be described sufficiently well by a 
discretized, potentially non-stationary CPP. If this model does not 
fit, results of CuBIC may be unreliable. The extent to which results 
are reliable then depends on the mismatch between the CPP and 
the data. In practice, where single spike trains deviate from Poisson 

in the bottom panel of the middle column) to ξ = 6  in the  
non- stationary data (Figure 4, green arrowheads in the bottom 
panel of the right column).

The adapted CuBIC
As opposed to Section “Stimulus-driven Non-stationarity” where 
properties of the carrier rate could be inferred from the stimulus, 
we here cannot make qualitative guesses about the type of non-
stationarity. The fact that firing rates fluctuate on a bin-to-bin basis 
makes it very difficult to infer the type of non-stationarity from the 
raster plots, the population spike counts Z or its distribution f

Z
. As 

a consequence, we can only make ad hoc assumptions on f
R
. We 

consider two cases. First, we allow f
R
 to be a uniform distribution 

(Figure 4, red bars and arrowheads in bottom panels). As the uniform 
distribution is symmetric, we use Eq. 26 as the objective function 
with the additional constraint β

2
 ≤ 1/3 imposed by the non-negativity 

of the carrier rate. The cumulants of the uniform distribution (see 
Cumulants of carrier distributions in Appendix) are then used for 
the computation of Var[k

3
]. Second, we allow for gamma-distributed 

non-stationarities, where we use Eq. 27 as the objective function and 
the cumulants of the gamma-distribution for the computation of 
Var[k

3
] (Figure 4, blue bars and arrowheads in bottom panels).

For the data with pure rate non-stationarity (Figure 4, left col-
umn), allowing a uniform rate variable rejects hypotheses up to 
ξ = 3 and thus yields a lower bound of ξ = 4 . Allowing f

R
 to be 

gamma-distributed, on the other hand, produces p-values above 
0.05 for all ξ = 1,…,7, thereby retaining all hypotheses. Thus, while 
the uniform null-hypotheses fail to reduce the lower bound as 
compared to the stationary version, allowing for the true, gamma-
distributed non-stationarities corrects for false positive inference 
of correlation.

For data with correlation, the choice of the carrier distribution 
has only little influence on the resulting p-values (Figure 4, bottom 
panels in middle and left column). For pure correlation, the lower 
bounds are identical for all three rate models (ξ ξ = =7 syn ). In the 
combined data set (Figure 4, right column), the additional non-
stationarity reduces the lower bound as compared to the stationary 
data with correlation to ξ = 6, irrespective of the non-stationarity 
allowed in the null-hypotheses.

refractory perIods
Besides the stationarity, CuBIC’s second central assumption is 
that spike trains of single neurons can be described as Poisson 
processes, i.e., have exponential interspike interval (ISI) distribu-
tions. While tails of ISI distributions can often be relatively well 
described by exponentials, the high probability for short intervals 
of the Poisson process contradicts the absolute refractory period of 
a few milliseconds found in most nerve cells. We investigated the 
extent to which refractoriness influences test results of CuBIC by 
re-analyzing the data of the previous sections after short ISIs were 
removed. Specifically, for each data set we assigned the events of 
the carrier process randomly to the N = 50 spike trains, removed 
spikes of all spike trains that occurred with a temporal difference 
of τ ≤ 2 ms, and constructed the population spike counts of these 
thinned spike trains. The analysis of the refractory data showed that 
introducing refractoriness has a very limited effect on test results 
(outlined bars and arrowheads in lower panels of Figures 3 and 4). 



Frontiers in Computational Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 16 | 12

Staude et al. Non-stationary higher-order correlations

correctIng for rate effects
Classically, correlations are measured on a small time scale, and 
subsequently corrected for effects from the firing rates. The estima-
tion of the firing rate, in turn, proceeds along one of the following 
two lines. Either, rate variations are identified with artifacts that 
are locked to the stimulus or some other external cue. Then, firing 
rates are estimated by averaging over repeated presentation of the 
stimulus, or trials (e.g., Perkel et al., 1967a,b; Aertsen et al., 1989). 
Alternatively, changes in firing rates are assumed to fluctuate only 
on slow time scales; they are then estimated by averaging over time. 
Although combinations, refinements and optimizations of both 
strategies have been developed (e.g., Grün et al., 2002b; Ventura 
et al., 2005; Shimazaki et al., 2009), we wish to stress that all such 
corrections make strong a priori assumptions on the differences 
between “genuine” correlations and “artifacts” induced by non-
stationary firing rates (see also Staude et al., 2008).

The correction of CuBIC, i.e. the choice of a carrier family, fol-
lows a fundamentally different strategy. Rather than assuming that 
firing rate profiles are identical over trials (first strategy) or that 
rate-fluctuations are band-limited (second strategy), the carrier 
family limits the extent to which correlations among the counting 
variables X

i
 are assigned to rate-variations. As discussed above, this 

choice ensures boundedness of the third standardized cumulant 
β

3
 = κ

3
[R]/κ

1
[R]3 of the rate variable R. As κ

3
[R] measures the skew-

ness of the carrier distribution, large values of β
3
 imply a long right 

tail. As a consequence, a population with large β
3
 has bins with very 

large values of the carrier rate R. If binned firing rates can assume 
arbitrary high values, however, the difference between global rate 
variations and precise spike coordination vanishes. Thus, the choice 
of the carrier family determines the extent to which one assigns 
patterns with high spike counts to (co-)variations of firing rates. 
In other words: the carrier family sets CuBICs demarcation line 
between rate co-variation and genuine correlation.

In Section “Case Studies”, we illustrated how CuBIC operates 
in two alternative scenarios. In Section “Stimulus-driven Non-
stationarity”, we assumed that properties of the firing rates can be 
inferred from the stimulus. Here, the stimulus was a cosine, but the 
reasoning there can be generalized to a broad class of stimuli. The 
effect of oriented bars, for instance, might be modeled by a bimodal 
carrier distribution as in Section “Different Carrier Family”,

fR ν ν ν ν ν ν ν; , , ( ) ,min max min maxη η δ ηδ( ) = − −( ) + −( )1
 

(29)

where the mixing parameter η determines the relative duration 
of the respective stimulus phases (light/dark). The carrier family 
of Eq. 29 also describes experiments with a well-defined stimu-
lus onset, as e.g., odor presentation or whisker stimulation. In 
such a scenario, η has to be chosen as the relative duration of the 
 stimulus-off/stimulus-on epoch. Furthermore, properties of the 
carrier family in “free viewing” conditions might be estimated from 
the statistical properties of the visual scene.

In the second scenario (see Internally Generated Non-
stationarities), the experimental paradigm did not provide infor-
mation about the carrier family. Here, we argued that ad hoc 
assumptions are the only option. However, if the activity of indi-
vidual neurons is available, their statistics can provide additional 
information that can be exploited. If, for instance, individual spike 

processes, for example due to refractory properties, this mismatch 
may be evaluated by analyzing surrogate data (e.g., Grün, 2009). If, 
for instance, CuBIC returns ξ = 10 in a data set of non-Poissonian 
spike trains, and the analysis of surrogate data with the same single 
process properties but without correlation yields ξ = 1, we can con-
clude that the value of ξ = 10 is really due to existing correlations. 
This kind of analysis, however, has to be performed specifically for 
a given data set. As a first step, we have here investigated the effect 
of a spike train’s most obvious deviation from the Poisson proc-
ess: absolute refractory periods (here 2 ms, Figures 3 and 4). Its 
relatively small effect on p-values makes us confident that CuBIC 
is a promising analysis method even if single spike trains deviate 
from the Poisson assumption. The detailed analysis of CuBIC’s 
robustness with respect to these violation is a central aspect of our 
current research (e.g., Staude et al., 2007; Reimer et al., 2009). We 
wish to stress that in the case of small bin sizes and hard refrac-
tory periods, assuming single processes to have Poisson statistics is 
essentially identical to the popular assumption of independence of 
subsequent bins in Bernoulli models (as in e.g., Martignon et al., 
1995; Shlens et al., 2006). A more detailed discussion of this issue, 
together with an analysis of the parameter dependence of CuBIC 
can be found in Staude et al. (2009).

A central assumption in the original presentation of CuBIC 
(Staude et al., 2009) is that the statistics of the population does 
not change over time (stationarity). In the present study, we have 
adapted CuBIC to be able to analyze also non-stationary data. The 
basis of this adaptation is a non-stationary version of the CPP, where 
the intensity of the population, parametrized by the ν, is decou-
pled from the correlation structure, parametrized by the amplitude 
distribution f

A
. Describing the population spike count as a doubly 

stochastic CPP, potential non-stationarities in the data can by inte-
grated into the quantification of the null-hypotheses of CuBIC. We 
wish to stress once again, however, that non- stationarities in single 
neurons do not necessarily imply time varying carrier rates (see, e.g., 
Figure 2A), such that not every non-stationary data set requires the 
application of the adapted CuBIC.

In this study, we presented the adaptation only for the third 
cumulant, i.e., m = 3. Although the derivation of the mathematical 
equations is straightforward also for higher values of m, the result-
ing expressions become increasingly complicated. This may result 
in particular in strong non-linearities in the maximization prob-
lem, such that additional care is necessary to ensure convergence 
of numerical solvers at the global maximum. Furthermore, the 
estimation of cumulants of order >3 becomes unreliable and their 
estimators have large variance, which may compromise test power. 
As CuBIC proved to be very sensitive even for m = 3 (Staude et al., 
2009), we currently have not developed the theory for higher m. 
Nevertheless, this might be a fruitful direction of future research.

The main difference between the stationary CuBIC and its 
non-stationary adaptation lies in the maximization of the third 
cumulant of Z. Here, the adapted version requires that the third 
standardized cumulant β

3
 = κ

3
[R]/κ

1
[R]3 of the binned carrier 

rate R does not assume arbitrary large values. In this study, this 
is achieved by prescribing a two-parameter family for the carrier 
distribution f

R
 (the “carrier family”). The remainder of this section 

is therefore primarily concerned with elucidating the role of this 
particular choice.
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variations, especially if the family assigns smaller values of β
3
 

(e.g., allowing a uniform carrier distribution if the data had a 
gamma-distributed carrier rate as in Figure 4).

3. For stationary data with correlation, allowing for non-
 stationarities in the null-hypotheses has no effect on the infer-
red lower bound. This result holds irrespective of the type of 
non-stationarity allowed in the null-hypotheses.

4. Non-stationarities in data with correlation reduce the inferred 
lower bound as compared to data with the same correlation 
structure but constant firing rates. The degree of reduction 
depends mostly on the kind of non-stationarity in the data. 
The family allowed for the carrier distribution did not affect 
the lower bound.

It is well-known that co-variations in firing rates induce cor-
relations between spike counts. Thus, it comes as no surprise that 
analyzing non-stationary data with the stationary CuBIC generates 
false positives (point 1). In the adaptation, parts of the correlation 
can be assigned to (co)-variations in firing rates. Allowing for non-
stationarities therefore corrects for this faulty inference (point 2).

To understand why the adaptation did not generally reduce 
the lower bound (point 3), we investigated the interplay between 
the constraints and the objective function in the maximization 
of the third cumulant in further detail. Due to the increased 
number of degrees of freedom, our intuition was that allowing 
for non- stationarities additional to the correlations of order ξ 
would simply increase the maximal value of the third cumu-
lant κ∗

3,ξ  as compared to the stationary version. This, however, 
seems not to be the case. In the data sets with pure correlation 
(Figures 3 and 4, middle panels), for example, the values of κ∗

3,ξ  
and κ∗

3,
,
ξ
ns are identical for ξ ≥ 4 (Figure 5B shows results for sta-

tionary, uniform and gamma-distributed rate variables, results of 
combined data sets are very similar, data not shown). The reason 
is that for a given value of the first estimated cumulant k

1
, the 

constraint k h k2 2 1
2

2= ⋅ +ξ βξ





ν  penalizes stronger non-stationarity, 
i.e., larger values of the standardized variance β

2
, with a reduction 

of the (expected) component rates ν
1
,…,νξ, and vice versa. In the 

objective function (Eq. 25)

F h k k k kν ν ν1 2 3 1
3

3 1
3

2
2

1 2 23 3, , , ,…( ) = ⋅ + − +ξ ξβ ξ β β β




 (30)

the component rates enter via ξ ξ





3⋅ ν , while the β
2
-dependence is a 

parabola with negative curvature. As
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ξ ξ

ξ











3
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⋅ = = ⋅
= =
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k

k
k

3 2
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(31)

especially for large values of ξ, the objective function profits more 
from high component rates than the constraint penalizes these. As 
a consequence, the maximization favors high component rates over 
strong rate fluctuations, especially for large ξ. The results of the 
maximization procedure for the data with pure correlation sup-
ports this interpretation, as the standardized variance of the model 
that maximizes κ

3
[Z], β2

∗, decreases with ξ (Figure 5A). For ξ ≥ 4, 
we have β∗

2 0= , and, as a consequence, the maximizing model of the 
adapted maximization problem is the same as that of the stationary 
maximization. Consequently, also the solutions κ∗

3,ξ and the p-values 

trains do not show evidence of time varying firing rates, or provide 
upper bounds for the cumulants of their firing rates, this informa-
tion may be extrapolated to the level of the carrier rate. Together 
with general moment inequalities (e.g., Kumar, 2002), such infor-
mation may help to dispose of the explicit choice of the carrier 
family by providing an explicit upper bound for β

3
. Although the 

absence of a precise parametric model for the carrier distribution 
impedes the faithful computation of Var[k

3
] under H0

3,ξ , the close 
similarity of the error-bars in Figure 5A for the different methods 
makes us confident that Var[k

3
] can be reasonably approximated by 

any carrier distribution as long as the upper bound κ∗
3,

,
ξ
ns is faithful 

(see also Section ‘What is the “true” Carrier Family?’ for conceptual 
issues concerning the choice for f

R
).

dIscussIon of case studIes
The analysis of artificial data (Figures 3 and 4) can be summarized 
by four major points:

1. For data with pure firing rate non-stationarity but no higher-
order correlations, the stationary CuBIC misinterprets the 
common rate variations as events of amplitude ≥2, i.e., as cor-
relations. The order of the inferred correlation depends on the 
kind of non-stationarity in the data (ξ = 2  for cosine carrier 
rate, ξ = 4 for gamma-distributed rate variable).

2. Allowing for potential non-stationarities in the  null-hypotheses 
can reduce this lower bound. Using the correct family for the 
carrier distribution, i.e., a cosine-like model for the data in 
Figure 3 and a gamma-distribution for the data in Figure 4, 
corrects entirely for the false positive inference of the stationary 
CuBIC, such that the lower bound becomes ξ = 1. Choosing 
the wrong family, however, may not account properly for rate 
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Figure 5 | results of the maximization (eq. 25 with appropriate 
objective functions) for data with pure correlation (see legend of Figure 3 
for parameters). (A) Normalized variance of the rate variable β2

∗ that solves 
Eq. 25 for ξ = 1,…,7 for different types of allowed non-stationarities (green: 
stationary CuBIC; red: non-stationary CuBIC allowing uniform carrier 
distribution; blue: non-stationary CuBIC allowing gamma carrier distribution). 
(B) The maximal third cumulant κ∗

3,ξ  as a function of the test parameter ξ for 
different types of allowed non-stationarities (same color code as in A). Error 
bars denote 2 3Var[ ]k , corresponding to a significance level of α ≈ 0.05, the 
dashed line is the value of the test statistic k3 and arrowheads denote rejected 
null-hypothesis where κ∗

3 3 32, [ ]ξ + <Var k k  (compare bottom panel of middle 
column in Figure 4).
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In either case, the term “correlations beyond the rate” is biologically 
meaningful only after an explicit interpretation of the term “rate” 
by the experimenter. Finally, we stress that the different choices for 
the carrier family affected the test results only weakly, especially if 
the data had genuine spike correlations (Figures 3 and 4, left and 
right columns). Thus, a perfect match between the carrier distribu-
tion underlying a Monte Carlo simulation and the family assigned 
in CuBIC does not seem to be of great importance for a reliable 
interpretation of test results.

appendIx
lIst of symBols

Symbol Meaning

xi(t) ith spike train in continuous time

Xi Counting variable of ith spike train

z(t) Carrier process, i.e., summed activity in continuous time

Z population spike count

κi[Z] ith cumulant of Z

ki ith sample cumulant of Z, i.e., k-statistic

h Bin width

λ Average firing rate of individual spike trains

fA Amplitude distribution, i.e., population-average   

 correlation structure

μi ith raw moment of amplitude distribution

ν Carrier rate

νk (Expected) compound rate of all events with amplitude k


νξ Vector of (expected) compound rates ν1,…,νξ

ξ


i Vector of ith powers of 1,…,ξ
H0

3,ξ Null-hypothesis stating that the data has correlation of  

 maximal order ξ
κ∗

3,ξ  Maximal value of κ3[Z ] given correlations of orders ≤ξ
Rs Carrier variable, mean value of the carrier rate in the sth bin

fR Carrier distribution: distribution of the {Rs}s
βk kth standardized cumulant of the carrier distribution

κ∗
3,

,
ξ
ns Maximal value of κ3[Z] given correlations of orders ≤ξ  

 and non-stationarity

the solutIon of the maxImIzatIon
This Appendix shows that the solution ( , , )ν ν∗ ∗

1 … ξ  of the stationary 
(Eq. 6) and the non-stationary maximization problem (Eq. 25) 
fulfills ν∗

k = 0  for k = 2,…,ξ − 1.
The non-stationary problem (Eq. 25) has the objective 

function

F k k k k kk
k

= + − +
=

∑ 3
1
3

3 1
3

2
2

1 2 2
1

3 3ν β β β
ξ
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2
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ξ
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are identical. Contrary to our initial  intuition, the maximization 
thus does not generally favor strong rate  variations. Evidently, 
however, the extent to which the inclusion of non- stationarities 
in the null-hypothesis alter test results depends crucially on the 
parameters of the data.

parameter-dependence of test results
The results of the case studies summarized above suggest that 
including potential non-stationarities in the null-hypothesis is 
always a safe bet: it corrects for false positive inference if correla-
tion originates from rate effects, but does not alter p-values if the 
stationary CuBIC did not overestimate the order of correlation. 
To sketch the parameter range where including non-stationarities 
reduces p-values only if necessary, recall that we have identified the 
reason for the unchanged maximal third cumulant in the interplay 
between the constraint and the objective function. Considering 
the general objective function (Eq. 25) however, we find that the 
influence of the non-stationarity (via β

2
 and β

3
) depends on the 

value of the first sample cumulant k
1
. For k

1
 < 1, non-stationarities 

(positive β
2
 and β

3
) hardly influence the objective function, hence 

the maximization can be assumed to favor high component rates 
over non-stationarities, yielding identical test results for the sta-
tionary and the adapted CuBIC. For k

1
 >> 1 a small increase in β

3
 

has a strong effect on the objective function, which may in turn 
favor strong non-stationarities, thereby producing different test 
results for the stationary and the adapted method. Thus, a crucial 
parameter for the performance of the adaptation is the first sample 
cumulant k

1
. Now k

1
 is the estimator of κ κ1 1 1 1[ ] ,Z X hi

N
i i

N
i=   == =Σ Σ λ  

where λ
i
 is the (average) firing rate of the ith neuron. Thus, given the 

summed firing rate Σi
N

i=1λ  of the recorded population, we may chose 
the bin size h in order to keep k

1
 in a range where the adaptation 

can be expected to have reasonable test power. As all simulations 
of Section “Case Studies” had k

1
 ∼ 2.5, achieving a value of k

1
 < 1 

is not always necessary.

What Is the “true” carrIer famIly?
In Section “Correcting for Rate Effects” we have presented a few 
guidelines for the choice of the family of carrier rate distributions. 
There are cases, however, where this choice is not easily justifiable 
by resorting to observable quantities. To discuss the status of this 
problem in more depth, we wish to stress that measures of correla-
tion and their various corrections are purely statistical in nature. To 
be of scientific value, statistical results have to be put in context and 
must be interpreted, e.g., in terms of biophysical mechanisms. The 
“firing rate” of a neuron, for example, is not a biophysical entity as 
such. The term arises only if one describes the variable behavior of a 
neuron using point processes. As a consequence, whether or not the 
choice of a chosen carrier family f

R
 is “valid” depends entirely on the 

intended biological interpretation. If, for example, the choice of f
R
 is 

guided by the properties of the stimulus, the natural interpretation 
of rejected null-hypothesis is that the dynamic properties of the 
neuronal network under investigation generates correlations beyond 
direct stimulus effects. In an alternative situation, f

R
 may be chosen 

to reflect the slow ongoing dynamics observed in a simultaneously 
recorded mass signal (as e.g., described in Tsodyks et al., 1999). 
Significant higher-order correlations are then interpreted as coor-
dinated activity that is not covered by such large-scale phenomena. 
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R as a function of the [0,1]-uniform variable T as R = g(T), with 
g(t) = B + Ccos(T). Denoting the uniform distribution by f

T
, the 

distribution function of R is thus given by

f r f g r
dg r

dr

C
R B

C

R T( ) ( )
( )= ( ) 





=

− −





−
−

1
1

2

1

1

The first six moments can be computed by solving 
the integrals

E R r

C
r B

C

drm m

B C

B C

  =

− −





−

+

∫ 1

1
2

,

which yields

E

E

E

E

E

R B

R B
C

R B
BC

R B B C
C

[ ] =

  = +

  = +

  = + +

2 2
2

3 3
2

4 4 2 2
4

2

3

2

3
3

8

RR B B C
BC

R B
B C B C C

5 5 3 2
4

6 6
4 2 2 4 6

5
15

8

15

2

45

8

5

16

  = + +

  = + + +E

Bimodal carrier rates

Let f
R
(ν;ν

min
,ν

max
,η) = (1 − η)δ(ν − ν

min
) + ηδ(ν − ν

max
) be a bimodal 

rate distribution, where η∈[0,1] and ν
min

,ν
max

 ∈ [0,∞]. The raw 
moments of f

R
 are

E Rm m m  = − +( ) .1 η ην νmin max

Uniform carrier rates
If R is uniformly distributed between a and b, the raw moments 
of R are given as

E R
b a

m b a
m

m m

  = −
+ −

+ +1 1

1( )( )
.

Gamma carrier rates
The moments of the gamma distribution f R k R

e

k
k

R

k
( ; , )

( )

/

θ
θ

θ

= −
−

1

Γ
 

with parameters k and θ are given as

E R
k m

k
m

m

  = +θ Γ
Γ
( )

( )
,

where Γ denotes the gamma-function.

Simple computations starting from Eqs. 33 and 34 yield

ν ν1 1 2 1
2

2
2

2

11

1
=

−
− − − −( )



=

−

∑ξ
ξ β ξ

ξ

k k k k k k
k

ν
ξ ξ

βξ

ξ

=
−

− + − −( )



=

−

∑1

1 2 1 1
2

2
2

2

1

( )
,k k k k k k

k

ν

which, after insertion into Eq. 32 yield

F k k k Hk
k

=
−

+ −( ) + −( )( ) +
=

−

∑1

1
13 2 2 2

2

1

ξ
ξ ξ ξ

ξ

ν ,
 

(35)

with

H k k k k k k k= + −( ) + + + − +1 1 2 2 1
3

3 1
3

2
2

1 2 21 1 3 3β ξ ξ ξ β β β( ) ( ) .

Now for k = 2,…,ξ − 1 we have

∂
∂

=
−

+ −( ) + −( )F k
k k

kν ξ
ξ ξ ξ

1
12 2 2

 
(36)

   k k k k≤ − + − + −ξ ξ ξ ξ1 2 2 2

 
(37)

   = + − + −k k k2 2 2ξ ξ ξ  (38)

   k k< + − + −ξ ξ ξ ξ ξ ξ2 2 2

 
(39)

   = −2 2 2ξ ξk  (40)

   2 0≤ k  

(41)

The gradient of the objective function therefore points to nega-
tive values of ν

k
 for k = 2,…,ξ − 1. Because ν

k
 ≥ 0, the maximum 

is achieved for ν
k
 = 0. In the stationary maximization problem, 

insertion of the constraints into the objective function yields the 
same F as Eq. 35, only with H = k

2
(ξ + 1). Consequently, Eqs. 36–41 

hold also in the stationary scenario.

cumulants of carrIer dIstrIButIons
For the computation of Var[k

3
] (Eq. 7) from the solutions of 

the maximization procedure, i.e., the parameters 


ν∗
ξ  and β2

∗, we 
require explicit expressions for the cumulants of the carrier dis-
tribution f

R
 up to order m = 6. Recall that we here considered only 

two-dimensional parametric families for f
R
, which implies that 

these parameters can be computed from the known mean value 
E[ ]R k k= =Σ 1

ξ ν∗  and the normalized variance β2
∗ . In the following, we 

provide explicit expressions that relate the raw moments to these 
parameters. Expressions for the cumulants are then computed by 
applying the conversion map G constructed in Section “Cumulants 
of the Non-stationary CPP”.

Cosine carrier rates
For ν(t) = B + Ccos(2πωt + d), we derive the distribution of the rate 
values R h t dts sh

s h= ∫ +1 1/ ( )( ) ν  under the assumption that subsequent 
values of R

s
 sample the cosine faithfully. In this case, we can express 
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