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Bayesian Hodges-Lehmann tests for
statistical equivalence in the two-sample
setting: Power analysis, type I error rates and
equivalence boundary selection in
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Riko Kelter

Abstract

Background: Null hypothesis significance testing (NHST) is among the most frequently employed methods in the
biomedical sciences. However, the problems of NHST and p-values have been discussed widely and various Bayesian
alternatives have been proposed. Some proposals focus on equivalence testing, which aims at testing an interval
hypothesis instead of a precise hypothesis. An interval hypothesis includes a small range of parameter values instead
of a single null value and the idea goes back to Hodges and Lehmann. As researchers can always expect to observe
some (although often negligibly small) effect size, interval hypotheses are more realistic for biomedical research.
However, the selection of an equivalence region (the interval boundaries) often seems arbitrary and several Bayesian
approaches to equivalence testing coexist.

Methods: A new proposal is made how to determine the equivalence region for Bayesian equivalence tests based
on objective criteria like type I error rate and power. Existing approaches to Bayesian equivalence testing in the
two-sample setting are discussed with a focus on the Bayes factor and the region of practical equivalence (ROPE). A
simulation study derives the necessary results to make use of the new method in the two-sample setting, which is
among the most frequently carried out procedures in biomedical research.

Results: Bayesian Hodges-Lehmann tests for statistical equivalence differ in their sensitivity to the prior modeling,
power, and the associated type I error rates. The relationship between type I error rates, power and sample sizes for
existing Bayesian equivalence tests is identified in the two-sample setting. Results allow to determine the equivalence
region based on the new method by incorporating such objective criteria. Importantly, results show that not only can
prior selection influence the type I error rate and power, but the relationship is even reverse for the Bayes factor and
ROPE based equivalence tests.

Conclusion: Based on the results, researchers can select between the existing Bayesian Hodges-Lehmann tests for
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statistical equivalence and determine the equivalence region based on objective criteria, thus improving the
reproducibility of biomedical research.

Keywords: Bayesian equivalence testing, Bayesian testing, Student’s t-test, Bayesian Biostatistics, Bayes factor, Region
of practical equivalence (ROPE)

Background
Hypothesis testing is among the most widely established
statistical methods in the biomedical sciences [1, 2]. The
often inadequate use of null hypothesis significance test-
ing (NHST) has been debated widely [3, 4], and the con-
sequences pose severe problems for scientific progress.
Among the problems of NHST are inflated type I error
rates [5, 6], the inability to make use of optional stopping
[7–9] and problems with the interpretation of censored
data [7, 8] which are frequently observed in the biomedi-
cal sciences, for example in clinical trials. Those problems
are caused mostly by the fact that frequentist NHST and
p-values violate the likelihood principle [10], which is of
paramount importance in statistical science. In contrast,
Bayesian inference is following the likelihood principle
[8, 11, 12] andmost of the above problems disappear when
utilising Bayesian data analysis and, in particular, Bayesian
hypothesis tests [13].
First, among the advantages of Bayesian inference is the

easier interpretation of interval estimates like Bayesian
credible or highest-posterior-density (HPD) intervals
compared to frequentist confidence intervals [14]. The
former quantify the probability that the parameter is
located in a specific range of values given the data, while
the latter quantify the probability that the parameter is
covered by the interval under hypothetical repetition of
the study1. Also, in Bayesian inference, probabilistic state-
ments about parameters can be made instead of relying
only on likelihood-based reasoning [13, 16].
Second, Bayesian tests follow the likelihood principle

(LP) [10] which itself implies the stopping rule princi-
ple (SRP) and the censoring principle (CP), see Berger
and Wolpert [8]. The SRP states that is does not matter
whether a study is designed with fixed sample size or until
time or funding runs out: The results of a hypothesis test
should not be influenced by the stopping rule, that is, the
decision when to stop sampling. In sharp contrast, fre-
quentist tests conflict with the LP and thus also with the
SRP and will yield different results depending on which
intentions researchers had:

“The irrelevance of stopping rules ... restores a sim-
plicity and freedom to experimental design that had

1See Lehmann [15] for a balanced perspective which focusses on the
appropriate frame of reference of the statistical inference.

been lost by emphasis on significance levels (in the
sense of Neyman and Pearson). ... The irrelevance
of stopping rules is one respect in which Bayesian
procedures are more objective than classical ones.
Classical procedures insist (...) that the intentions
of the experimenter are crucial to the interpreta-
tion of data, that 20 successes in 100 observations
means something quite different if the experimenter
intended the 20 successes than if he intended the 100
observations.”
Edwards et al. ([7], p. 239)

That is, the results of a frequentist test can be signifi-
cant or not depending on whether one started with the
intention of a fixed or variable sample size even when
the same data are observed in both cases. Bayesian tests
do not suffer from this situation [17, 18]. This is of huge
importance for practical research, as optional stopping
allows researchers to stop recruiting study participants
and report the results of the analysis when the data show
overwhelming evidence after only a fraction of the origi-
nally planned sample size is recruited. The consequences
are substantial for the biomedical sciences because the
ethical obligations for study participants are profound.
Additionally, the possibility to make use of optional stop-
ping prevents waste of research resources [19]. As noticed
by Berger and Wolpert, the “theoretical and practical
implications of the SRP to such fields as sequential analysis
and clinical trials are enormous.” ([8], p. 74).
Third, the interpretation of censored data is simplified

in the Bayesian approach: The censoring principle (CP)
is another consequence of the LP and implies that the
interpretation of data which could have been censored but
were not is identical to the interpretation of data where
no censoring was possible at all. This is also of huge value
in biomedical research, compare Pratt [20] and Dawid
[21]. Again, Bayesian inference is in accordance with the
CP, so Bayesian hypothesis testing is simplified compared
to frequentist hypothesis testing when data are censored
[22].
Due to the advantages of Bayesian inference, recent

years have brought the advent of various Bayesian hypoth-
esis tests which were invented to replace or complement
frequentist null hypothesis significance tests and p-values.
For example, in randomised controlled trials (RCT),

the two-sample Student’s and Welch’s t-test are among
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the most frequently carried out hypothesis tests [23, 24].
Often, the goal is to test the efficacy of a new treat-
ment or medication and study the size of the effect
between two groups. Usual research designs recruit a
treatment and control group and measure the differences
in a response variable between them. The status quo in
medical research for judging if a new medication is more
effective than the existing one is the p-value, which states
whether the researcher can interpret the observed differ-
ence as significant, that means unlikely to have occurred
under the assumption of the null hypothesis. The dom-
inance of p-values when comparing two groups in the
biomedical sciences is overwhelming: Nuijten et al. [23]
reported an extensive meta-analysis, which showed that
out of 258105 p-values which were reported in journals
between 1985 and 2013, 26% corresponded to a t-statistic,
compare also Wetzels et al. [24]. The recently published
analysis of the efficacy of hydroxychloroquine in patients
with COVID-19 of Chen et al. [25] shows that such two-
sample comparisons via NHST and p-values remain the
gold standard in biomedical research.

Statistical equivalence testing
The statistical model of the frequentist two-sample Stu-
dent’s t-test assumes normally distributed data with iden-
tical variances Y1i ∼ N

(
μ1, σ 2), Y2j ∼ N

(
μ2, σ 2) and

sample sizes i, j = 1, ..., n, n ∈ N. It tests the null hypoth-
esis of no difference H0 : μ2 = μ1 against the alternative
H1 : μ2 �= μ1. If the assumption of identical variances in
both groups and the assumption of identical sample sizes
i = j is removed, the situation leads to the Behrens-Fisher-
problem, to which only approximate solutions exist until
today. The typical approach is called Welch’s two-sample
t-test, and is quite reliable in practice.
Bayesian counterparts to the frequentist two-sample t-

test have been developed since 2005. Gönen et al. [26]
built on the original proposal of Jeffreys [27]. Rouder et al.
[28] extended the solution of Gönen et al. [26], and further
modifications were proposed by Wetzels et al. [29], Wang
and Liu [30], Gronau et al. [31] and Kelter [32, 33].
However, most of these approaches focus on testing a

precise point null hypothesis H0 : δ = 0, where δ = (μ1 −
μ2)/σ is the effect size according to Cohen ([34], p. 20).
The philosophical problems when using precise point null
hypotheses have been debated for a long time in the statis-
tical literature, compare Berger, Brown and Wolpert [35],
Rouder et al. [28], Kruschke and Liddell [36], and Lakens
et al. [37, 38]. Rouder et al. [28] stressed:

“It is reasonable to ask whether hypothesis testing is
always necessary. In many ways, hypothesis testing
has been employed (...) too often and too hastily (...).
To observe structure, it is often sufficient to plot esti-
mates of appropriate quantities along with measures

of estimation error (Rouder & Morey, 2005). As a
rule of thumb, hypothesis testing should be reserved
for those cases in which the researcher will entertain
the null as theoretically interesting and plausible, at
least approximately.”
Rouder et al. ([28], p. 235)

In biomedical research, it is necessary to consider alter-
natives to precise hypothesis tests, because it is reasonable
to assume any kind of effect, although often a negligibly
small one. As a consequence, the precise null hypothe-
sis H0 : δ = 0 is always false. Precise hypothesis tests,
whether frequentist or Bayesian, suffer from the property
that the null hypothesis H0 : δ = 0 is always rejected
for large enough sample sizes, even for tiny effects δ > 0
which are scientifically irrelevant.
Concerning the questionable practice of using precise

hypothesis tests as the standard method in biomedical
research, Berger et al. [39] noted:

“The decision whether or not to formulate an infer-
ence problem as one of testing a precise null hypoth-
esis centers on assessing the plausibility of such an
hypothesis. Sometimes this is easy, as in testing for
the presence of extrasensory perception, or testing
that a proposed law of physics holds. Often it is less
clear. In medical testing scenarios, for instance, it
is often argued that any treatment will have some
effect, even if only a very small effect, and so exact
equality of effects (between, say, a treatment and a
placebo) will never occur.”
Berger, Brown and Wolpert ([35], p. 145)

As exact equality of effects is highly unrealistic in almost
all biomedical research settings, it is reasonable to con-
sider equivalence testing as a more appropriate alternative
instead [32, 36–38, 40]. Equivalence tests replace a null
hypothesis H0 : δ = 0 with H0 : l ≤ δ ≤ u for prespecified
boundaries l and u, like l = −0.1 and u = 0.1 [41]. The
earliest approaches to what is today called equivalence
testing range back to Hodges and Lehmann [42] who con-
sidered testing interval hypotheses from a frequentist per-
spective. Thus, testing for statistical equivalence by means
of a Hodges-Lehmann test replaces a precise hypothesis
with an interval hypothesis. An overview about frequen-
tist approaches to equivalence testing are given by Lakens
et al. [37, 38], but this paper focusses on Bayesian equiv-
alence tests because of the previously outlined advan-
tages of Bayesian statistics in biomedical research. For
early approaches of Bayesian equivalence testing see also
Lindley [43].
Given the general recommendation of a shift towards

the Bayesian paradigm to prevent the problems of NHST
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and p-values, and given the simultaneous recommenda-
tion to consider equivalence testing approaches instead of
precise hypothesis tests, researchers are faced with sev-
eral problems when trying to implement such a shift: First,
the idea of equivalence testing is appealing, but the for-
mulation of a hypothesis in the approach is complicated.
It remains unclear based on which criteria to choose the
boundaries l and u of an imprecise hypothesis like H0 :
l ≤ δ ≤ u. Second, multiple proposals have been made on
how to conduct Bayesian equivalence tests. These include
the proposal of the region of practical equivalence (ROPE)
of Kruschke [22, 36], which itself can be implemented in
three variants. Other approaches favour the Bayes factor
[44, 45] and the Bayes factor vs. ROPE index which was
proposed by Makowski et al. [46, 47].
The availability ofmultiple proposals is insofar troubling

as even for precise hypotheses (for which the underly-
ing statistical theory is much better developed) it is still
debated which evidencemeasure is appropriate in practice
[40, 46]. Some authors argue for the use of the Bayes fac-
tor [13, 16, 48], while others regard it as problematic [49].
For example, well-known problems of the Bayes factor
include its sensitivity to the prior modeling [50] and the
computation of the necessary marginal likelihoods [51].
The latter is often possible only via advanced numerical
techniques like the Savage-Dickey density ratio [52–54] or
bridge sampling [55, 56].
Bayesian equivalence tests which employ Bayes factors

have been proposed by Morey et al. [41] and van Raven-
zwaaij et al. [44]. Solutions based on the ROPE have been
championed by Kruschke and Liddell [22, 36] and Kelter
[32], and a connection between the Bayes factor and the
ROPE has been identified by Liao et al. [57].

Contributions
Now, this paper addresses two connected problems:

(1) By now it remains unclear which approach to
Bayesian equivalence testing is preferable in practice
for a specific statistical method like the two-sample
t-test. The decision is complicated by the fact that it
remains unknown how the existing approaches
behave regarding their type I error rate, their power
to detect an existing effect, and their sensitivity to the
prior modeling.

(2) The selection of the equivalence region (or interval
hypothesis) itself presents a major obstacle to use
equivalence tests in practice. Although there exists a
variety of approaches how to select the equivalence
region, none of these is based on objective statistical
criteria like the ones mentioned in the previous point.

This paper proposes a new approach to determine the
equivalence region in Bayesian equivalence tests in the

two-sample setting based on objective criteria like the
resulting error rates, power and robustness to prior selec-
tion. Therefore, an extensive simulation study is car-
ried out to investigate the first problem. The results are
then used to provide a new method to determine the
equivalence region for Bayesian equivalence tests, thereby
providing a solution to the second problem.
This helps to decide which Bayesian equivalence test-

ing approach should be used in practice for one of the
most frequently carried out procedures in the biomedical
sciences. Also, it shows how to determine the equiva-
lence region in practice. Via the results the benefits and
limitations of the existing approaches are revealed and it
is shown how to select the sample size and equivalence
region to achieve a desired power and type I error control
in contemporary Bayesian equivalence tests. As shown by
Makowski et al. [46] and Kelter [33], a careful calibration
of Bayesian hypothesis tests regarding the prior hyper-
parameters and the sample size is necessary to benefit
from a shift towards these Bayesian tests. However, these
works were concerned primarily with precise Bayesian
hypothesis tests, not with equivalence testing.
Specifically, answers to the following research questions

are provided:

− Which type I rates are attained by the various
Bayesian equivalence testing approaches? How do
these error rates depend on sample size?

− Which sample size is necessary for a selected
Bayesian equivalence testing approach to detect a
prespecified (e.g. small, medium or large) effect size?

− How robust are the different Bayesian approaches to
equivalence testing concerning the prior modeling?

− How does the size of the equivalence region influence
the above results? That is, how do type I and II error
rates, power and robustness to the prior elicitation
vary when the size of the equivalence region is
expanded or narrowed?

− How can the equivalence region be determined in
practice via the results?

The plan of the paper is as follows: First, the existing
approaches to Bayesian equivalence testing are outlined
briefly. For readers unfamiliar with traditional frequen-
tist equivalence testing approaches, Appendix A pro-
vides a brief overview for comparison2. Subsequently, an
overview about the existing approaches how to determine
the equivalence region is provided. This helps to avoid the
claim of arbitrariness against the use of equivalence tests
in comparisonwith precise hypothesis tests. Also, it shows

2In this paper Bayesian equivalence tests are investigated. Frequentist
equivalence tests, superiority tests or non-inferiority tests are not studied,
although the Bayesian versions of the latter two can be identified as slight
modifications of Bayesian equivalence tests, which is clarified in the main text
later.
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that the proposed method to include objective criteria
like type I error rates, power and robustness to the prior
selection is new and has several advantages over existing
methods. A motivating example illustrates the challenges
of using equivalence tests in practice.
Third, the design of the simulation study is detailed.

Fourth, the results of the study are presented and dis-
cussed. Then, the available approaches to Bayesian equiv-
alence testing are compared and guidance is given when
and why to use which approach. The motivating example
is revisited to show how to use the results in practice to
determine the equivalence region boundaries and attain
a desired type I error rate and power. Finally, some chal-
lenges in implementing Bayesian equivalence testing and
directions for future research are discussed.

Bayesian approaches to equivalence testing
This section presents the existing Bayesian approaches to
equivalence testing. First, the solutions based on the Bayes
factor proposed by Morey et al. [41] and van Ravenzwaaij
et al. [44] are detailed. Second, the proposals based on the
region of practical equivalence (ROPE) made by Kruschke
[36, 58], Kruschke and Liddell [22] and Kelter [32] are
outlined.

Bayes factors for equivalence testing
Bayesian hypothesis testing often is associated with the
Bayes factor (BF). The Bayes factor BF01 is a predictive
updating factor andmeasures the change in relative beliefs
about both hypotheses H0 and H1 under consideration,
given the data x:

P(H0|x)
P(H1|x)︸ ︷︷ ︸

Posterior odds

= f (x|H0)

f (x|H1)︸ ︷︷ ︸
BF01(x)

· P(H0)

P(H1)︸ ︷︷ ︸
Prior odds

(1)

The Bayes factor BF01 is the ratio of the two marginal like-
lihoods f (x|H0) and f (x|H1) of both models, and these are
calculated by integrating out the respective model param-
eters according to their prior distributions. Generally, the
calculation of the marginal likelihoods becomes complex
for non-trivial models [51, 59], and in high-dimensional
settings often numerical techniques are preferred as a
consequence [51, 52]. In the Bayesian two-sample t-test,
the Bayes factor is used for testing the null hypothesis
H0 : δ = 0 of no effect against the one- or two-sided alter-
native H1 : δ > 0, H1 : δ < 0 or H1 : δ �= 0, under
the assumption of two independent samples and identical
standard deviations σ in both groups. To translate a given
Bayes factor into a statement about the evidence concern-
ingH0 andH1, several authors including Jeffreys [60], Kass
and Raftery [61], Goodman [62], Lee and Wagenmakers
[63], Held and Ott [64] or Van Doorn et al. [65] have
offered scales. For example, according to Van Doorn et al.

[65], a Bayes factor BF10 ≥ 3 should be interpreted as
moderate evidence for the alternative H1 relative to the
null hypothesis H0, and a Bayes factor BF10 ≥ 10 corre-
sponds to strong evidence for the alternativeH1 relative to
H0.
Among the first proposals for Bayesian equivalence tests

which use the Bayes factor was the model of Morey and
Rouder [41]. Morey and Rouder [41] separate between
three types of hypotheses: The nil hypothesis, which states
that a parameter or effect is precisely zero, the null
hypothesis, which may be restricted to a nil hypothesis but
may also allow for values which deviate slightly from the
nil, and the default hypothesis, which refers to a hypothe-
sis which is assumed to be true unless sufficient evidence
is presented against it. Morey and Rouder [41] take the
default position that the nil hypothesis never holds to
arbitrary precision, that is, there is always some kind of
effect. As a consequence, they aim to establish a region
of parameter values around the nil hypothesis which are
not “materially significant”, referring to the early ideas of
Hodges and Lehmann [42].
Concerning the two-sample t-test, Morey and Rouder

[41] started from the standard Bayesian two-sample t-test
model which uses a nil hypothesis:

HJZS
0 : δ ∼ 1{0}

HJZS
1 : δ ∼ C(0, 1)

where C(0, 1) is a Cauchy distribution with scale parame-
ter γ = 1 under the alternative HJZS

1 , and 1{0} is the Dirac
measure on 0 with 1{0}(0) = 1 and else zero. Choosing
Jeffreys’ prior p

(
σ 2) = 1/σ 2 for the prior on σ 2 in both

groups, this model is known as the Jeffreys-Zellner-Siow
(JZS) prior, compare Rouder et al. [28].

The overlapping hypotheses model
Instead of using the above model which employs a nil
hypothesis, Morey and Rouder [41] proposed the follow-
ing model with overlapping hypotheses:

yi ∼ N
(
σδ, σ 2)

δ ∼ C(0, ri)
p

(
σ 2) ∝ 1/σ 2

where i indexes the hypothesis. The null and alternative
are then given as

HOH
0 : δ ∼ C(0, r0)

HOH
1 : δ ∼ C(0, r1)

To make use of the model, one must specify r0 and r1
under both H0 and H1, and for r0 → 0 and r1 → 1 the
model recaptures the JZS-prior as a special case. As both
hypotheses for ri > 0 for i = 0, 1 share some support,
the Bayes factor for this model is called the overlapping
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hypotheses (OH) Bayes factor. Morey and Rouder [41]
recommend to use r0 = r1/10 to establish a narrow equiv-
alence region around the nil value δ = 0. For details on
how to obtain the Bayes factor in this model see Appendix
A.

The non-overlapping hypotheses model
Although the OH model is computationally appealing, it
suffers from some problems: First, while in the JZS model
there was a clear correspondence between the true effect
size and both hypotheses, for the OH model this connec-
tion is lost. A true effect of size zero can occur both under
the null and alternative hypothesis in the OH model,
which troubles interpretation. Even if the true effect size
would be known, it would not be possible to decide
betweenH0 andH1 with certainty, because both hypothe-
ses share some support, and both share the support of
δ = 0. Consequently, the OH Bayes factor BFOH

01 pro-
posed by Morey and Rouder [41] converges for increasing
sample size to a nonzero value, even when data were gen-
erated under the alternative H1. To mitigate this problem,
Morey and Rouder [41] proposed a second model, the
non-overlapping (NOH) hypotheses model:

yi ∼ N
(
σδ, σ 2)

δ ∼ tν0
p

(
σ 2) ∝ 1/σ 2

Instead of a Cauchy prior on δ, the NOH model assigns
the effect size a tν0 prior with ν0 degrees of freedom.
ν0 = 1 yields the JZS Cauchy prior, because the t1 dis-
tribution is equal to the C(0, 1) distribution. ν0 = ∞
yields a standard normal prior because of the convergence
of the tν0 -distribution to a standard normal distribution
for ν0 → ∞. The recommended default value for ν0 is
ν0 = 1, because the Cauchy distribution allows for a real-
istic range of effect sizes for biomedical research [41, 59]3.
The hypotheses for the NOHmodel are defined as:

HNOH
0 : δ ∼ tν0 for δ ∈ (−c, c)

HNOH
1 : δ ∼ tν0 for δ /∈ (−c, c)

Morey and Rouder [41] provide an expression for the
NOH Bayes factor BFNOH

01 , which requires only numeri-
cal integration to obtain the marginal likelihoods under
both HNOH

0 and HNOH
1 . To compute the NOH Bayes fac-

tor, the boundaries of the equivalence region have to be
determined, that is, the parameter c. Morey et al. [41] fol-
low Cohen [34] and use half of a small effect size as the
boundaries of the equivalence region, which is equal to
(−c, c) = (−0.1, 0.1). Importantly, in the NOH model,
both hypotheses are distinct concerning their support, in

3However, the Cauchy distribution has fat tails so it could also be reasonable
to use distributions with lighter tails as an alternative (for example, a normal
distribution).

contrast to the OH model. Additionally, the NOH Bayes
factor BFNOH

01 converges for increasing sample size n to
zero under the null hypothesis and to ∞ under the alter-
native unless the true effect size δ is on the boundary c or
−c.
Morey and Rouder [41] even proposed a third model,

the so-called hybrid model. Details are provided in
Appendix A, and it is not considered in the simulation
study later as the model has several drawbacks compared
to the OH or NOHmodels.

Informed Bayes factors for equivalence testing
A second class of approaches goes back to Gronau et al.
[31] and Van Ravenzwaaij et al. [44]. Gronau et al. [31]
proposed a parameterization based on the grand mean μ

and the standardized effect size δ, in which case the two-
sample Bayesian t-test is modelled as Yij ∼ N (μj, σ 2)
for i = 1, ..., nj, j = 1, 2, where μj = μ + (−1)j+1σδ/2.
Gronau et al. ([31], Theorem A.1) derived the two-sample
likelihood based on the grand mean and the effect size as
well as the marginal likelihood p(d|H0) under H0, where
H0 : δ = 0 (see Corollary A.1.2 in the supplementary
material of Gronau et al. [31]) and showed that the Bayes
factor BF10 of H1 : δ �= 0 against H0 : δ = 0 is given as

BF10(t) =
∫
Tν(t|√nδδ)π(δ)dδ

Tν(t)
(2)

Here, Tν(t|a) denotes the density of a t-distribution with
ν degrees of freedom and noncentrality parameter a. To
obtain this Bayes factor, Gronau et al. [31] used the prior
π0(μ, σ) ∝ 1/σ . Consequently, researchers can obtain a
Bayes factor based on any proper prior for the standard-
ized effect size δ by inserting the prior density of interest
for π(δ). Gronau et al. [31] proposed to use a t-prior, and
other options include a Cauchy or normal prior [28].
However, the model of Gronau et al. [31] is concerned

with the nil hypothesis H0 : δ = 0, and Van Ravenzwaaij
et al. [44] argued that the Bayes factor BF10 of Gronau
et al. which is based on the idea of shifting the centre μδ

of the Cauchy prior C(μδ , γδ) away from zero while allow-
ing for varying scale γδ could also be used for equivalence
testing4. Van Raavenzwaaij et al. [44] reasoned as follows:

“it is possible to calculate a Bayes factor for the same
band around δ = 0 of 2c, but there is no need as the
evidence in favor of δ = 0 can be quantified directly.
Because of this, the Bayes factor approach simplifies
testing for equivalence, such that no arbitrary band
needs to be established.”
Van Ravenzwaaij ([44], p. 6)

4Van Ravenzwaaij et al. [44] also present examples of how to apply the Bayes
factor for non-inferiority and superiority testing, for details see the original
paper.
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Consequentially, they reject using a an interval hypoth-
esis at all, as the Bayes factor BF01 can express evidence
for the nil hypothesis already. What is more, the argument
of Van Ravenzwaaij against using an equivalence region
is that an interval estimate may be entirely located inside
such a region, but may simultaneously exclude the nil
value. As a consequence, Van Ravenzwaaij [44] reasoned
that it is more useful to employ nil hypothesis testing
directly. However, we reject this argument because of the
two reasons given below.
First, values inside the equivalence region are inter-

preted as practically equivalent (see also the region of
practical equivalence approaches detailed below). As a
consequence, one cannot separate between values inside
the equivalence region (for practical purpose), and the val-
ues δ = 0.01 and δ = 0.09 are interpreted as equivalent
to δ = 0 when the equivalence region around δ = 0 is
defined as |δ| ≤ 0.1. Therefore, the paradox of an inter-
val estimate being located entirely inside the equivalence
region but excluding the nil value only occurs if it is indeed
possible to separate between values inside the equivalence
region and the nil value. In these cases, anyhow, it would
be mandatory to choose a narrower equivalence region,
because if it is possible to separate between values inside
the equivalence region it is too large for the context of
research. If the equivalence region is narrowed until all
parameter values inside are interpreted as equivalent for
practical purposes, the problem disappears because all
values inside the equivalence region are interpreted as
practically equivalent to the nil value.
Second, we do not agree with Van Ravenzwaaij et al.

[44], because the evidence for a nil hypothesis H0 : δ = 0
is not the same as evidence for a null hypothesis H0 : δ ∈
(−c, c) for a fixed boundary c. Evidence, here, is totally
abstract although in practice it would be quantified as a
necessary change in belief towards one of both hypotheses
via the Bayes factor for example, or the posterior prob-
ability. In general, it can be assumed that the evidence
obtained differs for the nil and interval hypothesis even
when the same data is used. This claim is backed up by
the results of the simulation study discussed later in this
paper.
Van Ravenzwaaij et al. [44] also provide an interval

Bayes factor based on the idea that the Bayes factor as
given in Eq. (2) can be extended to interval hypotheses.
Details can be found in Appendix A.
In summary, the derivations show that the model pro-

posed by Van Ravenzwaaij is identical to the NOH model
proposed by Morey et al. [41] when interval hypotheses
are considered, and influenced by the original solution of
Gronau et al. [31] for the nil hypothesis δ = 0. As a con-
sequence, solely the NOH solution of Morey and Rouder
[41] is reported for testing based on interval Bayes fac-
tors, but notice that the solution obtained via the approach

of Van Ravenzwaaij et al. [44] is identical. Also, the nil
hypothesis test result via the Bayes factor BF01 for H0 :
δ = 0 is reported to analyze if the reasoning of Van
Ravenzwaaij et al. [44] is legitimate5. In this case, the JZS
Bayes factor of Rouder et al. [28] is recaptured for μδ = 0
(see Gronau et al. [31]), and this setting is used in the sim-
ulation study to simplify comparisons and becauseμδ = 0
is a reasonable nil value.

The region of practical equivalence (ROPE)
The approaches to Bayesian equivalence testing presented
so far were all based on the Bayes factor. The second
branch of proposals does not employ the Bayes factor
but focusses on measuring the location of a Bayesian
interval estimate like credible or highest-posterior-density
(HPD) interval inside the region of practical equivalence,
the ROPE. The concept of an interval hypothesis (ROPE)
was independently proposed in a wide range of scientific
domains, compare Westlake [66], Kirkwood and West-
lake [67], Carlin and Louis [68], Hobbs and Carlin [69],
Schuirmann [70], Kruschke [58], Lakens [37] and Kel-
ter [32]. Conceptually, it equals the interval hypothesis
in the models of Morey et al. [41] and Van Ravenzwaaij
et al. [44].

The ROPE
As detailed above, the region of practical equivalence was
proposed independently in a variety of scientific domains
under different names “such as indifference zone, range of
equivalence, equivalence margin, margin of noninferiority,
smallest effect size of interest, and good-enough belt” as
Kruschke ([36], p. 272) notes. In the two-sample setting,
the ROPE was championed, in particular, by Kruschke
[58] and Kelter [32, 71]. Starting from the posterior dis-
tribution of the parameter of interest, researchers should
interpret values inside the region of practical equivalence
(ROPE) as equivalent for practical purposes to the value
the ROPE is defined around. For example, when con-
ducting a clinical trial which compares the heartbeats per
minute of patients in two groups, one could define that
the difference of meansμ2−μ1 is practically equivalent to
zero if it lies inside the ROPE [−3, 3]. That means a differ-
ence of three or fewer heartbeats per minute is interpreted
as practically equivalent to zero. If the posterior distribu-
tion of μ2 − μ1 now is entirely located inside the ROPE
[−3, 3], the difference μ2−μ1 is interpreted as practically
equivalent to zero a posteriori. On the other hand, if the
total probability mass of the posterior distributionμ2−μ1
is located outside the ROPE [−3, 3], the null hypothesis
μ2 = μ1 of no difference can be rejected. The same proce-
dure can be applied to any parameter, θ of interest, where
for the two-sample t-test, θ = δ, the effect size. If the

5Results show that this is not the case.
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probability mass of the posterior lies partially inside and
outside the ROPE, the situation is inconclusive.

The 95% and 100% ROPE
There are two versions of the ROPE, one in which the
95% Highest-Posterior-Density-Interval (HPD) is used for
the analysis (95% ROPE), and one in which the full poste-
rior distribution is used (full ROPE). For the effect size δ,
Kruschke [72] proposed to use [−0.1, 0.1] as the ROPE for
the null hypothesisH0 : δ = 0 of no effect, which is half of
the effect size necessary for at least a small effect accord-
ing to Cohen [34] (a small effect is defined as 0.2 ≤ δ < 0.5
or −0.5 < δ ≤ −0.2 according to Cohen [34]). This is
essentially the same proposal which was made by Morey
et al. [41] independently.

The support interval ROPE
Both the 95% and the 100% ROPE are based on Bayesian
HPD intervals. However, HPD intervals suffer from the
problem that theymay include values which have not been
corroborated by observing the data. Stating such values in
a Bayesian interval estimate like an HPD is questionable,
which is why Wagenmakers et al. [73] proposed the sup-
port interval recently. In this paper, the ROPE approach
is extended from standard HPD intervals to the support
interval as follows: The support interval ROPE is based
on the BF = k support interval, which consists of all
parameter values θ , which fulfill p(θ |x)/p(θ) > k. This
can be interpreted that values inside the BF = k support
interval have been corroborated by the data by at least a
factor k. As a default value for k for the support interval,
Wagenmakers et al. [73] proposed k = 1 because then the
resulting BF = 1 interval contains precisely those param-
eter values θ which yield a Bayes factor BF01 larger than
one. The equivalence test based on the ROPE and BF = 1
interval proceeds identically to the situation in which a
95% or 100% HPD interval is employed: If the BF = 1
support interval is located entirely inside the ROPE, the
null hypothesis described via the ROPE is confirmed. If
the BF = 1 support interval is located entirely outside the
ROPE, the null hypothesis H0 described via the ROPE is
rejected6. In cases where the support interval crosses the
ROPE boundaries, the situation remains inconclusive and
more data is required. The 95% version of the BF = 1 sup-
port interval is omitted because all values which have been

6Note that in this case, the support interval should not be given a Bayes factor
interpretation: The interval includes parameter values which have been
corroborated by the data, that is p(θ |x)/p(θ) > k. While the Savage-Dickey
Bayes factor representation allows to interpret values inside the support
interval as yielding BF01 > k, to reject the null based on Bayes factors one
would logically require parameter values which yield a BF10 > k. Thus, in
general, the support interval draws its legitimation from including values
which have been corroborated by the data, and not by the fact that sometimes
a Bayes factor interpretation can be given to them.

corroborated by observing the data should be located in
the ROPE to confirm the null hypothesis.

Methods
The previous sections showed that the principal
approaches to Bayesian equivalence testing consist of
solutions based on the Bayes factor and the ROPE. How-
ever, no matter which approach is chosen, researchers
need to choose the equivalence region (that is, the param-
eter c which determines the interval hypothesis width or
the boundary of the ROPE) and hyper-parameters in the
prior distributions7. The selection of equivalence region
boundaries is a major challenge to (Bayesian) equivalence
testing approaches and needs to be justified carefully. The
following example illustrates the challenge to determine
the equivalence region in practice.

An illustrative example: exhaled volume for lung cancer
patients with different tumour sizes
Zieba et al. [74] investigated the post-operative life
expectancy of lung cancer patients. Data was collected
at Wroclaw Thoracic Surgery Centre for patients who
underwent major lung resections for primary lung cancer
in the years 2007 to 2011. The sample consists of n = 470
patients and includes various attributes, among others the
size of the original tumour fromOC11 (smallest) to OC14
(largest) and the volume that has been exhaled at the end
of the first second of forced expiration. While the origi-
nal study investigated the post-operative life expectancy,
here the data is used to study the difference in exhaled vol-
ume between patients with different tumour sizes. Clearly,
assuming that a precise nil difference exists is unrealistic,
so an equivalence test is more appropriate. Even if a two-
sample Welch’s t-test is conducted to compare the means
of exhaled volume between patients with OC11 andOC12
tumour size classification (with respective group sizes
n = 177 and n = 257), the result turns out to be non-
significant with t = −1.0731, 368.94 estimated degrees of
freedom and a p-value of p = 0.2839. However, absence of
evidence is no evidence of absence so it is not possible to
conclude that no difference exists. In order to conduct a
(Bayesian) equivalence test, the equivalence region needs
to be determined first. Ideally, one would like to use a
formal power analysis or use subject-domain knowledge
or results from prior studies to set reasonable bounds for
the equivalence region. Still, often none of these options
is available because subject-domain knowledge does not
suggest specific boundaries and no prior research results
exist. Then, it remains unclear how to select the equiva-
lence region in an objective manner without resorting to

7An exception is given by the OH model of Morey et al. [41], where only the
widths r0 and r1 need to be specified. However, r0 can be interpreted as the
width of the equivalence region in the OH model.
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weakly justified default values like c = 0.10 for the effect
size δ.

Boundary selection of equivalence regions in (Bayesian)
equivalence tests
In this section, a new proposal is made how to deter-
mine the equivalence region for Bayesian equivalence
tests in practice. Note that the proposal deals primarily
with equivalence tests. However, the interval Bayes factor
and the ROPE can easily be used for Bayesian superi-
ority tests, too, although these are not studied in this
paper. For example, a ROPE can be selected as [ c,∞)

for some c ∈ R to resemble a superiority test of H0 :
θ ≥ c against its alternative, and the interval Bayes fac-
tor could be extended to use an interval hypothesis (c,∞)

in the same way. Inferiority tests would work accordingly.
However, the simulation study deals only with Bayesian
equivalence tests8. The results will be used later to imple-
ment the new proposal made in this section, and reanalyse
the illustrative example.
Regarding the choice of the equivalence region, Morey

and Rouder [41] stressed:

“Choices of the equivalence regions and weights of
the point nil reflect reasoned beliefs about the prob-
lem at hand. In fields where interesting effects are
smaller (...) the width of the null region may be (...)
small. In other fields, where interesting effect sizes
are larger (...) the region may be made larger to
suit. The task of selecting boundaries is simplified
somewhat by the parameterizations. The models are
parameterized with respect to standardized effect
size. General guidelines already exist (Cohen, 1988),
and we note that many journals require reporting
some measure of effect size.”
Morey and Rouder ([41], p. 25-26)

For a variety of quantities used in biomedical research
widely accepted standards exist how to interpret different
magnitudes of these quantities. Examples are effect sizes,
which have a tradition of being categorized in the biomed-
ical, social and psychological sciences, see Cohen [34].
For effect sizes, a widely accepted ROPE R around a null
hypothesis H0 : δ = 0 is given as R =[−0.1, 0.1], whose
boundaries δ = −0.1 and δ = 0.1 are half of the magni-
tude necessary for at least a small effect as defined by to
Cohen [34]. Both Kruschke [58] and Morey and Rouder
[41] proposed this default ROPE on δ9. However, the range
of proposals how to select the equivalence region (no

8In the frequentist paradigm a widespread equivalence testing procedure is
the two one-sided tests (TOST) procedure described in Lakens et al. [38], see
Appendix A.
9Similar proposals for default ROPEs as β = 0.05 for regression coefficients
have been made for logistic and linear regression models. For a mathematical
derivation see Kruschke ([36], p. 277).

matter if for frequentist or Bayesian equivalence tests) is
broad, and below only the most established options with a
focus on the biomedical sciences are outlined briefly:

(i) According to Lakens et al. [38], researchers often
know better which sample sizes are attainable in their
field of work than which effect sizes can expected to
be observed in a study. As the amount of data
available limits the effect size which can be detected,
researchers can derive the smallest effect size which
they can detect after selecting a test level α and their
sample size n and use this smallest detectable effect
size as the equivalence boundary. Note that although
it seems that this method primarily applies to
frequentist tests because the Bayesian paradigm
contains no concept of a type I error, the results of
the simulation study presented below will allow to
use this method also for Bayesian equivalence tests.

(ii) The U.S. Food and Drug Administration has
recommended equivalence bounds for establishing
bioequivalence [75], for a discussion see Senn [76].

(iii) Cook et al. [77, 78] proposed three methods: The
anchor method for determining the minimally
clinical important difference (MCID), where the
judgement of relevant stakeholders is used, compare
Jaeschke et al. [79]. The distribution method, where
both the standard error of a measurement and the
smallest detectable difference of a statistical test is
employed. The health economic method which asks
which effect is necessary in “health units” to justify the
amount of money spent for the treatment or therapy.

(iv) Weber and Popova [80] recommended to incorporate
meta-analyses to determine the equivalence region.

(v) Simonsohn [81] proposed to set the equivalence
boundary at the effect size which a previous study
would have had ≈ 33% power to detect. For details
see also Lakens et al. [38].

(vi) Ferguson [82], Beribisky, Davidson and Cribbie [83]
and Rusticus and Eva [84] argued for incorporating
pilot studies to determine the equivalence region.

(vii) Other approaches and examples which select the
equivalence region based on prior research are given
in Perugini, Gallucci & Constantini [85] and
Kordsmeyer and Penke [86].

(viii) In case none of the other justifications of equivalence
boundaries is possible, Maxwell, Lau and Howard
[87] proposed to use a trivially small value like an
effect size of δ = 0.10 according to Cohen [34]10.

(ix) Kruschke [36] provides an in-depth discussion of
selecting the boundaries for the ROPE in the
Bayesian approach.

10Lakens et al. [38] underline that this is the weakest possible justification.
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Fig. 1 Influence of sample size n on the type I error rate attained by Bayesian equivalence approaches based on the Bayes factor (left) and the ROPE
(right); the default equivalence region R =[−0.1, 0.1] is used in all settings

(x) Finally, “the ideal specific meaningful effect should be
made through a multi-faceted decision-making
process” ([83], p. 5), see also Rogers et al. [88].

Now, in addition to these proposals another one is
made: To use objective criteria like the type I error rate,
power and robustness to the prior selection to determine
the equivalence region (or to decide between available
Bayesian equivalence tests). This has the advantage that it
is a stronger justification than using recommended default
values such as δ = 0.1 – see point (viii) – and it can eas-
ily be combined with the other approaches. For example,
method (i) can be used to select a desired type I level α

and specify the attainable sample size n in the frequen-
tist paradigm. The results of the simulation study pre-
sented in this paper allow to use this method for Bayesian
equivalence tests, too. They enable to determine which
equivalence region is compatible with these desiderata
and which power is attained. While it may be the case that
the equivalence region compatible with the desired objec-
tive criteria is too broad or narrow, this approach allows to
judge the consequences of selecting an equivalence region
more objectively. Also, if prior research or pilot studies
strongly recommend a specific equivalence region – see
approaches (iii)-(vi) – the results can be used to inves-
tigate the resulting type I error rate and power when
selecting this equivalence region and pick the Bayesian
equivalence test with the best properties for a specified
equivalence region and prior distribution.

Design of the simulation study
To use the new method for equivalence region selec-
tion, a simulation study was performed to analyze the
behaviour of the different approaches to Bayesian equiv-
alence testing in the setting of Welch’s two-sample t-test.
This section details the design of the simulation study. The
next section presents the results and the section thereafter
discusses these and shows how to apply them in practice
by revisiting the illustrative example.
Pairs of data were simulated which consist of two sam-

ples, one for each group, both of which are normally
distributed. Four settings were selected to investigate the
sensitivity of the approaches: In the first setting, no effect
was present, and both groups were identically distributed
as standard normalN (0, 1). This allows studying the type
I error rate produced by each of the approaches pre-
sented in the previous sections. In the second setting, a
small effect was present, and the first group was simulated
as N (2.89, 1.84) and the second group as N (3.5, 1.56),
resulting in a true effect size of

δ = (2.89 − 3.5)
√((

1.842 + 1.562
)
/2

) ≈ −0.357 (3)

In the third simulation setting, a medium effect was
present. The first group was generated according to a
N (254.08, 2.36) distribution, and observations in the sec-
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Fig. 2 Power analysis for the Bayesian equivalence testing approaches based on the Bayes factor for small, medium and large effect sizes

ond group followed aN (255.84, 3.04) distribution, result-
ing in a true effect size of

δ = (254.08 − 255.84)
√((

2.362 + 3.042
)
/2

) ≈ −0.646 (4)

The last setting modelled data in the first group as
N (15.01, 3.4) and in the second group as N (19.91, 5.8),
which yields a true effect size of

δ = (15.01 − 19.91)
√((

3.42 + 5.82
)
/2

) ≈ −1.03 (5)

For each of the four effect size settings, 1000 datasets fol-
lowing the corresponding group distributions as detailed
above were simulated. This procedure was repeated for
different samples sizes n, ranging from n = 10 to n = 200
in steps of size 10 to investigate the influence of sample
size n on the different approaches. For the equivalence
testing approaches based on Bayes factors, the Bayes fac-
tor BF01 was computed for each data set. The equivalence
testing approaches based on the ROPE were also com-
puted for each data set. First, for each data set the over-
lapping hypotheses Bayes factor BFOH

01 was computed via
transitivity by employing two JZS Bayes factors as detailed

in Appendix A. The Cauchy prior width r0 under the null
hypothesis was selected as a tenth of the Cauchy prior
width r1 under the alternative in all simulations. Three set-
tings C(0, 1/

√
2), C(0, 1) and C(0,

√
2) were chosen under

HOH
1 which are based on the recommendations of Rouder

et al. [28] and Kelter [40]. The corresponding priors under
the null hypothesis HOH

0 in the OH model are then given
as C(0, 1/(

√
2 · 10)), C(0, 1/10) and C(0,

√
2/10).

Second, the non-overlapping hypotheses Bayes factor
BFNOH

01 was computed according to the numerical inte-
gration routine given in Morey et al. [41]. The hyper-
parameter ν was chosen as ν0 = 1 and the scale of
the resulting Cauchy prior on δ was selected as 1/

√
2, 1

and
√
2 to make the results of the OH model and NOH

model comparable (for details on the relationship between
the tν0 -prior and the Cauchy prior C(0, γ ) on δ see the
Appendix A in Morey et al. [41]).
Notice that the informed Bayes factor for equivalence

testing proposed by Van Ravenzwaaij et al. [44] using the
default hyper-parameters μδ = 0 with varying Cauchy
scales γ = 1/

√
2, γ = 1 and γ = √

2 was not
computed for each data set, because it yields identical
results as the NOH model of Morey et al. [41] (interested
readers can check this in the provided replication script
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provided at the Open Science Foundation under https://
osf.io/2cs75/).
Fourth, the 95% and 100% ROPE equivalence tests based

on the standard HPD interval were computed for each
data set, and subsequently, the ROPE equivalence test
based on the (100%) BF = 1 support interval was con-
ducted.
All simulations were repeated for three different ROPEs:

The recommended default ROPE [−0.1, 0.1] around δ =
0, a narrower ROPE of [−0.05, 0.05] and a slightly wider
ROPE [−0.15, 0.15]. This allows judging the influence of
the ROPE itself on the obtained results next to the influ-
ence of the prior elicitation and sample size. The ROPEs
were selected to include the widely recommended default
choice R =[−0.1, 0.1], as well as a larger and smaller one.
ROPEs of substantial size (e.g. [−0.4, 0.4]) are of less inter-
est, as the use of accepting a very wide interval hypothesis
(likeH0 : δ ∈[−0.4, 0.4]) is of limited use in practice. Also,
effects like δ ≥ 0.2 would already be categorized as small
according to Cohen [34], so a ROPE of [−0.2, 0.2] would
already include effects which are often already regarded as
non-negligible.
The quantities of interest in the simulations were the

type I and type II errors, the power and robustness to the
prior modeling. Also, the total error rate was of interest.
While formally Bayesian statistical theory has no concept
of type I or II error, a Bayes factor BF01 < 3 (or BF10 ≥ 3)
was interpreted as a false-positive result when the true
effect size δ was zero. Similarly, if an effect was present
(no matter if small, medium or large), a Bayes factor of
BF01 ≥ 3 (or BF10 < 3) was interpreted as a false-negative
result, a type II error. The threshold reflects at least mod-
erate evidence for or against a hypothesis according to
conventional Bayes factor scales [33, 60].
A result based on the 95% ROPE or 100% ROPE equiv-

alence test using an HPD or support interval was inter-
preted false-positive when it was located completely out-
side the corresponding ROPE around δ = 0, although
the true effect size is zero. Similarly, if the HPD or sup-
port interval was located entirely inside the ROPE but the
effect size was nonzero, this was interpreted as a type II
error.
The percentage of type I and II errors was computed as

the number of significant results divided by n = 1000.
This is a Monte Carlo estimate for the type I and II error
probabilities of the different Bayesian equivalence testing
approaches and a quantity crucial for making research
reproducible [89]. The sum was calculated as a Monte-
Carlo estimate for the total error rate of a method.
As solutions based on the ROPE only require a posterior

distribution p(δ|x) of the effect size, for all results the cor-
responding posterior p(δ|x) of the NOH model of Morey
and Rouder [41] was used based on 5000 MCMC draws,
which is implemented in the BayesFactor R package

[90]. This ensures that differences in the obtained results
are not caused by the different statistical models on which
the posterior distribution is based11. The ROPE indices
were computed via the bayestestR package [47], and
the OH and NOH Bayes factors of Morey et al. [41] were
computed via the BayesFactor R package [90]12.
The statistical programming language R [91] was used

for the simulations. A commented replication script which
reproduces all results and figures is provided at the Open
Science Foundation at https://osf.io/2cs75/.

Results
This section provides the results of the simulation study.
Four subsections provide answers to the four research
questions formulated above. First, the influence of sample
size on type I errors is analysed.

Type I error rates and influence of sample size
This section analyses the first part of the first research
question: Which type I error rates are attained by the var-
ious available Bayesian approaches to equivalence testing
and how do the obtained type I error rates depend on sam-
ple size? Figure 1 shows the resulting type I error rates for
Bayesian equivalence testing approaches which are based
on the Bayes factor (left plot) and the ROPE (right plot).
Depending on the sample size n, the error rates differ. The
solid lines correspond to a medium C(0, 1/

√
2) prior, the

dashed lines to a wide C(0, 1) prior, and the dotted lines
to an ultrawide C(0,

√
2) prior. The black lines correspond

to the JZS Bayes factor of Rouder et al. [28], which tests
the precise null hypothesis H0 : δ = 0 against H1 : δ �= 0
to compare the equivalence testing approaches with this
approach, too. For increasing sample size n, the Bayes fac-
tors BF01 converge to ∞ because of the consistency of the
Bayes factor13. As a consequence, the type I error rates α

converge to zero, too. However, the speed of this conver-
gence can be slow, and the left plot in Fig. 1 reveals that the
solutions based on the Bayes factor achieve type I error
rates of about 0.02 or less. For about n = 200 samples
in each group, the type I error rate is reduced to approxi-
mately α = 0.01 or less. An exception is given by the OH
model of Morey et al. [41], which attains a type I error rate
of zero for about n ≥ 60, no matter which prior is used on
δ.
The right plot in Fig. 1 shows the situation for the

approaches based on the ROPE: First, for small sample
sizes the approaches based on the ROPE yield larger type

11Other options next to the JZS model of Rouder et al. [28] which is used to
compute the NOH model of Morey and Rouder [41] would be the Bayesian
t-test models of Kruschke [58] or Kelter [32, 71].
12The Bayes factor of Van Ravenzwaaij et al. [44] is not reported here because
it is identical to the NOH model of Morey et al. [41], but it can be computed
using the baymedr R package [45], see the provided replication script.
13An exception is the OH model of Morey et al. [41], in which the associated
Bayes factor is not consistent as discussed above.

https://osf.io/2cs75/
https://osf.io/2cs75/
https://osf.io/2cs75/
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Fig. 3 Power analysis for the Bayesian equivalence testing approaches based on the ROPE for an underlying small effect size

I error rates. Second, the BF = 1 support interval ROPE
yields the largest type I error rates of all ROPE approaches.
The 95% ROPE yields also larger type I error rates than
the full ROPE, which achieves the best type I error con-
trol. While the approaches based on the ROPE achieve an
inferior type I error control for small sample sizes com-
pared to the approaches based on the Bayes factor, for
increasing sample size n, that is, for about n ≥ 120 sam-
ples in each group the error rates are similar to the ones
of the approaches based on the Bayes factor. Additionally,
the full ROPE is an exception: It controls the type I error
rate even for small sample sizes like n = 10 or n = 20
below α = 0.01, making it an attractive option among the
ROPE-based approaches to Bayesian equivalence testing.

Power analysis and type II error rates
This section provides answers to the second research
question: Which sample size is necessary for a selected
Bayesian equivalence testing approach to detect a pre-
specified (e.g. small, medium or large) effect size?
Figure 2 shows the results for the Bayesian equiva-

lence testing approaches based on the Bayes factor: The
left, middle and right plots show the results for a small,
medium and large effect size δ, as specified in the details
about the simulation study. First, for small effects no
approach achieves a power larger than ≈ 80%, that is a
small effect is detected only with 80% probability, even
when n = 200 samples are used in each group. How-
ever, the differences between the various approaches are
profound. For the NOH model the power ranges from ≈

60− 70% when the standard ROPE R =[−0.1, 0.1] is used
and n = 200 samples are observed in each group (shown
as the dashed lines under the three different prior set-
tings), while for the narrower or wider ROPE the attained
power varies accordingly. Notice that the power of the OH
model of Morey et al. [41] (which had a superior type I
error control compared to the other approaches as shown
in Fig. 1) lacks sufficient power to detect small effects
even for large sample sizes n. Even for n = 200 samples
in each group, the OH model achieves a power of less
than 10%. Second, for increasing effect size δ, the power
of all approaches increases, which is to be expected. For
medium effect sizes, all approaches based on the Bayes
factor except for theOHmodel ofMorey et al. [41] achieve
a power of ≈ 80% for n = 60 samples in both groups.
For n ≥ 100 samples in each group, the power is close to
90 − 95%. For large effects, even n = 20 samples suffice
in each group to achieve a power of 80% as shown in the
right plot of Fig. 2.
Figure 3 shows the results for the simulation setting

of a small effect size δ for the ROPE-based approaches.
Now the left plot corresponds to the results obtained via
the medium prior and the middle and right plots corre-
spond to the results obtained by the wide and ultrawide
prior on the effect size. In all three plots, the results are
shown for small effect size. Compared to the power of the
approaches based on the Bayes factors for a small effect
(shown in the left plot of Fig. 2), the power of the ROPE-
based approaches is similar. For n = 200 samples in each
group, a power of approximately 60 − 80% is attained



Kelter BMCMedical ResearchMethodology          (2021) 21:171 Page 14 of 26

Fig. 4 Power analysis for the Bayesian equivalence testing approaches based on the ROPE for an underlying medium effect size

for the default ROPE R =[−0.1, 0.1] depending on the
prior chosen (see the dashed lines). The ROPE and the
prior selected play an important role in attaining power
as indicated by Fig. 3. Figures 4 and 5 show the results
for the power of the ROPE-based approaches to Bayesian
equivalence testing when a medium and large effect is

present. From Fig. 4 it is clear that no matter which prior
or ROPE is chosen, n ≥ 90 samples in each group suffice
to reliably detect a medium effect with a power of about
80%. Figure 5 even shows that for a large present effect,
n ≥ 30 samples suffice to achieve a power of approxi-
mately 80%. While Fig. 1 demonstrated that the BF = 1

Fig. 5 Power analysis for the Bayesian equivalence testing approaches based on the ROPE for an underlying large effect size
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Fig. 6 Influence of the equivalence region on the type I error rates for the Bayesian equivalence testing approaches based on the Bayes factor

support interval ROPE yielded the largest type I error
rates, Figs. 3, 4 and 5 show that the BF = 1 support
interval ROPE approach achieves the largest power (or
equivalently, smallest type II error rate). The 95% ROPE
follows after that, and the approach based on the full
ROPE attains the smallest power. The results show, that,
in general, the full ROPE is the most cautious approach
concerning the type I error control at the price of a smaller
power, while the BF = 1 support interval is positioned
at the other end of the spectrum: It has the largest type I
error rate but best power of the ROPE-based approaches.

Influence of prior modeling
This section presents answers to the third research ques-
tion: How robust are the different Bayesian approaches
to equivalence testing concerning the prior modeling?
Figures 1, 2, 3, 4 and 5 provide insights to this question,
and we start with the Bayes factor based approaches. From
Fig. 1 one can observe that for increasing prior width γ

in the Cauchy prior C(0, γ ) on δ, the type I error rate
becomes smaller. This is to be expected, because from the
Savage-Dickey density ratio [53, 54], the Bayes factor BF01
can be expressed as the ratio of the ordinate of the poste-
rior density at the nil value δ0 = 0 and the prior density at
the nil value δ0 = 0:

BF01 = p(δ0|H1, x)
p(δ0|H1)

For increasing prior width, the value of the prior den-
sity p(δ0|H1) becomes smaller, and as a consequence, BF01

becomes larger. As a type I error is defined as a Bayes fac-
tor of BF01 < 1/3 (or equivalently, BF10 ≥ 3), the type
I error rate decreases for increasing prior width γ . As a
consequence, due to the Jeffreys-Lindley paradox [92], for
γ → ∞, the type I error rate converges to zero as the null
hypothesis is always accepted.
However, Fig. 2 shows that increasing prior width

decreases the resulting power of the Bayes factor-based
approaches, too. For example, the left plot in Fig. 2 reveals
that for a small effect size, the NOH approach of Morey
et al. [41] using an ultrawide C(0,

√
2) prior achieves the

smallest power of the three prior settings (see the blue
dashed line). Similar observations can be made in the
middle and right plots of Fig. 2.
Concerning the approaches based on the ROPE, a

reversed phenomenon is observed. From the right plot
in Fig. 1 one can see that for increasing prior width the
number of type I errors increases. This phenomenon can
be explained as follows: When prior width increases, the
posterior distribution is less drawn towards zero, allow-
ing the posterior to concentrate farther away from δ0 = 0.
As a consequence, it becomes easier for the 95% HPD,
100% HPD or BF = 1 support interval to concentrate
entirely outside the ROPE R. Therefore, the type I error
rate becomes larger when a wider prior is used on δ. This
phenomenon is visualised in Fig. 1 by the fact that the
dotted or dashed lines (which correspond to the ultraw-
ide or wide Cauchy prior setting) are located above the
solid lines (which correspond to themediumCauchy prior
setting).
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Fig. 7 Influence of the equivalence region on the type I error rates for the Bayesian equivalence testing approaches based on the ROPE

Figures 3, 4 and 5 indicate, that the power of the
ROPE based approaches is influenced in the same way:
Although it is difficult to spot, the power under an ultra-
wide C(0,

√
2) prior is always slightly larger than under a

wideC(0, 1) prior, which is again slightly larger than under
a medium C(0, 1/

√
2) prior.

In summary, in contrast to the Bayes factor based
approaches the influence of the prior width on the ROPEs
is reversed: Wider priors imply increased power at the
cost of more type I errors for the ROPE-based approaches,
while for the approaches based on the Bayes factor wider
priors imply fewer type I errors at the cost of less power.

Influence of the interval hypothesis boundaries
Now, the fourth research question aimed at the influence
of the equivalence region itself. How does the size of the
equivalence region influence the above results? That is,
how do type I and II error rates, power and robustness to
the prior elicitation vary when the size of the equivalence
region is expanded or narrowed?
Figure 6 provides answers for the approaches based on

the Bayes factor. The solid lines correspond to the nar-
rower ROPE R =[−0.05, 0.05], while the dashed lines
present the results for the default ROPE R =[−0.1, 0.1]
and the dotted lines show the results for the wider ROPE
R =[−0.15, 0.15]. For wider ROPEs R, the associated
type I error rate decreases under a fixed prior setting.
This can be explained by considering the definition of the

Bayes factor itself: The Bayes factor BF01 is the ratio of
the marginal likelihoods f (x|H0) and f (x|H1). If a wider
ROPE R is chosen, the marginal likelihood under the null
hypothesis H0 : δ ∈ (−c, c) =: R (e.g. in the NOH
model of Morey et al. [41]) is increased. As a conse-
quence, BF01 grows. As a type I error happens whenever
BF01 < 1/3 (or equivalently, BF01 ≥ 3), the type I error
rate becomes smaller for increasing size of the equiv-
alence region (or ROPE) R for the Bayes factor based
approaches.
Figure 2 presents further insights concerning the power

of the approaches which are based on the Bayes factor
under varying sizes of the equivalence region. Clearly,
for a fixed prior setting the power of the approaches is
always smallest under the widest equivalence region R =
[−0.15, 0.15], and largest under the most narrow equiv-
alence region R =[−0.05, 0.05]. Compare, for example,
the solid, dashed and dotted blue lines in Fig. 2. The
balance between a reduced type I error rate by increas-
ing the size of the equivalence region and a decreased
power is an important aspect when considering the Bayes
factor-based approaches to Bayesian equivalence testing.
Switching to the power of the approaches employing

the ROPE, Fig. 7 provides answers. The left plot shows
the resulting type I error rates for varying equivalence
regions under a medium prior. The middle and right plot
shows the type I error rates obtained from different equiv-
alence regions under a wide and ultrawide prior on the
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effect size δ. Clearly, for increasing size of the equiva-
lence region R, the type I error rate becomes smaller. This
is to be expected, because a larger equivalence region
R makes it more difficult for the 95% HPD, 100% HPD
or BF = 1 support interval to be located entirely out-
side the equivalence region R. As a consequence, the
number of type I errors is smaller for a wider equivalence
region.
Concerning the resulting power under varying equiva-

lence region sizes, Figs. 3, 4 and 5 show that larger equiv-
alence regions yield smaller power, and equivalently, more
type II errors. For example, the left plot in Fig. 3 which
corresponds to a small underlying effect size indicates that
the power ranges from≈ 40% for R =[−0.15, 0.15] over≈
55% for R =[−0.1, 0.1] to ≈ 70% for R =[−0.05, 0.05] for
the full ROPE and n = 200 samples in each group, com-
pare the solid, dashed and dotted lines in the left plot of
Fig. 3. In general, the relationship is similar to the relation-
ship identified for the Bayes factor based approaches: Both
for the Bayes factor based approaches and the approaches
based on the ROPE, a reduced type I error rate and
decreased power are the consequence of increasing the
size of the equivalence region.

Discussion
The last section presented the results of the simulation
study which provided answers to the four research ques-
tions formulated in advance. This section discusses the
obtained results.
Concerning the first research question, two aspects are

important to mention: First, as shown in Fig. 1, the various
Bayesian approaches to equivalence testing differ con-
cerning their ability to control the type I error rate. While
there are approaches which essentially reduce the number
of type I errors to zero even for small sample sizes like the
OH model of Morey and Rouder [41], other approaches
like the BF = 1 support interval ROPE achieve even larger
type I error rates for small sample sizes than traditional
NHST solutions for precise hypotheses (when the signifi-
cance threshold α = 0.05 is chosen). As a consequence, it
is important to consider the relevance of type I error con-
trol for the situation at hand when selecting an approach.
A recommended candidate is given by the NOH model
of Morey and Rouder [41] under a wide C(0, 1) prior on
δ when a Bayes factor-based approach is favoured. The
NOH Bayes factor attains good type I error control even
for moderate sample sizes. However, if an even better type
I error control is desired the full ROPE approach is rec-
ommended under the same C(0, 1) prior. The full ROPE
guarantees excellent type I error control in this setting as
indicated in the right plot of Fig. 1.
Second, the influence of sample size is important both

for the type I error rates and the power of the different
approaches. Concerning the type I error rates, for small

sample sizes below n = 20 the approaches based on the
ROPE can yield larger type I errors than the Bayes factor-
based approaches. This can be relevant, in particular, in
biomedical research where often sample sizes are small
(e.g. in studies for rare diseases or when recruiting par-
ticipants is expensive). However, an exception is given by
the full ROPE which is recommended in small sample
settings.
Notice that all approaches except for the BF = 1 sup-

port interval ROPE and 95% ROPE attain smaller type I
error rates than the precise hypothesis test based on the
JZS Bayes factor, compare Fig. 1.
Concerning the second research question, the power

analysis revealed that there are profound differences
between the available approaches, and showed which
sample size is necessary for a selected Bayesian equiv-
alence testing approach to detect a prespecified (e.g.
small, medium or large) effect. In general, the approaches
based on the ROPE and the Bayes factor perform sim-
ilarly regarding the required sample size to detect an
existing effect. However, there are differences between the
approaches: The OH model of Morey and Rouder [41]
attained a superior type I error control compared to all
other Bayes factor-based approaches but lacks sufficient
power as shown in Fig. 2. As a consequence, it is not rec-
ommended to use this model. Instead, the NOH model
is a more balanced alternative, and the results provided
in Fig. 2 show which sample sizes are necessary to attain
a specific power. Regarding the approaches based on the
ROPE, the full ROPE (which offered the best type I error
control) yields the smallest power. The BF = 1 sup-
port interval ROPE and the 95% ROPE yield better power.
However, this increase in power comes at the price of a
higher type I error rate, compare Fig. 1.
Concerning the third research question about the

robustness of the different Bayesian approaches to equiv-
alence testing to the prior modeling selected, two points
are worth mentioning: First, the prior modeling plays a
crucial role to balance the type I error rate and power
both for the approaches based on the Bayes factor and
the approaches based on the ROPE. For the Bayes factor-
based approaches, increasing the prior width reduces the
type I error rate but simultaneously decreases the power
of the tests. For the ROPE based approaches, the situation
is reversed: Increasing the prior width increases the type I
error rate but implies a higher power to detect an existing
effect.

Revisiting the illustrative example
Concerning the fourth and fifth research question, the
results demonstrated how the size of the equivalence
region influences the other results. First, the type I error
rate and the power are influenced by the size of the equiv-
alence region both for the approaches based on the Bayes
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factor and the approaches based on the ROPE. What is
more, both for the Bayes factor based approaches and the
approaches based on the ROPE increasing the size of the
equivalence region yields a reduced type I error rate at
the cost of decreased power. This is an important aspect
because the consequence is that results based on differ-
ent equivalence regions are, in general, not comparable.
For example, if a result obtained from a wide equiva-
lence region R =[−0.15, 0.15] shows evidence for the null
hypothesis H0, it can happen that the result based on a
narrow equivalence region R =[−0.05, 0.05] shows evi-
dence for the alternative, because the power is higher in
the smaller equivalence region setting. This is no defect
of the method but to be expected because changing R
implies that a different test is carried out. Consequently,
this phenomenon underlines how important it is to justify
the selected equivalence region.
This leads to the fifth research question and the primary

challenge in applying Bayesian equivalence tests in prac-
tice: How should the equivalence region be chosen? Based
on the results, the new proposal made earlier in this paper
can be implemented.
Reconsider the illustrating example of Zieba et al. [74].

The goal was to test for equivalence in exhaled vol-
ume between patients with OC11 and OC12 tumour
size classification. Although there may be subject-domain
knowledge or prior research results available which helps
in determining the equivalence region, suppose no such
information is available. Suppose further that a type I
error rate of 5% is accepted at most, and the desired power
is 80% to detect a small effect (up to ≈ δ = 0.35). The
narrower the equivalence region can be chosen to ful-
fill these desiderata the better, as the resulting statement
about equivalence then becomes more precise. Suppose
further that a wide Cauchy prior C(0, 1) is chosen which
reflects the prior beliefs about the effect size δ. Impor-
tantly, this prior should not be used as a tuning parameter
to attain a specific type I error rate or power, but needs to
be selected in advance.
First, consider the Bayes factor solutions: Fig. 6 shows

that all models attain a type I error rate of 5%. How-
ever, the yellow lines indicate that a larger ROPE like R =
[−0.15, 0.15] will yield smaller type I error rates for n =
170 (we use the smaller of both group sizes for all compar-
isons). The left plot in Fig. 2 shows the resulting power of
the Bayes factor solutions under the assumption of a small
effect. It shows that for n = 170 samples, the NOH Bayes
factor attains a maximum of 70% power under the equiv-
alence region R =[−0.05, 0.05] (solid yellow line). So, the
best solution of the NOH Bayes factors yields α ≈ 0.01
and β = 0.70 for n = 170 samples under the C(0, 1) prior
and leads to an equivalence region R =[−0.05, 0.05].
Second, consider the ROPE solutions: The middle plot

in Fig. 7 visualizes the resulting type I error rates of the

ROPEs under the selected C(0, 1) prior. For n = 170 sam-
ples, all solutions yield an error rate smaller than α = 0.05,
although the 95% and BF=1 ROPEs yield higher rates than
the full ROPE. The middle plot in Fig. 3 shows the result-
ing power for the ROPEs under the C(0, 1) prior, and for
n = 170 samples the only options to attain 80% power are
the 95% ROPE or BF=1 ROPE with an equivalence region
of R =[−0.05, 0.05] (solid blue lines). The 95% ROPE
yields a smaller type I error rate of ≈ 0.02 as shown in
the middle plot of Fig. 7, so to fulfill the objective criteria
α ≤ 0.05 and β ≥ 0.8 the 95% ROPE with an equiva-
lence region of R =[−0.05, 0.05] is recommended under
the C(0, 1) prior.
In total, the 95% ROPE fulfills both desiderata, while

the NOH Bayes factor has only 70% power (but a type
I error rate of only ≈ 0.01 compared to ≈ 0.02 for the
95% ROPE). Thus, given the objective criteria, the 95%
ROPE is the optimal solution with an equivalence region
of R =[−0.05, 0.05].
A Bayesian equivalence test based on the 95% ROPE for

R =[−0.05, 0.05] yields a 95% HPD [−0.05, 0.04] for δ,
which is entirely located inside R. Thus, equivalence of
exhaled volume between patients with OC11 and OC14
classification is established. The small equivalence region
R =[−0.05, 0.05] shows that the effect is very close to
the precise null effect δ = 0, and the objective criteria
guarantee that the type I error rate and power are as
desired14. The new method thus allows for objective
determination of the equivalence region in the illustrating
example. The justification is based on statistical crite-
ria like the resulting type I error rate, power, available
sample size and robustness to prior selection. Here, the
latter should only be used when no prior has already
been elicited due to prior research or subject-domain
knowledge reflecting the beliefs about the parameter. In
particular, it is strongly advised against selecting a prior as
a tuning parameter to attain a specific error control: The
relevant quantities which can be tuned are the sample size
and the equivalence region.
As a final note, one could also use the total error rates

to select the equivalence region: Figs. 8, 9, 10 and 11 show
the total error rates (type I + type II) for the Bayes fac-
tor and ROPE solutions. It is important when using this
alternative method to acknowledge that the loss incurred
by making a type I or II error is assumed to be iden-
tical. This often is unrealistic in biomedical research, as
the loss incurred through a false-negative or false-positive
result often differ. Still, if one supposes that a total rate
of misclassification of 20% is acceptable, the right plot in
Fig. 8 shows that again, the NOH Bayes factor for R =
[−0.05, 0.05] under the C(0, 1) prior is the only option,

14The NOH Bayes factor BFNOH
01 for R =[−0.05, 0.05] yields 9.27 under the

wide C(0, 1) prior in this case, indicating also moderate evidence for the
interval null hypothesis, compare Jeffreys [60].
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Fig. 8 Total error rates for the Bayesian equivalence testing approaches based on the Bayes factor for small, medium and large effect size

although it has a slightly larger total error rate for n = 170
(about 30%). The middle plot in Fig. 11 shows the corre-
sponding total error rate of the ROPEs under the C(0, 1)
prior and a small effect. Again, the 95% or BF=1 ROPE
for R =[−0.05, 0.05] are suitable then. Here, using the
BF=1 ROPE has the additional advantage of including
only parameter values which have been corroborated by

observing the study data. The conclusions remain iden-
tical and equivalence is established under this alternative
approach.

Conclusion
Null hypothesis significance testing (NHST) remains one
of the most widely used methods in the biomedical and

Fig. 9 Total error rates for the Bayesian equivalence testing approaches based on the ROPE for an underlying large effect size
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Fig. 10 Total error rates for the Bayesian equivalence testing approaches based on the ROPE for an underlying medium effect size

cognitive sciences. However, the problems of NHST and
p-values have been lamented widely and various Bayesian
alternatives have been proposed recently. While some
of these proposals focus on equivalence testing which
aims at testing an imprecise hypothesis instead of a pre-
cise point null hypothesis, multiple problems have miti-
gated more widespread use of Bayesian equivalence tests
in practice. This is undesirable because researchers can

always expect to observe some (although often negli-
gibly small) effect size because of noise in the data,
and the assumption of an interval hypothesis is, as a
consequence, more realistic in a variety of biomedical
research.
First, the selection of an interval hypothesis, or equiv-

alently, an equivalence region seems arbitrary. Second,
several Bayesian approaches to equivalence testing have

Fig. 11 Total error rates for the Bayesian equivalence testing approaches based on the ROPE for an underlying small effect size
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been proposed which differ both in the underlying theory
and computational details.
In this paper, a new proposal was made how to select

the equivalence region for Bayesian equivalence tests in
the two-sample setting based on objective criteria like
the resulting type I error rate, power and robustness to
the prior selection. A simulation study investigated how
existing Bayesian equivalence tests behave regarding their
ability to detect an effect, control type I errors and their
robustness to the prior selection, which allows to imple-
ment the new proposal in the two-sample setting.
First, the available approaches to Bayesian equivalence

testing in the two-sample setting and the selection of the
equivalence region for the effect size were discussed. As
stressed by Morey and Rouder [41], it is important to
establish default equivalence regions for specific parame-
ters and statistical methods in biomedical research:

“Certainly if researchers are able to interpret effect
size measures in the context of existing literature,
it is not difficult to extend this to setting bounds
on equivalence regions. Eventually conventions may
arise, as they have with type I error rate.”
Morey and Rouder ([41], p. 26)

However, it is questionable if there will ever be widely
accepted default values for every research context. Instead
of focussing on establishing default values, the new pro-
posal how to determine the equivalence region together
with the results of the simulation study allow to make
Bayesian equivalence testing more objective. Approaches
based on such objective criteria were missing by now. In
this paper, it was shown that from a mathematical per-
spective, the default region R =[−0.1, 0.1] of practical
equivalence for the effect size parameter δ in the two-
sample setting achieves reasonable type I error control
and sufficient power to detect a present effect. Simultane-
ously, the influence of the prior elicitation was only mod-
erate, although not negligible under this default equiva-
lence region, compare Figs. 2, 3, 4, 5, 6 and 7.
Second, results showed that the proposals for Bayesian

equivalence testing differ in their sensitivity to the prior
modeling, their power, and the associated type I error
rates.
Based on the obtained results it was demonstrated via

an illustrating example how to choose the equivalence
region to attain a specific power and type I error rate. This
demonstrated how to implement the proposal in practice.
Additionally, the results showed that the prior selec-

tion influences the type I error rate and the power of the
tests, both for the approaches based on the ROPE and
the approaches based on the Bayes factor. However, it was
shown that this relationship is reversed between the two
classes of approaches to Bayesian equivalence testing.

Furthermore, it was shown that the size of the equiva-
lence region influences the type I error rates and power
of the various available approaches. As a consequence,
it is important to justify the selection of an equivalence
region, and the method proposed in this paper makes the
selection less subjective. By incorporating the results pre-
sented, researchers can prevent the claim of subjectivity
about a selected equivalence region. In contrast, report-
ing the corresponding type I error rate and power adds
value to a Bayesian equivalence test and justifies the selec-
tion of the equivalence region boundaries. Also, it helps
to determine the required number of participants if there
exist strong a priori reasons to choose a specific equiv-
alence region, for example based on prior research or
subject-domain knowledge. Then, the resulting power can
be quantified via the approach.
The choice of a method ultimately depends on the cri-

teria which are required to hold. While in each single
case, the optimal procedure can be determined via the
proposed method and the results provided in this paper,
Table 1 provides a general overview of the pros and cons
of the competing approaches.
As Table 1 shows, when prior specification is difficult,

the ROPEs resulting error rates and power change less
than the ones of the interval Bayes factors. Additionally,
the equivalence region can be determined based on the
method proposed in this paper using objective criteria.
However, if the prior can be elicited relatively straightfor-
ward (e.g. there are strong reasons from subject-domain
knowledge to assume a specific prior), the interval Bayes
factor is less prone to the uncertainty in determining the
equivalence regions. Also, interval Bayes factors yield bet-
ter type I error control in small sample settings, which
is important in some settings. On the contrary, the full
ROPE yields the best overall type I error control but the
smallest power: When stakes of a false-positive are high,
the full ROPE is the appropriate solution.
Establishing default equivalence regions for specific

domains, like R =[−0.1, 0.1] on the effect size δ in the
biomedical and cognitive sciences is often regarded as one
of the most important challenges to make Bayesian equiv-
alence testing more attractive for practitioners. However,
more research is required to establish default regions
of practical equivalence, in particular, for more complex
models with a large number of parameters.
In summary, the results provided in this paper can

help to make Bayesian equivalence testing more objec-
tive by selecting among the existing approaches based
on objective criteria like type I error control, the power
to detect a given effect size, and robustness to the prior
elicitation. Following the recommendations provided in
this paper could improve the quality and reproducibil-
ity of biomedical research when it comes to Bayesian
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Table 1 Comparison of the Bayesian approaches to equivalence testing

Pro Con

Interval BFs + Influenced more moderately by varying equiv-
alence regions R, compare the spread in power
between different choices of R in Fig. 2 (for example,
power ranges between 60% and 80% for small effects)

– Less robust to the prior selection (for example,
compare the difference in power depending on the
selected prior in Fig. 2)

+ Recommended in situations with little uncertainty
about the prior selection but limited knowledge how
to choose the size of the equivalence region

– The OH model may be attractive in some situations
but yields very large error rates, making it practically
unusable

+ Reliable type I error control for small sample sizes

ROPEs + Robust to the prior selection (see the horizontal
progression in Figs. 3, 4 and 5)

– Influenced stronger by varying equivalence regions
R, compare the spread in power between different
choices of R in Figs. 3 and 4 (for example, power
ranges from 50% to 80% for small effects andmedium
prior)

+ Recommended in situations where the equivalence
region is motivated from subject-domain knowledge
or pilot studies but there is considerable uncertainty
about the prior

– Only the full ROPE controls type I errors for small
sample sizes

+ The full ROPE yields the best type I error control
which is important if the stakes of a false-positive
result are high

equivalence testing in the two-sample setting. Impor-
tantly, it allows researchers to determine the equivalence
region and choose among the available Bayesian equiva-
lence tests based on objective criteria.

Appendix A

Overview about frequentist approaches to equivalence
testing
From the frequentist perspective, equivalence testing can
be realized via two one-sided tests. Lakens et al. [38] gives
a detailed account for this method which can be summa-
rized as follows and was first proposed by Schuirmann
[93], Anderson andHauck [94, 95] and Rocke [96]: Instead
of testing H0 : θ = 0 against H1 : θ �= 0 the fre-
quentist equivalence test via the TOST procedure tests the
hypotheses

H0 : θ < δL or θ > δU versus H1 : δL ≤ θ ≤ δU (6)

where δL, δU are the lower and upper equivalence bounds.
The situation and the contrast to precise hypothesis test-
ing is illustrated in Fig. 12. The top right situation shows
precise point null hypothesis testing of H0 : θ = 0 against
H1 : θ �= 0. The top left situation is a special case for
θ0 = 0, often termed the “no effect” hypothesis in prac-
tice. The bottom left situation shows equivalence testing,
which tests H0 : θ < δL or θ > δU (shown in red) against
H1 : δL ≤ θ ≤ δU (shown in blue). This amounts to an
equivalence hypothesis around the value θ0 = 0, and the
bottom right situation is the general case where the equiv-
alence bounds δU , δL are placed around an arbitrary value
θ0, not necessarily θ0 = 0. The name two one-sided tests

stems from the fact that (6) can be implemented by first
testing

H01 : θ < δL versus H11 : θ ≥ δL (7)

When the result is statistically significant (e.g. for level
α = 0.05), one can then reject H0 : δ < δL. Second, one
tests

H02 : θ > δU versus H12 : θ ≤ δU (8)

If this second test turns out statistically significant, too
(e.g. also for α = 0.05), one can conclude that δL ≤ θ ≤
δU . In total, one can thus reject H0 : θ < δL or θ >

δU in (6). The combination of two one-sided hypothesis
tests allows to establish an equivalence test. For exam-
ple, choosing δL = −0.2 and δU = 0.2 results in the
equivalence test which tests if the parameter θ is smaller
than −0.2 or larger than 0.2 versus the alternative that the
parameter is inside [−0.2, 0.2]. For extensions and modi-
fications of the TOST procedure see Anderson & Hauck
[94], Berger & Hsu [97], Schuirmann [70, 93], Meyners
[98], Chow & Liu [99], and Wellek [100].
Note that the null and alternative hypothesis are

reversed compared to Bayesian equivalence testing. How-
ever, in contrast to precise frequentist hypothesis testing,
this is due the inability of frequentist methods to directly
accept a hypothesis: Here, the hypothesis of equivalence
is formulated as the alternative H1 : δL ≤ θ ≤ δU , which
can only be accepted by rejecting H0 : θ < δL or θ > δU ,
because concluding bioequivalence when it does not hold
has serious consequences for the health of the public.
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Fig. 12 Differences between precise frequentist hypothesis testing and equivalence testing: Standard NHST for a sharp point null hypothesis
H0 : θ = 0 against its alternative H1 : θ �= 0 (top left) or, in general, of H0 : θ = θ0 against H1 : θ �= θ0 (top right); TOST procedure for testing
H0 : θ < δL orθ > δU (shown in red) against H1 : δL ≤ θ ≤ δU (shown in blue) (bottom left) or H0 : θ < θ0 − δL orθ > θ0 + δU (shown in red) against
H1 : θ0 − δL ≤ θ ≤ θ0 + δU (shown in blue) (bottom right)

Thus, we want to make sure that the probability of com-
mitting this error (type I error) is controlled. This is the
reason that the formulation (6) is used in practice, and rec-
ommended by the US FDA and other regulatory agencies.
In contrast to precise frequentist hypothesis testing, one
can easily switch the null and the alternative in Eq. (6),
and derive a corresponding test when considering fre-
quentist equivalence testing. Details are also provided by
Blackwelder [101].

How to obtain the OH Bayes factor in the model of Morey
and Rouder
To obtain the OH Bayes factor, Morey and Rouder [41]
make use of the transitivity of Bayes factors, which allows
to obtain a Bayes factor BF13 based on the Bayes factors
BF12 and BF23 as follows:

BF13 = BF12BF23 = p(x|H1)

p(x|H2)

p(x|H2)

p(x|H3)
= p(x|H1)

p(x|H3)

Denoting the Bayes factor of H0 : δ = 0 against H1 :
δ ∼ C(0, ri) as BF01(ri), i = 0, 1, the OH Bayes factor of
the null HOH

0 vs. the alternative HOH
1 is then obtained via

transitivity as

BFOH
01 = BF01(r1)/BF01(r0)

= p(x|H0)

p
(
x|HOH

1
)/

p(x|H0)

p
(
x|HOH

0
) = p

(
x|HOH

0
)

p
(
x|HOH

1
)

Notice that obtaining the Bayes factors BF01(ri) in the
JZS model which uses nil hypotheses for i = 0, 1 is
straightforward via analytic formulas, compare Rouder
et al. [28].

The hybridmodel of Morey and Rouder
Morey and Rouder [41] even proposed a third model,
the so-called hybrid model. The difference to the previ-
ous models in the hybrid model is that nil hypotheses like
H0 : δ = 0 are now allowed to occur. Simultaneously, a
small range of parameter values around the nil value δ = 0
should be interpreted as zero again. The hybrid model
consists of a two-component mixture given as follows:

H0 : δ ∼ π0 · 10 + π1 · tν0 for δ ∈ (−c, c)
H1 : δ ∼ tν0 for δ /∈ (−c, c)

That is, under the null in the hybrid model, the prior
probability for a precise nil effect δ = 0 is π0. The prior
probability for a null effect as specified in the NOHmodel,
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that is, δ ∼ tν0 for δ ∈ (−c, c) is π1 = 1 − π0. The
corresponding Bayes factor BFhybrid

01 is given as

BFhybrid
01 =

π0p
(
x|HJZS

0

)
+ (1 − π0)p

(
x|HNOH

0

)

p
(
x|HNOH

1

)

Of course, in the hybrid model, the prior probability π0
needs to be chosen. Interestingly, for c → 0, the hybrid
model recovers the JZS model. With π0 → 0, the model
recovers the NOHmodel.
However, while the hybrid model seems appealing at

first glance, Morey et al. [41] themselves note:

“For researchers who believe that nil hypotheses are
impossible a priori, or who are uninterested in the
nil, π0 = 0 is a reasonable value.”
Morey et al. ([41], p. 26)

Then, the NOH model is recovered. In most biomed-
ical research, the presence of exact nil effects is highly
questionable [35], so that the suitability of the hybrid
model for biomedical research settings seems question-
able, too. What is more, the selection of the parameter π0
presents an additional challenge compared to the NOH
or OH model: The parameter π0 resembles the a pri-
ori assumption about the proportion of exact nil effects
in the research domain. First, this proportion cannot be
estimated reliably even under sufficient domain-specific
knowledge. Second, it is often unrealistic to assume any
value π0 > 0 in medicine, psychology or the cognitive sci-
ences. As a consequence, in this paper the hybrid model
is excluded from the analysis and only the OH and NOH
models proposed by Morey et al. [41] are studied, as they
are more realistic for biomedical research.

Details on the Bayes factor of Van Ravenzwaaij et al.
Instead of choosing the precise null hypothesis H0 : δ = 0
and alternative H1 : δ �= 0, Van Ravenzwaaij et al. [44]
allow for equivalence testing by considering H0 : δ ∼
C(0, r0), δ ∈ (−c, c) andH1 : δ ∼ C(0, r1), δ /∈ (−c, c). Still,
these hypotheses are identical to the hypotheses consid-
ered in the non-overlapping hypotheses model of Morey
and Rouder [41], and the Bayes factor is inspired by the
solution of Gronau et al. [31] (compare Corollary A.2.3 in
Gronau et al [31]) and is computed via the same numerical
integration routine as

BF01 = P(H0|x)
P(H1|x)/

P(H0)

P(H1)
= P(H0|x)

P(H0)
/
P(H1|x)
P(H1)

=

∫ c
−c Tν (t|√nδδ)C(μδ ,γδ)dδ

∫ c
−c C(μδ ,γδ)dδ

∫

c

δ
Tν (t|√nδδ)C(μδ ,γδ)dδ
∫

c

δ
C(μδ ,γδ)dδ

where 
c
δ = (−∞,−c]∪[ c,∞). Van Raavenzwaaij

selected μδ = 0 and γδ = 1/
√
2, which is the rec-

ommended standard setting according to Rouder et al.
[28]. However, a wide C(0, 1) prior would be an alter-
native in the setting of the two-sample t-test to prevent
cherry-picking and retain objectivity, compare Kelter [40].
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