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Abstract: Smart manufacturing employs embedded systems such as CNC machine tools, program-
able logic controllers, automated guided vehicles, robots, digital measuring instruments, cyber-
physical systems, and digital twins. These systems collectively perform high-level cognitive tasks
(monitoring, understanding, deciding, and adapting) by making sense of sensor signals. When sensor
signals are exchanged through the abovementioned embedded systems, a phenomenon called time
latency or delay occurs. As a result, the signal at its origin (e.g., machine tools) and signal received at
the receiver end (e.g., digital twin) differ. The time and frequency domain-based conventional signal
processing cannot adequately address the delay-centric issues. Instead, these issues can be addressed
by the delay domain, as suggested in the literature. Based on this consideration, this study first
processes arbitrary signals in time, frequency, and delay domains and elucidates the significance of
delay domain over time and frequency domains. Afterward, real-life signals collected while machin-
ing different materials are analyzed using frequency and delay domains to reconfirm its (the delay
domain’s) significance in real-life settings. In both cases, it is found that the delay domain is more
informative and reliable than the time and frequency domains when the delay is unavoidable. More-
over, the delay domain can act as a signature of a machining situation, distinguishing it (the situation)
from others. Therefore, computational arrangements enabling delay domain-based signal processing
must be enacted to effectively functionalize the smart manufacturing-centric embedded systems.

Keywords: sensor signals; smart manufacturing; time latency; low data acquisition; delay domain

1. Introduction

Nowadays, the fourth industrial revolution, popularly known as Industry 4.0 [1] or
smart manufacturing [2], has been fostering profound transformations in the traditional
manufacturing landscape. It converges information and communication technologies (ICT),
internet-based infrastructures (e.g., IoT), and web-based technologies (e.g., Web 3.0/4.0 or
Semantic Web) for expediting high-level cognitive tasks such as monitoring and decision-
making. Consequently, monitoring machining processes (e.g., milling, grinding, turning,
and alike) and deciding the right course of action have become a remarkable research
topic. Monitoring a machining process generally involves two aspects, namely machine-
condition and process-condition monitoring [3,4]. Here, machine-condition monitoring
means monitoring the machine parts (e.g., gears and bearings). On the other hand, process-
condition monitoring means monitoring the process-relevant components (e.g., cutting tool
and workpiece surface). In both aspects, sensor signals (e.g., cutting force, torque, surface
roughness, vibration, acoustic emission (AE), and alike) obtained from the machining
environment play a key role.

Sensors 2021, 21, 7336. https://doi.org/10.3390/s21217336 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4584-5288
https://orcid.org/0000-0002-9644-177X
https://doi.org/10.3390/s21217336
https://doi.org/10.3390/s21217336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217336
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217336?type=check_update&version=2


Sensors 2021, 21, 7336 2 of 35

When a machining operation continues in a given smart manufacturing environment,
as seen in Figure 1, sensors collect signals. The signals are generally processed in the
time [5], frequency [6–8], and time-frequency [5,6,9] domains to extract the underlying
features. In some cases, alternative processing methods, such as fractal-based [10], Approx-
imate Entropy (ApEn)-based, and Sampling Entropy (SampEn)-based [11] methods, are
used. Subsequently, the most relevant features are then selected using some computational
arrangements (e.g., Principal Components Analysis (PCA) [12]). The abovementioned fea-
ture extraction and selection result in some machine learning algorithms. These algorithms
become the core of an intelligent monitoring system.
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Figure 1. Context of sensor signal processing in Industry 4.0.

However, the conventional signal processing methods (time, frequency, and time-
frequency domain-based processing) require high data acquisition rates [13] and cannot
mimic the dynamics underlying the signals [11]. Now, complex communication networks
underlying smart manufacturing entail a phenomenon called time latency (also known
as time delay) [14,15], which results in a low data acquisition rate. In addition, a high
data acquisition rate requires a high data storage capacity and energy-intensive sensor
networks [16]. Thus, a high data acquisition rate is not even desirable. As such, alternative
methods are needed to tackle the abovementioned issues. Unfortunately, enough studies
have not yet been conducted in this direction. This study fills this gap by adapting the delay
domain-based signal processing method [17]. In particular, this study investigates the
implications of the time latency domain or delay domain for understanding the dynamics
underlying a given sensor signal. In addition, real-life sensor signals collected while
machining metallic workpieces are analyzed by both conventional and delay domain-
based approaches. Moreover, the efficacy of the delay domain in identifying different
machining situations is also elucidated.

For better understanding, the rest of this article is organized as follows. Section 2
presents a literature review on sensor signal processing methods for machine- and process-
condition monitoring. Section 3 presents the significances of the delay domain-based
signal processing since the delay domain directly incorporates time latency associated
with sensor signals. Section 4 presents a case study where delay domain-based signal
processing is deployed to make sense of sensor signals of cutting force obtained from
machining experiments. Section 5 presents the efficacy of delay domain-based processing
where it is shown that the delay domain can distinguish different machining situations
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more effectively than the frequency domain. Finally, Section 6 provides the concluding
remarks of this study.

2. Literature Review

Sensor signal processing is a mainspring for machine- and process-condition monitor-
ing in manufacturing. Its role has been intensified due to the advent of Industry 4.0-centric
embedded systems (cyber-physical systems and digital twins). Numerous researchers
have been working on implementing the existing signal processing techniques or even
developing new ones. For the sake of better understanding, some of the recent articles on
signal processing are briefly described below.

First, consider the techniques used in sensor signal processing for manufacturing.
Jáuregui et al. [6] presented a method for tool condition monitoring (TCM) in high-speed
micro-milling. It incorporates frequency and time-frequency analysis of cutting force and
vibration signals, acquired at a sampling frequency of 38,200 Hz and 89,100 Hz, respectively.
Zhou et al. [18] introduced a sound signal-based TCM approach. The approach incorpo-
rates signal processing in a time-frequency domain called Wavelet Transform Modulus
Maxima (WTMM). Chen et al. [5] proposed a method for monitoring chatter under differ-
ent cutting conditions in milling. It incorporates time series analysis (using Recurrence
Quantitative Analysis or RQA) of cutting force signals acquired at a sampling frequency of
8 kHz. Bi et al. [19] developed a method for monitoring grinding wheels while grinding
brittle materials. The monitoring method acquires acoustic emission (AE) signals at a
sampling frequency of 1 MHz and incorporates time and frequency analysis. Zhou and
Xue [8] stressed the importance of multiple sensor signal analysis for developing intelligent
monitoring systems. They also developed a multi-sensory monitoring system for TCM
in milling. The system acquires cutting force, vibration, and AE signals at a sampling fre-
quency of 50 kHz. Then, the signals are analyzed in the time, frequency, and time-frequency
(Wavelet Packet Transform or WPT) domains. Li et al. [20] presented a multi-sensory sys-
tem for identifying chatter in milling. It analyzes three signals, namely the cutting force,
acceleration, and image ripple distance in the time and frequency domains (Wavelet Packet
Decomposition or WPD). Segreto et al. [9] developed a multi-sensory system for estimating
tool wear while turning hard-to-machine nickel-based alloys. The system acquires cutting
force, AE, and vibration acceleration signals at a sampling frequency of 10 kHz, 10 kHz,
and 3 kHz, respectfully. Then it (the system) analyzes these signals in the time-frequency
(WPT) domain. Abubakr et al. [21] developed a model for detecting tool failure. The
model acquires current, vibration, and AE signals at a sampling frequency of 250 Hz. Then
it (the model) analyzes these signals in the time and frequency domains. Guo et al. [7]
developed a system for predicting surface roughness due to grinding. The system analyzes
the grinding force, vibration, and AE signals in the time and frequency domains. The
sampling frequency for the force and vibration signals is 3200 Hz, and for the AE signals, it
is 2000 kHz. Segreto et al. [22] presented a method for assessing surface roughness due to
polishing. It analyzes the AE, strain, and current signals in time and time-frequency (WPT)
domains. The corresponding sampling frequencies are 131 kHz, 16 kHz, and 0.1 kHz,
respectively. Teti et al. [10] developed an artificial neural network (ANN)-based approach
for monitoring tool health in drilling. It incorporates time, frequency, and fractal anal-
ysis of the thrust force and torque signals acquired at a sampling frequency of 10 kHz.
Wang et al. [23] introduced an event-driven tool monitoring method for predicting the
tools’ remaining useful life (RUL). It incorporates time and time-frequency analysis of
cutting force signals to build the RUL prediction model. Jin et al. [24] introduced a method
for monitoring bearing health. It acquires vibration signals at a sampling rate of 25.6 kHz.
Then it incorporates time-frequency features underlying these signals for developing health
index (HI) and predicting the bearing RUL. Bhuiyan et al. [25] investigated the relationship
between tool wear and plastic deformation in turning. For this, AE signals are acquired at
different sampling frequencies. The lowest sampling frequency studied was 50 kHz. The
signals are analyzed in the frequency domain for the sake of investigation. Lee et al. [26]
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introduced a Kernel Principal Component Analysis (KPCA)-driven method for TCM in
milling. It monitors tool wear using Kernel Density Estimation (KDE)-based T2-statistic
and Q-statistic control charts. For this, current, AE, and vibration acceleration signals are
acquired (from NASA’s milling dataset [27] at a minimum sampling frequency of 100 kHz)
and analyzed.

In sum, the manufacturing-relevant sensor signals (e.g., cutting force, spindle load, AE,
vibration, and alike) are commonly processed in the time, frequency, and time-frequency
domains. Numerous authors have also studied the technical problems and limitations of
the abovementioned sensor signal processing techniques. Some of the noteworthy studies
are briefly described as follows.

Mahata et al. [28] articulated that time or frequency domain-based signal processing is
ineffective for analyzing non-linear signals (e.g., signals underlying grinding wheel wear).
They proposed a novel method defined as the Hilbert-Huang transform (HHT). The HHT
acquires spindle power and vibration signals at a sampling frequency of 67 Hz and 10 kHz,
respectively, and analyzes them. Espinosa et al. [11] articulated that traditional frequency
analysis is not effective for unfolding the characteristics of non-linear signals, compared
to the alternative analytics such as Approximate Entropy (ApEn) and Sampling Entropy
(SampEn). Bayma et al. [29] proposed a Non-linear Output Frequency Response Functions
(NOFRFs)-based approach for analyzing non-linear systems from the contexts of condition
monitoring, fault diagnosis, and non-linear modal analysis. Bernard et al. [13] articulated
that in the machine/process-condition monitoring research area, the methods used or
introduced highly depend on high data acquisition rates. They emphasized the need for
alternative methods that can perform with low data acquisition rates to meet some chal-
lenges of intelligent manufacturing, such as fast computation and low data storage. They
also proposed a data-driven KDE function-based method for TCM. The method works with
historical datasets of spindle load signals at a sampling frequency of 1/3 Hz. Cerna and
Harvey [30] demonstrated that processing a signal dataset—associated with low sampling
frequency—in the frequency domain results in a misleading representation due to aliasing.
Du et al. [31] demonstrated that time latency and sampling rate must be synchronously opti-
mized for improving control performance in a feedback control system. Lalouani et al. [16]
described that acquiring data at higher sampling rates and its (data) transmission cause
significant energy dissipation from a sensor system. They also articulated that suppressing
energy dissipation is a prime requirement for the sustainable operation of a sensor system.
They developed an energy optimization method, which deploys in-network processing to
reduce the number of data transmissions. Halgamuge et al. [32] presented an overview of
the sources of sensor power consumption. Some sources are: sensing signals at a sampling
rate, signal conditioning, analog to digital conversion (ADC), reading/writing the sensed
data in memory, and data transmitting. They also developed an energy model for estimat-
ing the life expectancy of wireless sensor networks (WSN). Wang and Chandrakasan [33]
articulated that both the communication and computing energy need to be suppressed for
prolonging the lifetimes of the wireless sensors in a multi-sensory network. For this, they
stressed the need for an efficient signal processing method to extract meaningful informa-
tion from the sensed data. McIntire et al. [34] described the requirements of Embedded
Networked Sensor (ENS) systems from the viewpoint of critical environment monitoring.
They articulated that the ENS must consume low energy. At the same time, the ENS must
satisfy complex information processing to select proper sensor sampling. Marinkovic and
Popovici [35] developed a method for suppressing the communication energy dissipation
in a Wireless Body Area Network (WBAN) sensor node. The method adapts wireless wake-
up functionality enabled by a Wake-Up Receiver (WUR). Brunelli et al. [36] articulated that
computational tasks in a monitoring environment should consume less energy to guarantee
an energy-efficient sensor network and data center.

In sum, conventional signal processing methods (time, frequency, and time-frequency
domain-based methods) are inadequate for understanding the nature underlying non-
linear and stochastic manufacturing signals. These methods highly depend on a higher
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data acquisition rate and complex computational arrangements, which create difficulties
in storing the sensed data, consume more time to process the data, and cause energy
dissipation from the sensor network. In addition, in reality, a low data acquisition rate is a
possible outcome due to time latency (also known as delay) in complex communication
networks underlying smart manufacturing systems [14,15,37]. Therefore, apart from the
conventional methods, alternative methods must be investigated and incorporated for
signal processing and handling the abovementioned difficulties from the smart manufac-
turing context. This study addresses this issue by adapting delay domain-based signal
processing, as follows.

3. Significances of Time Latency and Delay Domain

As mentioned in the previous section, alternative signal processing methods are
needed for unfolding the effect of time latency. For this, one straightforward way might be
to adapt delay domain-based signal processing [17,38]. Few authors have embarked on this
issue—delay domain-based signal processing and its implication in smart manufacturing.
For example, Ullah [39] used delay domain-based processing for unfolding the dynamics
underlying surface roughness signal datasets. Ullah and Harib [40] proposed a rule-based
knowledge extraction process for simulating surface roughness where the rules are derived
from the delay domain-based processing of historical roughness datasets. Wang and Li [41]
used delay domain-based processing for the correlation analysis while developing a chaotic
image encryption algorithm. Ghosh et al. [42] demonstrated the impact of time latency in
signal processing. The authors articulated that the delay domain effectively encapsulates
the dynamics underlying sensor signals when time latency is concerned. The authors also
proposed a delay domain-driven hidden Markov process for developing sensor signal-
based digital twins from the viewpoint of smart manufacturing [42,43]. However, more
comprehensive studies are required to articulate the significances of time latency in sensor
signals fully. For this, delay domain-based signal processing must be considered along with
the conventional approaches (e.g., time and frequency domain-based signal processing).

Delay domain-based signal processing means transferring a dataset (time series) to
a space called the delay map [17,38]. The map considers a series of forward or backward
values from the dataset based on a forward or backward delay parameter (a non-zero
integer), respectively. For example, let {A(t) ∈ < | t = 0, ∆t, 2∆t, . . . } be a signal dataset,
where ∆t is the sampling interval. Thus, (t,A(t)) is the corresponding time series. Now, let
d be a non-zero integer to define the value of delay or time latency, i.e., d ∈ Z+. As such,
the dataset of ordered pairs {(A(t),A(t ± D))|D = d × ∆t, t = 0, ∆t, 2∆t, . . . } becomes the
corresponding delay map. The time series can be represented by indexing its elements
using a pointer, if preferred. In this case, A(t) is replaced by A(i) (=A(t)), where t = i × ∆t
and i is the pointer, i = 0, 1, . . . . As such, (A(i),A(i + d)) becomes the corresponding delay
map. For better understanding, consider the example in Figure 2.

Let S1 and S2 be the time series of two arbitrary signals, where the signal values are
S1(t), S2(t) ∈ [0,1], t = 0, 1, . . . , as shown in Figure 2. Thus, the plots shown in Figure 2 are
the time domain representations of the signals. Eight quantifiers (features) (F0, F1, F2, F3,
F4, F5, F6, F7) = (Mean, Root Mean Square (RMS), Standard Deviation (SD), Peak, Crest
Factor (CF), Shape Factor (SF), Impulse Factor (IF), and Peak to Peak (PTP)) are used to
quantify S1 and S2 in the time domain. The values of the features are plotted in Figure 3 for
both signals. As seen in Figure 3, the values of all features of S1 and S2 are almost the same.
Therefore, as far as the time domain is concerned, S1 and S2 are two very similar signals.
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Let us quantify the signals in the frequency domain. For this, the Fast Fourier Trans-
form (FFT) is performed on the datasets shown in Figure 2 and the amplitude-frequency
diagrams of S1 and S2 are constructed, as shown in Figure 4. As seen in Figure 4, the
frequencies underlying S1 (Figure 4a) and S2 (Figure 4b) also exhibit a very similar pattern.
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Finally, consider delay domain-based analysis of S1 and S2. For this, two delay maps,
as shown in Figure 5a,b for S1 and S2, respectively, are constructed. The d (delay parameter)
is set to be 1. Consider the delay map S1 (Figure 5a). In this case, the points are randomly
distributed on the delay map, revealing the fact that the value of signal at a point of time,
S1(t), can change to a value taken from the interval [0,1] randomly in the next point of time,
(S1(t+1)). On the other hand, consider the delay map shown in Figure 5b. A systematic
pattern (the points are organized on parabolic curve) is shown in the delay map. This
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means that value of the signal at a point of time, S2(t), cannot change to a value taken from
the interval [0,1] randomly in the next point of time, (S2(t+1)); it follows an order. This
can also be described from the viewpoint of the entropy of information [44]. As reported
in Appendix A, the entropy of information underlying the delay map of S2 (Figure 5b) is
much less than that of S1 (Figure 5a), revealing the fact that S2 follows a very systematic
pattern whereas S1 is random by nature. Note that the mathematical formulations for
calculating the entropy of information are also described in detail in Appendix A.
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Nevertheless, from the above time domain, frequency domain, and delay domain
analyses, it is clear that delay domain-based analysis is more informative compared to time
domain and frequency domain-based analyses for understanding the dynamics underlying
S1 and S2. Thus, the delay domain is a powerful means to process signals.

4. Manufacturing Signal Processing

The previous section shows the significance of signal processing in the delay domain
using two arbitrary signals. In this section, real-life signals are considered to see whether
or not the delay domain remains significant in real-life settings. In particular, cutting force
signals obtained by performing machining experiments according to the settings shown in
Table 1 are considered.

Consider a machining experiment, where a set of workpiece specimens denoted as W,
∀W ∈ {W1, W2, W3} undergo end milling. Here, W1, W2, and W3 refer to the workpiece
specimens made of stainless steel (JIS: SUS304), mild steel (JIS: S15CK), and ductile cast
iron (JIS: FCD), respectively. Table 1 summarizes corresponding machining conditions (e.g.,
spindle speed N (rpm), feed per tooth f (mm/tooth), depth of cut ap (mm), width of cut ae
(mm), and alike) in detail. Figure 6 schematically illustrates the outline of the experiment
and relative conditions (see the segment denoted as A).

As seen in Figure 6, the corresponding cutting force signals are obtained using a sensor
called rotary dynamometer (also described in Table 1) while machining W. Let, FW(t), t = 0,
∆t, 2∆t, . . . , m× ∆t, be the force signals of W, as shown in the segment ‘B’ in Figure 6. Here,
∆t denotes a sampling period of 0.02 ms. The goal is to analyze the FW under low data
acquisition scenarios for understanding the underlying dynamics. Note that a low data
acquisition scenario can evolve from two different cases: (1) a short sampling window and
(2) a low sampling rate due to time latency or delay. For this, the FW is analyzed considering
both the abovementioned cases, as described in the following sub-sections, respectively.
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Table 1. Conditions for machining experiment.

Item Description

Machine tool
Vertical machining center

Make: Mori Seiki
Model: NV5000

Cutting tool

Carbide Φ6 solid end mil
Make: Mitsubishi Hitachi

Model: EPP4060-P-CS
Number of teeth (nt): 4

Sensor
Rotary dynamometer

Make: Kistler
Type: 9170A

Workpiece material
Stainless steel (JIS: SUS304)

Mild steel (JIS: S15CK)
Ductile cast iron (JIS: FCD)

Cutting velocity (vc) 220 m/min

Spindle speed (N) 11677 rpm

Feed per tooth (f ) 0.1 mm/tooth

Feed rate (vf) 4671 mm/min

Depth of cut (ap) 1.0 mm

Width of cut (ae) 0.5 mm
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Figure 6. Outline of the machining experiment and signal acquisition.

4.1. Analyzing Sensor Signals under Different Sampling Windows

In Industry 4.0-centric systems, the sensor signal sampling windows may vary due to
physical limitations and suppressing energy dissipation. Therefore, signals sampled using
different sampling windows must be considered. Each piece of sampled signals can then
be analyzed in the time, frequency, and delay domains, respectively.
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Consider the cutting force signal obtained while machining stainless steel (SUS304),
i.e., FW1 . Figure 7 shows its time series. As seen in Figure 7, the sample size of FW1 is
denoted as LW1 , where LW1 = 7501. FW1 is sampled four times using four different sampling
windows (light blue colored regions in the time series of FW1 ). This results in four new
signals denoted as FW1S1 , . . . , FW1S4 . The corresponding sample sizes are denoted as LW1S1 ,
. . . , LW1S4 , where LW1S1 = 5001, LW1S2 = 2501, LW1S3 = 1501, and LW1S4 = 501.
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Figure 7. Sampling the cutting force signal for machining stainless steel (SUS304).

For the sake of analysis, the signals FW1 and FW1S1 , . . . , FW1S4 are transferred to the
frequency domain (using FFT) and delay domain (using d = 1, as described in Section 3).
As such, Figure 8 shows the time series, FFT, and delay map for FW1 . Figures 9–12 show
the time series, FFT, and delay map for FW1S1 , . . . , FW1S4 , respectively.
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Figure 8. FW1 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure 9. FW1S1 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure 10. FW1S2 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure 11. FW1S3 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure 12. FW1S4 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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As seen in Figure 8b, the prominent frequencies underlying FW1 are 0 Hz, 780 Hz,
1560 Hz, 2333.333 Hz, 3113.333 Hz, 3893.333 Hz, and 4673.333 Hz. As seen in Figure 9b,
the prominent frequencies underlying FW1S1 are 0 Hz, 780 Hz, 1560 Hz, 2340 Hz, 3110 Hz,
3890 Hz, and 4670 Hz. As seen in Figure 10b, the prominent frequencies underlying
FW1S2 are 0 Hz, 780 Hz, 1560 Hz, 2340 Hz, and 3120 Hz. As seen in Figure 11b, the
prominent frequencies underlying FW1S3 are 0 Hz, 766.6667 Hz, 1566.667 Hz, 2333.333 Hz,
and 3133.333 Hz. As seen in Figure 12b, the prominent frequencies underlying FW1S4 are
0 Hz, 800 Hz, 1600 Hz, 2300 Hz, and 3100 Hz. This means that the frequency information
varies with the sampling window. In addition, the FFT pattern gets affected when the
sampling window is shorter (see Figure 12b compared to Figure 8b).

On the other hand, the delay maps shown in Figures 8c, 9c, 10c, 11c and 12c exhibit
similar characteristics under different sampling windows. In particular, the returns of
points from one to another are identical. This means that the underlying nature of the
FW1 and FW1S1 , . . . , FW1S4 are the same, regardless of the sample size. In addition, the
density of points underlying the delay maps provides meaningful insight into the sample
size of the signal. For example, the density of the delay map shown in Figure 12c is
lighter compared to that of in Figure 8c, which mean the corresponding signal FW1S4 (see
Figure 12a) undergoes a low sampling window compared to the FW1 (see Figure 8a).

Nevertheless, similar outcomes are observed for the other two workpiece speci-
mens, i.e., W2 = mild steel (S15CK) and W3 = ductile cast iron (FCD), as described in
Appendices B and C, respectively.

4.2. Analyzing Sensor Signals under Different Time Latencies

Consider the cutting force signal obtained while machining stainless steel (SUS304),
i.e., FW1 (t), t = 0, ∆t, 2∆t, . . . , m × ∆t (which can also be seen in Figure 6). As mentioned
before, here ∆t is the sampling period of 0.02 ms. To incorporate time latency or delay, ∆t
is increased using the delay parameter d (non-zero integer), such as d × ∆t. For example,
for d = 1, the sampling period remains 1 × 0.02 = 0.02 ms; for d = 2, the sampling period
becomes 2 × 0.02 = 0.04 ms; and alike. As mentioned in Section 3, d × ∆t is simplified
using D, where D = d × ∆t. As such, a set of time series is generated using D where d = 1, 2,
. . . . The goal is to understand the dynamics underlying the cutting force. For this, the time
series datasets are transferred to the frequency domains (using FFT) and corresponding
delay domains. Table 2 shows the outcomes for some of the delays, i.e., d = 1, 5, 10, 20, 30,
40, 50, and 60.

As seen in Table 2, when d increases, the frequency information underlying the FW1

gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).

On the other hand, consider the delay maps consisting of the points (FW1 (t), FW1 (t+D))
shown in Table 2. When d = 1, the delay map exhibits a very systematic pattern. When d
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 20,
30, 40, and 50). This means that the signal gets more and more chaotic due to the presence
of delay. However, when d = 60, the corresponding delay map is somewhat systematic and
similar to that of d = 5. This means that the underlying natures of these two signals are
similar, regardless of the difference in the sampling rate. It is worth mentioning that the
corresponding FFTs (see the FFTs for d = 5 and d = 60 shown in Table 2) are different and do
not preserve the nature of the source signal. As such, delay domain-based representation
is more informative for understanding the underlying nature of FW1 under a low data
acquisition rate due to time latency.
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Table 2. FW1 in the form of time series, FFT, and delay map under varying delay (d).
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Table 2. Cont.

Time Series FFT Delay Map
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To summarize, as seen in Table 3, real-life cutting force signals collected while ma-
chining different materials (stainless steel, mild steel, and ductile cast iron) are analyzed 
in the frequency and delay domains. This time, both the signal window and the amount 
of delay are varied to see their effect on signal processing. In the case of the signal window, 
it is found that both frequency and delay domains are effective for understanding the sig-
nals’ original nature for a larger window. On the other hand, the delay domain is more 
effective for smaller windows than the frequency domain. This is because frequency in-
formation gets lost or distorted when the sample size is smaller, whereas the delay domain 
retains the dynamics associated with the signals regardless of the sample size. In the case 
of varying delay, it is found that when delay increases, the frequency spectrum gets af-
fected. The prominent frequencies of the original signal are gradually lost due to aliasing 
when the delay exceeds a critical value. On the other hand, when the delay increases, the 
delay domain gets more and more scattered. Furthermore, for some critical values of delay 
(one may be very high and the other may be very low), the delay domains exhibit similar 
characteristics, which is not the case for the frequency domains. Thus, when a very short 
window or low sampling rate (high delay) is used to analyze a signal, delay domains 
guarantee its (signal’s) original nature. This means that the delay domain-based represen-
tation is more robust in understating the nature of a sensor signal subjected to high time 
latency, a common phenomenon in Industry 4.0-relevant manufacturing environments. 

Table 3. Summary of observations from manufacturing signal processing. 

Analyzing Signals under Different Sampling Windows 

Sample Size 
Observations 

Frequency Domain Delay Domain 

Larger 

# Meaningful frequency information is 
prominent. 

# Effective for understanding the signals’ 
original nature. 

# Point clouds’ density is higher. 
# The density clearly signifies the sample size. 

# Effective for understanding the signals’ original nature. 

Smaller 

# Frequency information significantly varies 
with the sample size. 

# Frequency information gets lost or distorted. 
# For smaller sample size, the fast Fourier 
transformation (FFT) exhibits a different 
pattern than that of the signal with larger 

sample size. 
# Not so effective for understanding the 

original nature underlying a signal. 
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Nevertheless, similar outcomes are observed for the other two workpiece speci-
mens, i.e., W2 = mild steel (S15CK) and W3 = ductile cast iron (FCD), as described in
Appendices D and E, respectively.



Sensors 2021, 21, 7336 14 of 35

To summarize, as seen in Table 3, real-life cutting force signals collected while machin-
ing different materials (stainless steel, mild steel, and ductile cast iron) are analyzed in the
frequency and delay domains. This time, both the signal window and the amount of delay
are varied to see their effect on signal processing. In the case of the signal window, it is
found that both frequency and delay domains are effective for understanding the signals’
original nature for a larger window. On the other hand, the delay domain is more effective
for smaller windows than the frequency domain. This is because frequency information
gets lost or distorted when the sample size is smaller, whereas the delay domain retains the
dynamics associated with the signals regardless of the sample size. In the case of varying
delay, it is found that when delay increases, the frequency spectrum gets affected. The
prominent frequencies of the original signal are gradually lost due to aliasing when the
delay exceeds a critical value. On the other hand, when the delay increases, the delay
domain gets more and more scattered. Furthermore, for some critical values of delay (one
may be very high and the other may be very low), the delay domains exhibit similar charac-
teristics, which is not the case for the frequency domains. Thus, when a very short window
or low sampling rate (high delay) is used to analyze a signal, delay domains guarantee
its (signal’s) original nature. This means that the delay domain-based representation is
more robust in understating the nature of a sensor signal subjected to high time latency, a
common phenomenon in Industry 4.0-relevant manufacturing environments.

Table 3. Summary of observations from manufacturing signal processing.

Analyzing Signals under Different Sampling Windows

Sample Size
Observations

Frequency Domain Delay Domain

Larger
# Meaningful frequency information is prominent.

# Effective for understanding the signals’
original nature.

# Point clouds’ density is higher.
# The density clearly signifies the sample size.

# Effective for understanding the signals’
original nature.

Smaller

# Frequency information significantly varies with
the sample size.

# Frequency information gets lost or distorted.
# For smaller sample size, the fast Fourier

transformation (FFT) exhibits a different pattern
than that of the signal with larger sample size.

# Not so effective for understanding the original
nature underlying a signal.

# Point clouds’ density is lower.
# The density clearly signifies the sample size.

# Regardless of the sample size, the delay maps
retain the dynamics.

# Effective for understanding the original nature
underlying a signal.

Analyzing Signals under Different Time Latencies or Delay

Delay,
d = 1, . . . , 100

Observations

Frequency Domain Delay Domain

d < 5
# Meaningful frequency information is prominent.
# Effective for understanding the signals’ original

nature.

# Delay maps exhibit very systematic patterns.
# Effective for understanding the signals’ original

nature.

d = 5

# Meaningful frequency information is somewhat
prominent.

# Effective for understanding the signals’ original
nature.

# Delay map exhibit somewhat systematic pattern.
# Effective for understanding the signals’ original

nature.
# Delay map starts getting scattered.

d > 5

# Meaningful frequency information is gradually
lost due to aliasing.

# Not any more effective for understanding the
signals’ original nature.

# Delay maps get scattered.
# The signal starts to get chaotic.

# The chaotic behavior of the delay map signifies
the presence of the delay.
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Table 3. Cont.

Analyzing Signals under Different Time Latencies or Delay

Delay,
d = 1, . . . , 100

Observations

Frequency Domain Delay Domain

d = 60 # Same as above

# Delay map exhibits somewhat systematic pattern
again (similar to the pattern for d = 5).

# This phenomenon signifies that delay domain
guarantees signals’ original nature for some critical

values of delay (e.g., here 5 and 60).
# This also signifies that delay domain is more
robust in understanding the nature of a signal

subjected to high time latency (or delay).

60 < d < 100 # Same as above # Delay maps get scattered again.

5. Distinguishing Machining Situations Using Delay Maps

When machining is performed, the whole process undergoes different stages or
situations. For example, at the onset and completion of machining, the cutting tool remains
idle. Between the onset and completion, the tool machines the workpiece using a set
of predefined cutting conditions. During cutting, the cutting conditions can be changed
depending on the geometry or material of the workpiece. This creates the following
situations: idle, idle to cutting, cutting with different cutting conditions/materials, cutting
to idle, and idle. During this situation, an abnormality may happen (breakage of a tool,
chatter vibration, and alike), adding other situations in the whole process. The Industry 4.0-
centric systems must understand these situations on a real-time basis from sensor signals.
Furthermore, the systems must coordinate among all machines under consideration and
decide the right courses of action. Otherwise, the safety, economy, and quality of the other
planning activities (e.g., maintenance scheduling) cannot be ensured [45]. Since delay
maps effectively understand a signal’s hidden characteristics even though the signals are
subjected to time latency, and the signal sampling window is a short one (as shown in
Sections 3 and 4), these maps can be employed to distinguish different machining situations.
This section explores this possibility showing the efficacy of the delay domain. For the sake
of better understanding, Section 5.1 describes the machining experiment and sensor signal
acquisition. Afterward, Section 5.2 describes the pre-processing of the acquired signal.
Finally, Section 5.3 describes the frequency and delay domain-based signal processing and
the obtained results.

5.1. Sensor Signal Acquisition

As seen in Figure 13, a multi-material workpiece made of stainless steel (JIS: SUS304)
and mild steel (JIS: S15CK) is machined following an end milling process. The machining
conditions are summarized in Table 4. The reasons for choosing a multi-material workpiece
over a mono-material workpiece are as follows: (1) the usage of multi-material objects is
increasing because these perform better in terms of material efficiency compared to their
mono-material counterparts [44,46], and (2) Machining a multi-material object underlies
more complex machining situations compared to machining a mono-material object.

However, the multi-material workpiece is machined from the hard-to-soft material
direction (i.e., SUS304 to S15CK), as shown in Figure 13. As such, the machining involves a
set of machining situations, denoted as MS, ∀MS ∈ {MS1, . . . , MS7}. Here, MS1 denotes the
situation when the cutting tool is idle just before the machining. MS2 denotes the transition
from an idle state to a machining state. MS3 denotes the machining of SUS304 segment.
MS4 denotes the machining of the joint area (heat-affected area while joining SUS304 and
S15CK). MS5 denotes the machining of S15CK segment. MS6 denotes the transition from a
machining state to an idle state. Finally, MS7 denotes the situation when the tool is idle
after completing the machining.
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Table 4. Machining conditions for machining a multi-material workpiece.

Item Description

Machine tool
Vertical machining center

Make: Mori Seiki
Model: NV5000

Cutting tool

Carbide Φ6 solid end mil
Make: Mitsubishi Hitachi

Model: EPP4060-P-CS
Number of teeth (nt): 4

Sensor
Rotary dynamometer

Make: Kistler
Type: 9170A

Workpiece material Stainless steel (JIS: SUS304)—Mild steel (JIS:
S15CK)

Cutting velocity (vc) 220 m/min

Spindle speed (N) 11,677 rpm

Feed per tooth (f ) 0.2 mm/tooth

Feed rate (vf) 9341 mm/min

Depth of cut (ap) 2.0 mm

Width of cut (ae) 0.5 mm

Machining direction SUS304 to S15CK

While the cutting tool is passed through the abovementioned situations, the corre-
sponding machining force signals are recorded using a rotary dynamometer (as reported in
Table 4). Let Fo be the raw force signals, ∀o ∈ {x,y,z}. Here, Fx, Fy, and Fz refer to the force
signals along the x-axis, y-axis, and z-axis, respectively. The force signals in the x-axis, i.e.,
Fx, are reported here. Figure 14 shows its time series, such as Fx(t), t = 0, ∆t, 2∆t, . . . . Here,
∆t is a sampling period of 0.02 ms.
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Figure 14. Time series of Fx(t).

5.2. Signal Pre-Processing

As seen in Figure 15, Fx(t) is sampled to seven (7) fragments based on the abovemen-
tioned machining situations (MS). The fragments are denoted as Fx1(t1), . . . , Fx7(t7) cor-
responding to MS1, . . . , MS7, respectively. The sampling spans for Fx1(t1), . . . , Fx7(t7) are as
follows: t1 = [tstart,tend] = [1000,1050] ms, t2 = [tstart,tend] = [1440,1490] ms,
t3 = [tstart,tend] = [1490,1540] ms, t4 = [tstart,tend] = [1530,1580] ms, t5 = [tstart,tend] = [1570,1620]
ms, t6 = [tstart,tend] = [1620,1670] ms, and t7 = [tstart,tend] = [1700,1750] ms, respectively.
Note that each fragment consists of 2501 samples.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 37 
 

 

Width of cut (ae) 0.5 mm 
Machining direction SUS304 to S15CK 

While the cutting tool is passed through the abovementioned situations, the corre-
sponding machining force signals are recorded using a rotary dynamometer (as reported 
in Table 4). Let Fo be the raw force signals, ∀o ∈ {x,y,z}. Here, Fx, Fy, and Fz refer to the force 
signals along the x-axis, y-axis, and z-axis, respectively. The force signals in the x-axis, i.e., 
Fx, are reported here. Figure 14 shows its time series, such as Fx(t), t = 0, Δt, 2Δt,…. Here, 
Δt is a sampling period of 0.02 ms. 

 
Figure 14. Time series of Fx(t). 

5.2. Signal Pre-Processing 
As seen in Figure 15, Fx(t) is sampled to seven (7) fragments based on the abovemen-

tioned machining situations (MS). The fragments are denoted as Fx1(t1),…, Fx7(t7) corre-
sponding to MS1,…, MS7, respectively. The sampling spans for Fx1(t1),…, Fx7(t7) are as fol-
lows: t1 = [tstart,tend] = [1000,1050] ms, t2 = [tstart,tend] = [1440,1490] ms, t3 = [tstart,tend] = 
[1490,1540] ms, t4 = [tstart,tend] = [1530,1580] ms, t5 = [tstart,tend] = [1570,1620] ms, t6 = [tstart,tend] 
= [1620,1670] ms, and t7 = [tstart,tend] = [1700,1750] ms, respectively. Note that each fragment 
consists of 2501 samples. 

 

t [ms]

F x
(t)

 [N
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-600

-400

-200

0

200

400

600

t1 [ms]

F x
1(
t 1)

 [N
]

1000 1010 1020 1030 1040 1050
-20

-10

0

10

20

t5 [ms]

F x
5(
t 5)

 [N
]

1570 1580 1590 1600 1610 1620
-600

-300

0

300

600

t2 [ms]

F x
2(
t 2)

 [N
]

1440 1450 1460 1470 1480 1490
-600

-300

0

300

600

t3 [ms]

F x
3(
t 3)

 [N
]

1490 1500 1510 1520 1530 1540
-600

-300

0

300

600

t4 [ms]

F x
4(
t 4)

 [N
]

1530 1540 1550 1560 1570 1580
-600

-300

0

300

600

t [ms]

F x
(t)

 [N
]

0 400 800 1200 1600 2000
-600

-300

0

300

600

t6 [ms]

F x
6(
t 6)

 [N
]

1620 1630 1640 1650 1660 1670
-600

-300

0

300

600

t7 [ms]

F x
7(
t 7)

 [N
]

1700 1710 1720 1730 1740 1750
-20

-10

0

10

20

Fx(t)

Fx1(t1)

Fx2(t2)

Fx3(t3) Fx4(t4) Fx5(t5)

Fx6(t6)

Fx7(t7)

MS1

MS2

MS3

MS4

MS5

MS6

MS7

Figure 15. Sampling Fx(t) based on machining situations (MS).

Nevertheless, the sampled fragments (Fx1(t1), . . . , Fx7(t7)) are analyzed in the fre-
quency and delay domains for distinguishing the corresponding machining situations
(MS1, . . . , MS7).

5.3. Analysis in the Frequency and Delay Domains

First, consider the frequency domain-based analysis. Figure 16a–g shows the fre-
quency domain representations (FFT) of Fx1(t1), . . . , Fx7(t7) corresponds to MS1, . . . , MS7,
respectively.
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Figure 16. Frequency domain representations (FFTs) of the sampled signals: (a) FFT for Fx1(t1), (b) FFT for Fx2(t2), (c) FFT
for Fx3(t3), (d) FFT for Fx4(t4), (e) FFT for Fx5(t5), (f) FFT for Fx6(t6), and (g) FFT for Fx7(t7).

As seen in Figure 16a,g, the frequency components underlying Fx1(t1) and Fx7(t7) are
the same, respectively. These frequency components are different from the frequency com-
ponents underlying Fx2(t2), . . . , Fx6(t6), as shown in Figure 16b–f, respectively. In addition,
the frequency components underlying Fx2(t2), . . . , Fx6(t6) are the same (see Figure 16b–f,
respectively). This means that the frequency domain-based analysis is effective only for
distinguishing the situations MS1 (underlying Fx1(t1)) and MS7 (underlying Fx7(t7)) from
others (MS2, . . . , MS6 underlying Fx2(t2), . . . , Fx6(t6), respectively). It is not effective for
distinguishing the situations MS2, . . . , MS6 (underlying Fx2(t2), . . . , Fx6(t6), respectively)
from each other.

Now, consider the delay domain-based analysis. For this, a set of delay maps are
constructed for each signals Fx1(t1), . . . , Fx7(t7) by varying the delay parameter d = 1, . . . ,
100. Note that the delay maps are generated following the methodology described in
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Section 3 (which can also be seen in Section 4.2). Table 5 shows some of the delay maps
corresponding to d = 1, 2, 5, 50, and 100.

Table 5. Delay maps for Fx1(t1), . . . , Fx7(t7) (corresponds to MS1, . . . , MS7) when d = 1, 2, 5, 50, and 100.

Machining Situations (MS)
MS1 MS2 MS3 MS4 MS5 MS6 MS7

Sampled Signals Corresponding to MS
Fx1(t1) Fx2(t2) Fx3(t3) Fx4(t4) Fx5(t5) Fx6(t6) Fx7(t7)

Delay Maps for Varying d

d = 1
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As seen in Figure 16a,g, the frequency components underlying Fx1(t1) and Fx7(t7) are 
the same, respectively. These frequency components are different from the frequency 
components underlying Fx2(t2),…, Fx6(t6), as shown in Figure 16b–f, respectively. In addi-
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As seen in Figure 16a,g, the frequency components underlying Fx1(t1) and Fx7(t7) are 
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As seen in Table 5, the delay maps of Fx1(t1),…,Fx7(t7) exhibit similar patterns when d 
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As seen in Table 5, the delay maps of Fx1(t1),…,Fx7(t7) exhibit similar patterns when d 
is very small (d = 1 and 2). The maps become more and more chaotic with the increase in 
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As seen in Table 5, the delay maps of Fx1(t1),…,Fx7(t7) exhibit similar patterns when d 
is very small (d = 1 and 2). The maps become more and more chaotic with the increase in 
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As seen in Table 5, the delay maps of Fx1(t1),…,Fx7(t7) exhibit similar patterns when d 
is very small (d = 1 and 2). The maps become more and more chaotic with the increase in 
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As seen in Table 5, the delay maps of Fx1(t1),…,Fx7(t7) exhibit similar patterns when d 
is very small (d = 1 and 2). The maps become more and more chaotic with the increase in 
d, as observed in Table 5. For some specific delay parameter values, a delay map corre-
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As seen in Table 5, the delay maps of Fx1(t1), . . . , Fx7(t7) exhibit similar patterns
when d is very small (d = 1 and 2). The maps become more and more chaotic with the
increase in d, as observed in Table 5. For some specific delay parameter values, a delay
map corresponding to a given machining situation exhibits a distinct pattern, although it is
not usually the case. Nevertheless, the specific values of delay for which each delay map
exhibits a distinct pattern are valuable for Industry 4.0-centric systems. In this case, the
systems make a one-to-one correspondence between a given machining situation and its
delay map, which is ideal for pattern recognition. This means that a delay map can be a
signature of a machining situation. For example, for the signals reported in Figure 15, the
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delay maps exhibit unique patterns when d = 43, as shown in Table 6. In other words, the
delay maps corresponding to d = 43 are the signatures of the machining situations MS1,
. . . , MS7.

Table 6. Delay maps for Fx1(t1), . . . , Fx7(t7) (corresponds to MS1, . . . , MS7) when d = 43.

Machining Situations (MS)
MS1 MS2 MS3 MS4 MS5 MS6 MS7

Sampled Signals Corresponding to MS
Fx1(t1) Fx2(t2) Fx3(t3) Fx4(t4) Fx5(t5) Fx6(t6) Fx7(t7)

Delay Maps for d = 43
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6. Concluding Remarks

This study elucidates the implications of time latency or delay in signal processing
from the perspective of smart manufacturing. In smart manufacturing, signal process-
ing frameworks mostly follow time and frequency analyses. In addition, there is no
systematic study from the viewpoint of manufacturing practices where delay-related
issues are addressed adequately. This study fills this gap by analyzing manufacturing-
centric sensor signals (cutting force signals) in the delay domain in addition to time and
frequency domains.

This study first studies two arbitrary chaotic signals that look alike in the time and
frequency domains. However, their differences could not be understood delay until
they are represented in the delay domain. This means that the delay domain must be
incorporated to make sense of chaotic sensor signals. Chaotic sensor signals are common
in smart manufacturing.

In the next step, real-life sensor signals relevant to manufacturing, particularly cutting
force signals collected while machining different materials (stainless steel, mild steel, and
ductile cast iron), are analyzed in frequency and delay domains. This time, both signal
window and the amount of delay are varied to see their effect on signal processing. It is
found that when delay increases, the frequency spectrum gets affected. The prominent
frequencies of the original signal are gradually lost due to aliasing when the delay exceeds
a critical value. On the other hand, when the delay increases, the delay domain gets more
and more scattered. For some critical values of delay (one may be very high and the other
may be very low), the delay domains exhibit similar characteristics, which is not the case
for the frequency domains. Thus, when a very short window or low sampling rate (high
delay) is unavoidable, the delay domains guarantee its (signal’s) original nature. This
means that the delay domain-based signal processing is more robust in understating the
nature of a sensor signal subjected to high time latency.

Lastly, the potential of the delay domain becoming a signature of a machining situation
is studied using real-life signals. For this, sensor signals are sampled exhibiting seven
different machining situations. The situations represent the onset of machining, completion
of machining, machining of different materials, and transitions situations. For some specific
delays, the delay maps make one-to-one correspondence with machining situations. This
means that a delay domain of a machine situation is different from the delay domains of
other machining situations for a critical delay. Consequently, a delay domain can be used
as a signature of a machining situation.

In synopsis, computational arrangements enabling delay domain-based signal pro-
cessing must accompany the smart manufacturing-centric embedded systems because such
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systems (CNC machine tools, PLC, robots, digital measuring instruments, cyber-physical
systems, and digital twins) are subjected to acute time latency.

Thus, the outcomes of this study contribute to the advancement of smart manufacturing.
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Appendix A. Entropy of Information

First, consider the delay maps of S1 and S2 (see Figure 5a,b).
Since {S1,S2} ⊇ [0,1], let M, N, O, P, Q be five mutually exclusive intervals in [0,1]

so that M < N < O < P < Q and M ∪ N ∪ O ∪ P ∪ Q = [0,1]. The most straightforward
definitions of the intervals are as follows: M = [0,0.2), N = [0.2,0.4), O = [0.4,0.6), P = [0.6,0.8),
and Q = [0.8,1] as shown in Figure A1.

The abovementioned intervals are the states of {S1,S2}. This means that if {S1,S2} ∈M,
then the state of {S1,S2} is M. If {S1,S2} ∈ N, then the state of {S1,S2} is N. If {S1,S2} ∈ O, then
the state of {S1,S2} is O. If {S1,S2} ∈ P, then the state of {S1,S2} is P. Finally, if {S1,S2} ∈ Q,
then the state of {S1,S2} is Q.

Now, the dynamics underlying {S1,S2} can be represented by the probabilities of the
transitions from all possible states. These transition probabilities can be denoted as Pr(Xt+D
| Yt) where ∀Xt+D ∈{Mt+D, Nt+D, Ot+D, Pt+D, Qt+D} ∈ [0,1], ∀Yt ∈ {Mt, Nt, Ot, Pt, Qt},
Mt+D = Mt = M, Nt+D = Nt = N, Ot+D = Ot = O, Pt+D = Pt = P, and Qt+D = Qt = Q, as
shown in Figure A1.
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The abovementioned transition probabilities create an entity defined as the Transition
Probability (Pr) Matrix (TM) as follows.

TM =

 Pr(Mt+D|Mt) · · · Pr(Qt+D|Mt)
...

. . .
...

Pr(Mt+D|Qt) · · · Pr(Qt+D|Qt)

. (A1)

From the abovementioned TM, the entropy of information, denoted as EYt, Yt ∈ {Mt,
Nt, Ot, Pt, Qt}, is calculated as follows. This scenario is also schematically illustrated in
Figure A1.

EMt =
Q

∑
X=M

Pr(Xt+D|Mt)×
(

log
1

Pr(Xt+D|Mt)

)
(A2)

ENt =
Q

∑
X=M

Pr(Xt+D|Nt)×
(

log
1

Pr(Xt+D|Nt)

)
(A3)

EOt =
Q

∑
X=M

Pr(Xt+D|Ot)×
(

log
1

Pr(Xt+D|Ot)

)
(A4)

EPt =
Q

∑
X=M

Pr(Xt+D|Pt)×
(

log
1

Pr(Xt+D|Pt)

)
(A5)

EQt =
Q

∑
X=M

Pr(Xt+D|Qt)×
(

log
1

Pr(Xt+D|Qt)

)
(A6)

The abovementioned EYt, Yt ∈ {Mt, Nt, Ot, Pt, Qt}, creates an Entropy Matrix (EIM),
as follows,

EIM =


EMt

ENt

EOt

EPt

EQt

. (A7)

Therefore, following the abovementioned mathematical formulations, EIM for S1 and
S2 have been calculated, as shown in Equations (A8) and (A9), respectively.

EIMS1 =


2.306239
2.314882
2.275503
2.320241
2.317203

, (A8)

EIMS2 =


0.999993
0.997939
0.996792
1.754697
1.537389

. (A9)

It is seen that the entropy underlying the delay map of S2 (see Equation (A9)) is much
less than that of S1 (see Equation (A8)). This means that S2 exhibits a systematic behavior
compared to S1, or S1 is more random by nature compared to S2.
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Appendix B. Analyzing Sensor Signals under Different Sampling Windows (Mild
Steel (S15CK) Specimen)

Consider the cutting force signal obtained while machining mild steel (S15CK), i.e.,
FW2 . Figure A2 shows its time series. As seen in Figure A2, the sample size of FW2 is
denoted as LW2 , where LW2 = 7501. FW2 is sampled four times using four different sampling
windows (light blue colored regions in the time series of FW2 ). This results in four new
signals, denoted as FW2S1 , . . . , FW2S4 . The corresponding sample sizes are denoted as LW2S1 ,
. . . , LW2S4 , where LW2S1 = 5001, LW2S2 = 2501, LW2S3 = 1501, and LW2S4 = 501.
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Figure A2. Sampling the cutting force signal for machining mild steel (S15CK).

For the sake of analysis, the signals FW2 and FW2S1 , . . . , FW2S4 are transferred to the
frequency domain (using FFT) and delay domain (using d = 1, as described in Section 3).
As such, Figure A3 shows the time series, FFT, and delay map for FW2 . Figures A4–A7
show the time series, FFT, and delay map for FW2S1 , . . . , FW2S4 , respectively.

As seen in Figure A3b, the prominent frequencies underlying FW2 are: 0 Hz, 780 Hz,
1560 Hz, 2333.333 Hz, 3113.333 Hz, 3893.333 Hz, and 4673.333 Hz. As seen in Figure A4b,
the prominent frequencies underlying FW2S1 are: 0 Hz, 780 Hz, 1560 Hz, 2340 Hz, 3110 Hz,
3890 Hz, and 4670 Hz. As seen in Figure A5b, the prominent frequencies underlying FW2S2

are: 0 Hz, 780 Hz, 1560 Hz, 2340 Hz, and 3120 Hz. As seen in Figure A6b, the prominent
frequencies underlying FW2S3 are: 0 Hz, 766.6667 Hz, 1566.6667 Hz, 2333.333 Hz, and
3100 Hz. As seen in Figure A7b, the prominent frequencies underlying FW2S4 are: 0 Hz,
800 Hz, 1600 Hz, 2300 Hz, and 3100 Hz. This means that the frequency information varies
with the sampling window. In addition, the FFT pattern gets affected when the sampling
window is shorter (see Figure A7b compared to Figure A3b).
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Figure A3. FW2 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure A4. FW2S1 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure A5. FW2S2 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).

On the other hand, the delay maps shown in Figures A3c, A4c, A5c, A6c and A7c
exhibit similar characteristics under different sampling windows. In particular, the returns
of points from one to another are identical. This means that the underlying nature of the FW2

and FW2S1 , . . . , FW2S4 are the same, regardless of the sample size. In addition, the density
of points underlying the delay maps provides meaningful insight into the sample size of
the signal. For example, the density of the delay map shown in Figure A7c is lighter than
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that of in Figure A3c, which means that the corresponding signal FW2S4 (see Figure A7a)
undergoes a low sampling window compared to the FW2 (see Figure A3a).
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Figure A6. FW2S3 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure A7. FW2S4 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).

Appendix C. Analyzing Sensor Signals under Different Sampling Windows (Ductile
Cast Iron (FCD) Specimen)

Consider the cutting force signal obtained while machining ductile cast iron (FCD),
i.e., FW3 . Figure A8 shows its time series. As seen in Figure A8, the sample size of FW3 is
denoted as LW3 , where LW3 = 7501. FW3 is sampled four times using four different sampling
windows (light blue colored regions in the time series of FW3 ). This results in four new
signals, denoted as FW3S1 , . . . , FW3S4 . The corresponding sample sizes are denoted as LW3S1 ,
. . . , LW3S4 , where LW3S1 = 5001, LW3S2 = 2501, LW3S3 = 1501, and LW3S4 = 501.

For the sake of analysis, the signals FW3 and FW3S1 , . . . , FW3S4 are transferred to the
frequency domain (using FFT) and delay domain (using d = 1, as described in Section 3).
As such, Figure A9 shows the time series, FFT, and delay map for FW3 . Figures A10–A13
show the time series, FFT and delay map for FW3S1 , . . . , FW3S4 , respectively.

As seen in Figure A9b, the prominent frequencies underlying FW3 are: 0 Hz, 780 Hz,
1560 Hz, 2333.333 Hz, 3113.333 Hz, 3893.333 Hz, and 4673.333 Hz. As seen in Figure A10b,
the prominent frequencies underlying FW3S1 are: 0 Hz, 780 Hz, 1560 Hz, 2340 Hz, 3110 Hz,
3890 Hz, and 4670 Hz. As seen in Figure A11b, the prominent frequencies underlying
FW3S2 are: 0 Hz, 780 Hz, 1560 Hz, 2340 Hz, and 3120 Hz. As seen in Figure A12b, the
prominent frequencies underlying FW3S3 are: 0 Hz, 766.6667 Hz, 1566.6667 Hz, 2333.333 Hz,
and 3100 Hz. As seen in Figure A13b, the prominent frequencies underlying FW3S4 are:
0 Hz, 800 Hz, 1600 Hz, 2400 Hz, and 3100 Hz. This means that the frequency information
varies with the sampling window. In addition, the FFT pattern gets affected when the
sampling window is shorter (see Figure A13b compared to Figure A9b).
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Figure A8. Sampling the cutting force signal for machining ductile cast iron (FCD).
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Figure A9. FW3 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure A10. FW3S1 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure A11. FW3S2 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).
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Figure A12. FW3S3 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).

On the other hand, the delay maps shown in Figures A9c, A10c, A11c, A12c and A13c
exhibit similar characteristics under different sampling windows. In particular, the returns
of points from one to another are identical. This means that the underlying nature of the
FW3 and FW3S1 , . . . , FW3S4 are the same, regardless of the sample size. In addition, the
density of points underlying the delay maps provides meaningful insight into the sample
size of the signal. For example, the density of the delay map shown in Figure A13c is lighter
than that of Figure A9c, which means that the corresponding signal FW3S4 (see Figure A13a)
undergoes a low sampling window compared to the FW3 (see Figure A9a).
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Figure A13. FW3S4 in the form of: (a) time series, (b) fast Fourier Transformation (FFT), and (c) delay map (d = 1).

Appendix D. Analyzing Sensor Signals under Different Time Latencies (Mild Steel
(S15CK) Specimen)

Consider the cutting force signal obtained while machining mild steel (S15CK), i.e.,
FW2 (t), t = 0, ∆t, 2∆t, . . . , m × ∆t (can also be seen in Figure 6). As mentioned before, here
∆t is the sampling period of 0.02 ms. To incorporate time latency or delay, ∆t is increased
using the delay parameter d (non-zero integer), such as d × ∆t. For example, for d = 1,
the sampling period remains 1 × 0.02 = 0.02 ms; for d = 2, the sampling period becomes
2 × 0.02 = 0.04 ms; and alike. As mentioned in Section 3, d × ∆t is simplified using D,
where D = d × ∆t. As such, a set of time series is generated using D where d = 1, 2, . . . . The
goal is to understand the dynamics underlying the cutting force. For this, the time series
datasets are transferred to the frequency domains (using FFT) and corresponding delay
domains. Table A1 shows the outcomes for some of the delays, i.e., d = 1, 5, 10, 20, 30, 40,
50, and 60.

As seen in Table A1, when d increases, the frequency information underlying the FW2

gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).

On the other hand, consider the delay maps consisting of the points (FW2 (t),FW2 (t+D))
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 20,
30, 40, and 50). This means that the signal gets more and more chaotic due to the presence
of delay. However, when d = 60, the corresponding delay map is somewhat systematic and
similar to that of d = 5. This means that the underlying natures of these two signals are
similar, regardless of the difference in the sampling rate. It is worth mentioning that the
corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) are
different and do not preserve the nature of the source signal. As such, delay domain-based
representation is more informative for understanding the underlying nature of FW2 under
a low data acquisition rate due to time latency.



Sensors 2021, 21, 7336 29 of 35

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d).

Time Series FFT Delay Map

d = 1

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

d = 5

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

d = 10

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de
-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de
-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 31 of 37 
 

 

As seen in Table A1, when d increases, the frequency information underlying the FW2 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW2(t),FW2(t+D)) 
shown in Table A1. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of delay. However, when d = 60, the corresponding delay map is somewhat system-
atic and similar to that of d = 5. This means that the underlying natures of these two signals 
are similar, regardless of the difference in the sampling rate. It is worth mentioning that 
the corresponding FFT plots (see the FFT plots for d = 5 and for d = 60 shown in Table A1) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW2 
under a low data acquisition rate due to time latency. 

Table A1. FW2 in the form of time series, FFT, and delay map under varying delay (d). 

Time Series FFT Delay Map 
d = 1 

   
d = 5 

   
d = 10 

   

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de
-500 1000 2500 4000 5500
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 1000 2500 4000 5500
0

25

50

75

100

125

FW2(t)
F W

2(t
+D

)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-500 500 1500 2500 3500
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

d = 20

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250



Sensors 2021, 21, 7336 30 of 35

Table A1. Cont.

Time Series FFT Delay Map

d = 30

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

d = 40

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

d = 50

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de
-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 32 of 37 
 

 

d = 20 

   
d = 30 

   
d = 40 

   
d = 50 

   
d = 60 

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-200 200 600 1000 1400
0

25

50

75

100

125

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de
-100 150 400 650 900
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-100 100 300 500 700
0

20

40

60

80

100

FW2(t)
F W

2(t
+D

)
0 50 100 150 200 250

0

50

100

150

200

250

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 100 250 400 550
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

d = 60

Sensors 2021, 21, x FOR PEER REVIEW 33 of 37 
 

 

   

Appendix E. Analyzing Sensor Signals under Different Time Latencies (Ductile Cast 
Iron (FCD) Specimen) 

Consider the cutting force signal obtained while machining ductile cast iron (FCD), 
i.e., FW3(t), t = 0, Δt, 2Δt,…, m × Δt (can also be seen in Figure 6). As mentioned before, here 
Δt is the sampling period of 0.02 ms. To incorporate time latency or delay, Δt is increased 
using the delay parameter d (non-zero integer), such as d × Δt. For example, for d = 1, the 
sampling period remains 1 × 0.02 = 0.02 ms; for d = 2, the sampling period becomes 2 × 0.02 
= 0.04 ms; and alike. As mentioned in Section 3, d × Δt is simplified using D, where D = d 
× Δt. As such, a set of time series is generated using D where d = 1, 2,…. The goal is to 
understand the dynamics underlying the cutting force. For this, the time series datasets 
are transferred to the frequency domains (using FFT) and the corresponding delay do-
mains. Table A2 shows the outcomes for some of the delays, i.e., d = 1, 5, 10, 20, 30, 40, 50, 
and 60. 

As seen in Table A2, when d increases, the frequency information underlying the FW3 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW3(t),FW3(t+D)) 
shown in Table A2. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of the delay. However, when d = 60, the corresponding delay map is somewhat sys-
tematic and similar to that of d = 5. This means that the underlying natures of these two 
signals are similar, regardless of the difference in the sampling rate. It is worth mentioning 
that the corresponding FFT plots (see the FFT plots for d = 5 and d = 60 shown in Table A2) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW3 
under a low data acquisition rate due to time latency. 

  

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 75 200 325 450
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 33 of 37 
 

 

   

Appendix E. Analyzing Sensor Signals under Different Time Latencies (Ductile Cast 
Iron (FCD) Specimen) 

Consider the cutting force signal obtained while machining ductile cast iron (FCD), 
i.e., FW3(t), t = 0, Δt, 2Δt,…, m × Δt (can also be seen in Figure 6). As mentioned before, here 
Δt is the sampling period of 0.02 ms. To incorporate time latency or delay, Δt is increased 
using the delay parameter d (non-zero integer), such as d × Δt. For example, for d = 1, the 
sampling period remains 1 × 0.02 = 0.02 ms; for d = 2, the sampling period becomes 2 × 0.02 
= 0.04 ms; and alike. As mentioned in Section 3, d × Δt is simplified using D, where D = d 
× Δt. As such, a set of time series is generated using D where d = 1, 2,…. The goal is to 
understand the dynamics underlying the cutting force. For this, the time series datasets 
are transferred to the frequency domains (using FFT) and the corresponding delay do-
mains. Table A2 shows the outcomes for some of the delays, i.e., d = 1, 5, 10, 20, 30, 40, 50, 
and 60. 

As seen in Table A2, when d increases, the frequency information underlying the FW3 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW3(t),FW3(t+D)) 
shown in Table A2. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of the delay. However, when d = 60, the corresponding delay map is somewhat sys-
tematic and similar to that of d = 5. This means that the underlying natures of these two 
signals are similar, regardless of the difference in the sampling rate. It is worth mentioning 
that the corresponding FFT plots (see the FFT plots for d = 5 and d = 60 shown in Table A2) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW3 
under a low data acquisition rate due to time latency. 

  

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 75 200 325 450
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250

Sensors 2021, 21, x FOR PEER REVIEW 33 of 37 
 

 

   

Appendix E. Analyzing Sensor Signals under Different Time Latencies (Ductile Cast 
Iron (FCD) Specimen) 

Consider the cutting force signal obtained while machining ductile cast iron (FCD), 
i.e., FW3(t), t = 0, Δt, 2Δt,…, m × Δt (can also be seen in Figure 6). As mentioned before, here 
Δt is the sampling period of 0.02 ms. To incorporate time latency or delay, Δt is increased 
using the delay parameter d (non-zero integer), such as d × Δt. For example, for d = 1, the 
sampling period remains 1 × 0.02 = 0.02 ms; for d = 2, the sampling period becomes 2 × 0.02 
= 0.04 ms; and alike. As mentioned in Section 3, d × Δt is simplified using D, where D = d 
× Δt. As such, a set of time series is generated using D where d = 1, 2,…. The goal is to 
understand the dynamics underlying the cutting force. For this, the time series datasets 
are transferred to the frequency domains (using FFT) and the corresponding delay do-
mains. Table A2 shows the outcomes for some of the delays, i.e., d = 1, 5, 10, 20, 30, 40, 50, 
and 60. 

As seen in Table A2, when d increases, the frequency information underlying the FW3 
gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost 
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).  

On the other hand, consider the delay maps consisting of the points (FW3(t),FW3(t+D)) 
shown in Table A2. When d = 1, the delay map exhibits a very systematic pattern. When d 
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 
20, 30, 40, and 50). This means that the signal gets more and more chaotic due to the pres-
ence of the delay. However, when d = 60, the corresponding delay map is somewhat sys-
tematic and similar to that of d = 5. This means that the underlying natures of these two 
signals are similar, regardless of the difference in the sampling rate. It is worth mentioning 
that the corresponding FFT plots (see the FFT plots for d = 5 and d = 60 shown in Table A2) 
are different and do not preserve the nature of the source signal. As such, delay domain-
based representation is more informative for understanding the underlying nature of FW3 
under a low data acquisition rate due to time latency. 

  

t [ms]

F W
2(t

) [
N

]

0 30 60 90 120 150
0

50

100

150

200

250

Frequency [Hz]

A
m

pl
itu

de

-50 75 200 325 450
0

20

40

60

80

100

FW2(t)

F W
2(t

+D
)

0 50 100 150 200 250
0

50

100

150

200

250



Sensors 2021, 21, 7336 31 of 35

Appendix E. Analyzing Sensor Signals under Different Time Latencies (Ductile Cast
Iron (FCD) Specimen)

Consider the cutting force signal obtained while machining ductile cast iron (FCD), i.e.,
FW3 (t), t = 0, ∆t, 2∆t, . . . , m × ∆t (can also be seen in Figure 6). As mentioned before, here
∆t is the sampling period of 0.02 ms. To incorporate time latency or delay, ∆t is increased
using the delay parameter d (non-zero integer), such as d × ∆t. For example, for d = 1,
the sampling period remains 1 × 0.02 = 0.02 ms; for d = 2, the sampling period becomes
2 × 0.02 = 0.04 ms; and alike. As mentioned in Section 3, d × ∆t is simplified using D,
where D = d × ∆t. As such, a set of time series is generated using D where d = 1, 2, . . . . The
goal is to understand the dynamics underlying the cutting force. For this, the time series
datasets are transferred to the frequency domains (using FFT) and the corresponding delay
domains. Table A2 shows the outcomes for some of the delays, i.e., d = 1, 5, 10, 20, 30, 40,
50, and 60.

As seen in Table A2, when d increases, the frequency information underlying the FW3

gets affected. The prominent frequencies (see the FFT diagram for d = 1) are gradually lost
due to aliasing [30] when d > 5 (see the FFT diagrams for d = 10, 20, 30, 40, 50, and 60).

On the other hand, consider the delay maps consisting of the points (FW3 (t),FW3 (t+D))
shown in Table A2. When d = 1, the delay map exhibits a very systematic pattern. When d
increases, the delay maps get more and more scattered (see the delay maps for d = 5, 10, 20,
30, 40, and 50). This means that the signal gets more and more chaotic due to the presence
of the delay. However, when d = 60, the corresponding delay map is somewhat systematic
and similar to that of d = 5. This means that the underlying natures of these two signals
are similar, regardless of the difference in the sampling rate. It is worth mentioning that
the corresponding FFT plots (see the FFT plots for d = 5 and d = 60 shown in Table A2) are
different and do not preserve the nature of the source signal. As such, delay domain-based
representation is more informative for understanding the underlying nature of FW3 under
a low data acquisition rate due to time latency.

Table A2. FW3 in the form of time series, FFT, and delay map under varying delay (d).
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Table A2. Cont.

Time Series FFT Delay Map
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