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Abstract

In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we
examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs.
We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers
viewed HWLs. Two weeks later, participants’ self-reported smoking behavior and biomarkers of smoking behavior were
reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD])
and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala
not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data
were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was
significantly modulated by individuals’ intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala)
brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner.
Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks
when attempting to predict behavioral change in certain populations (e.g. cigarette smokers).
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Introduction

According to the World Health Organization (WHO), smoking re-
mains the leading cause of preventable death in the Western
world (CDC, 2004; WHO, 2009). Smoking increases the risk of
many chronic, non-communicable diseases, both in smokers and
in those who breathe secondhand smoke (Olasky et al., 2012;
Rostron et al., 2014). To help reduce the broad-reaching, deadly
consequences of tobacco use, the WHO’s Framework Convention
on Tobacco Control recommends a variety of policies and pro-
grams, including prominent pictorial health warning labels
(HWLs) on tobacco packages. Regulatory decision-makers need

research to inform the selection of optimal content and design
for HWLs. Prior research to determine the most effective HWL
content has mostly relied on self-reported responses, which may
be biased (Thrasher et al., 2006, 2012, 2012b; Hammond et al.,
2012). Falk and colleagues have suggested that functional mag-
netic resonance imaging (fMRI) is useful in predicting population-
level responses to smoking cessation ads (Falk et al., 2011). fMRI
may work similarly for HWLs (Rubinstein, 2015).

Mounting evidence suggests that behavioral models based
solely on self-report data are not optimal for predicting behav-
ioral change across a wide variety of health behaviors (Berkman
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and Falk, 2013). There are many reasons why this may be the
case, the first of which derives from the very nature of self-
report data. Self-report measures of cognition and attitudes
may not fully capture what people think and feel. This limita-
tion could be addressed by using fMRI to add neural data to a
model with self-report data. Secondarily, humans tend to
under-report negative behaviors, a phenomenon known as so-
cial desirability bias (Podsakoff et al., 2003). This type of bias can
mask true causal relationships with health outcomes, particu-
larly for behaviors that are stigmatized (Hammersley, 1994;
Pierce, 2009; Shiffman, 2009). When reporting attitudes and feel-
ings, a further problem appears: humans, particularly those
with an addiction, are not always able to accurately identify
their own internal states (Frankenstein and Wilson, 1984;
Verdejo-Garcia and Perez-Garcia, 2008; Goldstein et al., 2009).
This is especially problematic in ambiguous situations (i.e. there
are good and bad elements of a given behavior) such as those
that commonly surround addiction. Taken together, these prob-
lems pose a significant hurdle to the creation of accurate pre-
dictive models of behavioral change.

Currently, approaches to evaluating and modifying public
policy rely heavily on rational theories of behavioral change.
Data from recent neuroimaging experiments suggest that mod-
els of behavioral change can benefit from the inclusion of fMRI
data, which reflects the location and strength of brain activity
elicited by specific stimuli. By directly measuring the brain’s re-
sponse to relevant stimuli (e.g. health messaging), this method
provides a measure of response that is potentially more object-
ive than individual self-report and that captures unique infor-
mation that is not present in self-report data, thus potentially
aiding in changing public policy. It is notable that a number of
previous studies adopting this brain-as-predictor approach
have successfully demonstrated that neural activity is a useful
predictor of long-term behavioral outcomes (McClure et al.,
2004; Falk et al., 2010, 2011; Berkman and Falk, 2013). Many stud-
ies indicate that the message-elicited activity in the ventro-
medial prefrontal cortex (vmPFC) predicts subsequent behavior
(Knutson et al., 2007; Falk et al., 2010, 2011, 2012). However, these
studies differ from the current study in a number of ways. Prior
research examined changes in sunscreen use in response to
persuasive messages (Falk et al., 2010) and neural activity eli-
cited by television campaigns promoting smoking cessation,
along with a toll-free telephone number for cessation assistance
(i.e. ‘quit line’) (Falk et al., 2012). Additionally, prior fMRI studies
have focused primarily on the usefulness of vmPFC activity in
predicting changes in smoking behavior (Falk et al., 2011). The
current investigation not only adds to the literature regarding
the use of fMRI to predict behavior, but specifically looks at two
brain regions to predict changes in smoking behavior, one re-
garded as being primarily involved in cognition, and the other
regarded as being primarily involved in affect.

The main a priori region of interest (ROI) in the present study
is the ventromedial prefrontal cortex (vmPFC). Past studies have
shown that the vmPFC is critical in making decisions based on
emotional signals (Bechara et al., 1999). The vmPFC has also
been shown to play a role in deciding whether to participate in
or avoid risky behaviors (Bechara et al., 1999), such as smoking.
Recent studies have shown this area of the brain to be associ-
ated with behavioral change (Falk et al., 2010, 2011). For ex-
ample, Falk et al. (2010) showed that activity in the vmPFC was
associated with smoking behavioral change beyond people’s
smoking-related attitudes and intentions; there was also an as-
sociation between activity in the vmPFC when exposed to per-
suasive messages and a change in behavior from pre- to

post-scan (Falk et al., 2010). Based on these previous findings,
there is strong reason to believe that activity elicited in the
vmPFC will contribute to the predictive power of statistical
models of behavioral change.

The secondary a priori ROI in this study was the amygdala.
Previous studies have shown that the amygdala is involved in
emotional learning and memory, particularly when fear and
anxiety are aroused (Davis, 1992, 1997; Bechara et al., 1999; Shin
et al., 2005). Additionally, studies have shown activation in the
left amygdala, specifically in response to a conditioned fear
stimulus (Morris et al., 1998; Phelps et al., 2001). Morris et al.
(1998) showed that amygdala activation occurred when subjects
were exposed to human faces with emotions such as fear or suf-
fering. Several recent studies found that the amygdala responds
robustly to the presentation of pictorial HWLs (Jasinska et al.,
2012; Newman-Norlund et al., 2014; Wang et al., 2015). Other re-
search suggests that the amygdala’s response to emotional
stimuli is predictive of a wide variety of behavioral outcomes
including post-exposure memory (Canli et al., 2005). What re-
mains less clear is whether or not the amygdala’s response to
emotional stimuli predicts subsequent behavioral change in
health-messaging models that involve emotion-laden stimuli.

Based on prior work, we hypothesized that greater neural ac-
tivity elicited by pictorial HWLs in the vmPFC and amygdala
would predict change in smoking behavior. We posited that
neural activity when viewing graphic and suffering images
would do a better job of predicting smoking cessation due to the
higher rates of self-reported motivation to quit when viewing
these image types compared to symbolic images. Additionally,
we predicted that addition of neural data to self-report based
models would significantly improve their ability to predict sub-
sequent behavioral change. In order to test this, self-reported
smoking data as well as neural response data (to visual presen-
tation of pictorial HWLs) were obtained from a cohort of 50 cur-
rent adult smokers. The models attempted to explain changes
in expired carbon monoxide (CO) and cigarettes per day (CPD)
controlling for (i) intention to quit and (ii) heaviness of smoking
(HSI) (Heatherton et al., 1989; Borland et al., 2010) (both of which
have been shown to predict significant variance in behavioral
change and are present in several previous studies of smoking
behavioral change) and (iii) the intensity of the neural response
to pictorial HWLs within each of our a priori ROIs.

Material and methods
Participants

Fifty current adult smokers between the ages of 18 and 50 (24 fe-
males, 26 males, mean age¼ 27.56) participated in this study
(Table 1). Participants were recruited from the general public in
Columbia, SC and surrounding areas via advertisements in local
newspapers and posted around the University of South Carolina
(USC). One participant was lost to follow-up resulting in a final
sample of 49 participants. All participants were either not plan-
ning to quit (in the next 6 months) or planning to quit (in the
next 6 months) (Table 1). All participants were neurologically
healthy with normal to corrected vision. Participants met stand-
ard criteria for fMRI scanning; phone and online screening was
done to confirm qualification. Following completion of the
study protocol, participants were paid $100 for transportation
costs related to participation in the study. This experiment was
performed according to the guidelines of the Declaration of
Helsinki and approved by the IRB at USC.
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Stimuli development

Nineteen different sets of three pictorial HWLs with different
imageries were designed to communicate the health effects of
smoking, resulting in 57 total images. Each set of pictorial HWLs
included the same textual warning (e.g. Smoking causes can-
cer), with three different types of image for each set:
(i) graphic—vivid depiction of the physical effects of smoking;
(ii) suffering—vivid depiction of personal experience that
included faces and showed physical, social, or emotional impact
of smoking-related morbidity & mortality; 3. symbolic—
representation of health risks using abstract imagery or sym-
bols (e.g. ticking time-bomb to represent impending heart at-
tack) (Hammond et al., 2012; Thrasher et al., 2012a; Hammond
et al., 2013; Newman-Norlund et al., 2014).

Baseline assessments

Prior to arriving at the study site, participants viewed and rated
all 57 pictorial HWLs images online in random order. Ratings
were for fear (i.e. ‘How much does this warning make you feel
afraid?’) and effectiveness (i.e. ‘How effective is it?’), using a
scale of 1–9 (i.e. 1¼not at all, 9¼ extremely), as in prior studies
(Hammond et al., 2012; Thrasher et al., 2012). Upon arrival to the
study site and before participation in the fMRI protocol, partici-
pants self-reported their smoking behavior, including number
of days smoked in the past 30 days, number of cigarettes per
day, the time since last cigarette, time to first cigarette after
waking, plans to quit in the next 6 months, and recent quit at-
tempts. To measure extent of addiction—the most consistent
predictor of smoking cessation—cigarettes per day and time to
first cigarette were combined to calculate the heaviness of
smoking index (HSI) (Heatherton et al., 1989). At baseline and at

two weeks follow-up, CO measurements were made using a
piCOþSmokerlyzer (Bedfont Scientific, Harrietsham, England), a
portable CO monitor. Participants who reported having smoked
at least 100 cigarettes in their lifetime and expired carbon mon-
oxide (CO) of at least 5.0 parts per million (ppm) qualified for
study inclusion (Low et al., 2004).

fMRI procedure

During 50 min of fMRI scanning, each participant completed
four functional MRI runs and a single, high resolution structural
scan. Each functional run lasted 10 min and 24 s. Over the
course of four functional runs, each of the 57 images (19 graphic
images, 19 suffering images, and 19 symbolic images) was pre-
sented 10 times (i.e. 570 total HWLs). The images were pre-
sented using a block design format. Each block of stimuli was
10 s in duration (2 s per image) and consisted of the serial pres-
entation of five images from the relevant condition (or fixation
cross for rest), with each 10 s block separated by 1 s of fixation. A
total of 40 blocks (10 graphic, 10 suffering, 10 symbolic and 10
rest) were presented during each of the four functional runs (i.e.
30 blocks with HWLs� 5 HWLs per block¼ 150 HWLs). Thus, 600
HWLs (150 HWLs per run � 4 runs) were presented with the re-
maining 30 chosen randomly (10 pseudorandom choices from
each category with no repeats from each subset). The order of
presentation of the blocks within a given functional run was
chosen from one of the eight pseudo-randomly generated trial
orders. These orders were constrained such that (i) each condi-
tion was equally likely to follow any other condition within a
certain functional run and (ii) blocks of the same trial type never
occurred more than three times in a row. Images were pro-
grammed to appear back-to-back five to six times during each
functional run. When an image appeared back-to-back, the par-
ticipant pushed a button on the response glove to ensure par-
ticipant alertness (Newman-Norlund et al., 2014). Each of the
four functional runs was identical in duration and content with
the exception of the random assignment of images from each
condition to its corresponding block. Importantly, the total time
(and thus total number of brain images recorded) spent showing
blocks of each HWL type was identical to the total time spent
showing rest blocks.

fMRI data acquisition

All fMRI data were collected on a 3T Siemens Trio system with a
12-element head coil. The fMRI (T2* echo planar imaging) imag-
ing sequence included the following parameters: 320 full brain
volumes collected in each of the four 10-minute and 24-second
sessions; 75� flip angle; time repetition (TR)¼ 1.95 s; time echo
(TE)¼ 30 ms; in-plane resolution¼ 3.30 � 3.30 mm; slice thick-
ness¼ 3.0 mm (no gap); 36 axial slices collected in planes
aligned parallel to the anterior commissure–posterior commis-
sure line. To improve coregistration of images, all participants
were scanned with a high-resolution T1 MRI, which yielded a
1 mm isotropic image. This sequence had the following param-
eters: field of view (FOV)¼ 256 mm � 256 mm; 192 sagittal slices;
9� flip angle; TR¼ 2250 ms; TE¼ 4.15 ms.

Follow-up assessment

Two weeks following the fMRI scan, an in-person follow up was
conducted at the scanning site. Expired CO, a quantifiable bio-
marker of smoking behavior, was measured and participants
completed a follow-up survey similar to the baseline survey

Table 1. Baseline demographic and smoking behavior information

Demographic variables N ¼ 50,
mean (s.d.)
or %

Sex % Female 48%
Age Mean 27.56

Range 22
Race % White 74%

% African American 24%
% Other 2%

Education High school or less 26%
Some college/tech school 55%
College or more 18%

Income Low 63%
Middle 30%
High 7%

Smoking/consumer behavior
CO level (ppm) 18.74 (10.57)
Days smoked (last 30 days) 28.32 (4.63)
Cigarettes (per day) 14.90 (10.09)
Intend to quit 21
Do not intend to quit 29
How worried smoking Not at all 0%
Affects health? A little worried 48%

Very worried 52%
Pay attention to HWLs Not at all 54%

A little worried 40%
Somewhat 4%
A lot 2%
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(Benowitz et al., 2002). At this stage, one participant was unable
to be reached.

fMRI data analysis

All fMRI data were analyzed using SPM (Welcome Department
of Cognitive Neurology, London), version 8. For analysis of indi-
vidual participant data, the following pre-statistics processing
was applied: motion correction, co-registration, normalization,
and spatial smoothing. Motion correction employed SPM8’s
fourth Degree B-Spline interpolation. For co-registration, we
first calculated the appropriate transformation to bring each in-
dividual’s mean echo-planar image (EPI) into the alignment
with his or her structural image. Then this information was
applied to the realigned EPI images. Normalization involved
warping each individual’s structural image onto the standard
T1 weighted structural template and then applying this oper-
ation on the co-registered EPI images. As a final step in process-
ing, all EPI images were spatially smoothed using a Gaussian
kernel of full width at half maximum 8.0 mm. At the first level,
we used SPM’s general linear modeling approach to compute
contrasts representing the main effect of each stimulus type
(graphic, suffering, symbolic). The onsets and durations of each
of the conditions of interest were modeled according to the
block design described in the protocol. Functional data were
modeled using the canonical hemodynamic response function
(HRF) with no derivatives. For all group analyses reported below,
a series of contrast images were first generated for each individ-
ual participant (first level models) and then entered these into
random effects models in order to allow for meaningful
population-level inference.

A priori ROI

Given the nature of our HWLs, a robust activation was expected
to be found in a priori ROIs of the vmPFC (Bechara et al., 1999;
Falk et al., 2010, 2011, 2012) and amygdala (Davis, 1992, 1997;
Morris et al., 1998; Bechara et al., 1999; Phelps et al., 2001; Canli
et al., 2005; Shin et al., 2005; Kensinger and Schacter, 2006;
Adolphs, 2008; Newman-Norlund et al., 2014) when the partici-
pants view the HWLs (Figure 1). A whole brain search was con-
ducted in addition to these a priori ROI.

The left and right amygdala locations (Figure 1) were identi-
fied in a prior study that localized brain activity associated with
pictorial HWLs (Newman-Norlund et al., 2014). The ventro-
medial prefrontal site (Figure 1) was found to be related to be-
havioral changes in prior MRI studies by Falk and colleagues
(Falk et al., 2010, 2011).

Associations between neural activity during HWL
exposure and changes in CO

Changes in expired CO and self-reported CPD from baseline to
follow-up were used as our primary measures of behavioral
change. Change was calculated as the difference between base-
line and follow-up assessments (baseline minus follow-up
equals difference; positive values indicate reduction in smok-
ing). To assess whether neural activity in the a priori ROI was
associated with behavioral change, hierarchical multiple regres-
sion models were ran using IBM SPSS Statistics Version 22
(SPSS) with change in expired CO and with change in CPD as de-
pendent variables. In the models, HSI and quit intention, two
factors associated with reducing smoking behavior (Newman-
Norlund et al., 2014), were controlled (first block). The second
block of the model included self-reported ratings of the HWLs
(How effective is it?). The third block included one brain area
per model (i.e. vmPFC, left amygdala, right amygdala). Brain
areas were searched at the group level looking for significant
variance (P< 0.05) in smoking behavior (change in expired CO,
change in CPD) resulting from the combination of neural activ-
ity and self-reported ratings of HWLs.

Results
Self-reported responses to HWLs

Mean self-reported ratings of effectiveness for each type of
HWL on a scale of 1 (not effective) to 9 (very effective) were cal-
culated suggesting graphic were most effective (M¼ 5.47,
s.d¼ 1.88), followed by suffering (M¼ 4.32, s.d.¼ 1.73) and sym-
bolic (M¼ 2.66, s.d.¼ 1.46).

Self-reported smoking behavior data

All participants were current smokers at baseline and reported
smoking an average of 14.90 CPD (s.d.¼ 10.09), with an average
expired CO of 18.74 ppm (s.d.¼ 10.57). At follow-up, participants
reported smoking an average of 8.74 CPD (s.d.¼ 4.59), with an
average expired CO of 18.02 ppm (s.d.¼ 11.30). Based on prior re-
search indicating that smokers who intend to quit have stron-
ger responses to HWLs (Falk et al., 2011; Hammond et al., 2012;
Thrasher et al., 2012), we stratified participants based on inten-
tion to quit. The change in CPD from baseline to follow-up
among those who intended to quit was significant: M¼ 8.43
(s.d.¼12.37), T(20)¼3.12, P¼ 0.005. The change in CPD from base-
line to follow-up among those who did not intend to quit was
also significant: M¼ 4.75 (s.d.¼ 5.99), T(27)¼ 4.20, P<0.001. No
significant difference was found in expired CO for either those
who intended to quit (M¼ 2.00 [s.d¼8.09], T[20]¼ 1.13, P¼ 0.270)
or who did not intend to quit (M¼�0.71 [s.d¼ 7.51],
T[27]¼�0.503, P¼ 0.619). The correlation between self-reported
smoking behavior (CPD) and our biological measure of smoking
(expired CO) among those who intended to quit was not signifi-
cant at baseline (R¼ 0.390, N¼ 21, P¼ 0.074) but was significant
at follow-up (R¼ 0.549, N¼ 21, P¼ 0.010). The correlation be-
tween self-reported CPD and CO among those who did not in-
tend to quit was significant at baseline (R¼ 0.807, N¼ 29,
P< 0.001) and at follow-up (R¼ 0.591, N¼ 28, P¼ 0.001).

Associations between Self-reported intentions, HSI, and
expired CO

No significant correlation was found between self-reported in-
tention to quit and HSI (R¼�0.005, P¼ 0.972) nor between

Fig. 1. A priori regions of interest. Left amygdala radius¼ 4 mm spherical ROI

centered at XYZmni¼�26, �2, �17, Right amygdala radius¼4 mm spherical ROI

centered at XYZmni¼23, 7,�17, vmPFC centered at XYZ¼0, 60, �9 (Falk et al.,

2011).
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intention to quit and self-reported effectiveness for any HWL
type (Rquitintent_graphic¼�0.221, P¼ 0.122; Rquitintent_suffering¼
�0.135, P¼ 0.350; Rquitintent_symbolic¼�0.151, P¼ 0.296). However,
there was a significant, positive association between HSI and ef-
fectiveness of graphic (RHSI_graphic¼ 0.358, P¼ 0.011) and suffer-
ing (RHSI_suffering¼ 0.310, P¼ 0.29) but not for symbolic HWLs
(RHSI_symbolic¼ 0.209, P¼ 0.146). This suggests that the heavier
the smoker, the more likely the graphic and suffering HWLs are
reported to be effective.

Neural activity during HWL exposure predicts
subsequent changes in expired CO

To determine whether neural activity in a priori ROIs was asso-
ciated with a change in smoking behavior, change in expired CO
from baseline to two-week follow-up was regressed onto par-
ameter estimates of activity during viewing of HWLs compared
with rest (Middleton and Morice, 2000; Deveciet et al., 2004;
Kumar et al., 2007; Falk et al., 2011; Overeem et al., 2012). Neural
activity in the left amygdala suggested that activity when view-
ing the suffering HWLs significantly predicted CO change
both before and after controlling for HSI and intention to quit
(Table 2). Activity in the vmPFC was significant for all HWL

types both before and after controlling for HSI and intention to
quit (Table 2). When the participants were stratified into groups
based on intention to quit, those who intended to quit (Table 3)
had significant neural activity in the vmPFC when viewing all
HWL types similar to Table 2. The same group did not have any
significant neural activity in the left or right amygdala.
Participants who did not intend to quit (Table 4) had significant
neural activity in the left amygdala when viewing human suf-
fering HWLs, but no significant neural activity in the right
amygdala or vmPFC. Stratifying by quit intent is a post hoc ex-
ploratory analysis of the relationship between quit intentions
and observed reduction in smoking via expired CO.

Hierarchical multiple regression models were run to deter-
mine the amount of variance in biomarkers of behavioral
change that could be explained above and beyond self-reported
responses to our HWLs (i.e. ‘How effective is it?’). The models in
Table 5 followed the same pattern of significance as Table 2.
Neural activity in the left amygdala was a significant predictor
of CO change when averaged across all image types, with the re-
lationship driven primarily by suffering HWLs. The P value for
the vmPFC model with all HWL types (P¼ 0.052) was marginally
significant. When stratified by intention to quit (Table 6), neural
activity in the vmPFC for each image type was a significant

Table 3. Predicting change in expired CO among those who intended to quit

Before controlling for HSI After controlling for HSI

B (95% CI) ß t(20) P B (95% CI) ß t(20) P

Left Amygdala
Graphic �1.495 (�3.906, 0.915) �0.285 �1.298 0.210 �1.665 (�3.971, 0.641) �0.318 �1.517 0.147
Suffering �2.156 (�4.539, 0.226) �0.399 �1.894 0.074 �2.094 (�4.392, 0.205) �0.387 �1.914 0.072
Symbolic �1.528 (�3.968, 0.912) �0.288 �1.311 0.206 �1.790 (�4.119, 0.539) �0.337 �1.615 0.124
Right Amygdala
Graphic �1.688 (�4.593, 1.217) �0.269 �1.216 0.239 �1.878 (�4.663, 0.906) �0.299 �1.417 0.173
Suffering �2.121 (�4.991, 0.749) �0.334 �1.547 0.138 �1.947 (�4.751, 0.858) �0.307 �1.458 0.162
Symbolic �1.310 (�4.104, 1.484) �0.220 �0.981 0.339 �1.626 (�4.313, 1.062) �0.273 �1.271 0.220
vmPFC
Graphic �1.877 (�3.148, �0.606) �0.578 �3.090 0.006 �1.891 (�3.078, �0.705) �0.583 �3.348 0.004
Suffering �1.571 (�2.995, �0.147) �0.468 �2.308 0.032 �1.721 (�3.044, �0.399) �0.513 �2.734 0.014
Symbolic �1.521 (�2.914, �0.127) �0.464 �2.283 0.034 �1.625 (�2.928, �0.322) �0.496 �2.620 0.017

This table shows neural activity in our ROIs predicting changes in expired CO among those who intended to quit (N¼21). Bold numerals indicate statistical significance

(P < 0.05).

Table 2. Predicting change in expired CO among all participants

Before controlling for HSI & quit intent After controlling for HSI & quit intent

B (95% CI) ß t(48) P B (95% CI) ß t(48) P

Left Amygdala
Graphic �1.077 (�2.670, 0.515) �0.195 �1.361 0.180 �1.157 (�2.777, 0.464) �0.209 �1.438 0.157
Suffering �2.308 (�3.944, �0.672) �0.383 �2.838 0.007 �2.264 (�3.931, �0.596) �0.375 �2.734 0.009
Symbolic �1.313 (�3.104, 0.477) �0.210 �1.476 0.147 �1.470 (�3.294, 0.354) �0.236 �1.632 0.112
Right Amygdala
Graphic �1.209 (�2.884, 0.467) �0.207 �1.451 0.153 �1.252 (�2.963, 0.458) �0.215 �1.475 0.147
Suffering �1.705 (�3.574, 0.164) �0.259 �1.835 0.073 �1.650 (�3.576, 0.276) �0.250 �1.725 0.091
Symbolic �1.627 (�3.637, 0.384) �0.231 �1.627 0.110 �1.748 (�3.791, 0.295) �0.248 �1.723 0.092
vmPFC
Graphic �1.259 (�2.129, �0.389) �0.391 �2.910 0.006 �1.255 (�2.137, �0.372) �0.389 �2.863 0.006
Suffering �1.328 (�2.304, �0.351) �0.371 �2.736 0.009 �1.373 (�2.362, �0.385) �0.383 �2.799 0.008
Symbolic �1.182 (�2.059, �0.304) �0.367 �2.709 0.009 �1.227 (�2.115, �0.339) �0.382 �2.783 0.008

This table shows neural activity in our ROIs predicting changes in expired CO among all participants (N¼49). Bold numerals indicate statistical significance (P < 0.05).
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predictor of change in expired CO. No significant activity was
observed in the left or right amygdala in participants who in-
tended to quit. Those who did not intend to quit (Table 7) had
significant activity in the left amygdala when viewing HWLs de-
picting human suffering and in the right amygdala when view-
ing symbolic HWLs. There was no statistically significant
association with activity in the right amygdala or vmPFC among
participants who did not intend on quitting.

Using neural activity to predict change in self-reported
cigarettes per day

To determine whether change in cigarettes per day (CPD) could
also be explained by neural activity, the same analyses reported
above for CO, were conducted with change in CPD from baseline
to follow-up as the dependent variable. Neural activity was not
a statistically significant correlate of change in CPD for any
HWL type. Stratifying participants by intention to quit and con-
trolling for HSI and quit intent also did not yield any significant
results. BOLD signal observed in the left amygdala in response

to graphic HWLs provided a statistically significant explanation
of variance in CPD (R2 change¼ 0.028). This was true regardless
of participants’ intention to quit.

Discussion

The main purpose of this study was to examine the hypothesis
that neural activity elicited by pictorial HWLs in the vmPFC and
amygdala would predict change in smoking behavior. We ex-
pected that inclusion of vmPFC and amygdala activity would
improve the predictive power of our models. While the results
of this study should be interpreted with some caution due to
the large number of analyses conducted, they are generally con-
sistent with these predictions, and provide novel data regarding
the relationship between behavioral change and neural meas-
ures. Furthermore, this study makes a unique contribution by
showing that smokers respond to HWLs in a cognitive-affective
manner (i.e. the link between warnings and behavioral change
is driven by both emotional and cognitive factors).

Table 5. Variance in expired CO among all participants

R2
self-report R2

self-report þ neural activity R2
change P

Left amygdala
All types 0.066 0.250 0.184 0.031
Graphic 0.053 0.089 0.036 0.191
Suffering 0.040 0.184 0.144 0.008
Symbolic 0.019 0.073 0.054 0.117
Right amygdala
All types 0.066 0.157 0.091 0.244
Graphic 0.053 0.092 0.039 0.177
Suffering 0.040 0.103 0.063 0.086
Symbolic 0.019 0.080 0.061 0.096
vmPFC
All types 0.066 0.228 0.163 0.052
Graphic 0.053 0.196 0.144 0.007
Suffering 0.040 0.192 0.152 0.006
Symbolic 0.019 0.163 0.144 0.009

This table shows the variance in expired CO explained by self-reported re-

sponses to our HWLs and self-reported responses to our HWLs combined with

neural activity among all participants (N¼49). Bold numerals indicate statistical

significance (P < 0.05).

Table 4. Predicting change in expired CO among those who did not intend to quit

Before controlling for HSI After controlling for HSI

B (95% CI) ß t(27) P B (95% CI) ß t(27) P

Left Amygdala
Graphic �0.970 (�3.263, 1.323) �0.168 �0.870 0.393 �0.959 (�3.300, 1.383) �0.166 �0.843 0.407
Suffering �2.542 (�4.965, �0.119) �0.389 �2.156 0.041 �2.635 (�5.114, �0.155) �0.404 �2.189 0.038
Symbolic �1.248 (�4.169, 1.674) �0.170 �0.878 0.388 �1.211 (�4.233, 1.812) �0.165 �0.825 0.417
Right Amygdala
Graphic �1.347 (�3.545, 0.851) �0.240 �1.260 0.219 �1.378 (�3.623, 0.867) �0.245 �1.264 0.218
Suffering �1.684 (�4.316, 0.948) �0.250 �1.315 0.200 �1.824 (�4.547, 0.899) �0.271 �1.380 0.180
Symbolic �2.636 (�5.864, 0.591) �0.313 �1.679 0.105 �2.631 (�5.924, �0.662) �0.312 �1.645 0.112
vmPFC
Graphic �0.691 (�1.928, 0.546) �0.220 �1.148 0.262 �0.696 (�1.957, 0.566) �0.221 �1.136 0.267
Suffering �0.936 (�2.411, 0.539) �0.248 �1.304 0.204 �0.928 (�2.435, 0.579) �0.246 �1.268 0.216
Symbolic �0.843 (�2.052, 0.366) �0.270 �1.433 0.164 �0.833 (�2.073, 0.407) �0.267 �1.384 0.179

This table shows neural activity in our ROIs predicting changes in expired CO among those who did not intend to quit (N¼28). Bold numerals indicate statistical signifi-

cance (P < 0.05).

Table 6. Variance in expired CO among those who intended to quit

R2
self-report R2

self-report þ neural activity R2
change P

Left amygdala
All types 0.159 0.402 0.243 0.204
Graphic 0.130 0.218 0.087 0.186
Suffering 0.119 0.266 0.147 0.082
Symbolic 0.119 0.250 0.132 0.102
Right Amygdala
All types 0.159 0.375 0.216 0.261
Graphic 0.130 0.206 0.076 0.220
Suffering 0.119 0.209 0.090 0.182
Symbolic 0.119 0.210 0.091 0.179
vmPFC
All types 0.159 0.481 0.323 0.089
Graphic 0.130 0.456 0.326 0.005
Suffering 0.119 0.379 0.260 0.016
Symbolic 0.119 0.365 0.246 0.020

This table shows the variance in expired CO explained by self-reported re-

sponses to our HWLs and self-reported responses to our HWLs combined with

neural activity among participants who intended to quit (N¼21). Bold numerals

indicate statistical significance (P < 0.05).
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Predicting changes in tobacco smoke exposure (CO) with
neural responses to HWLs

Neural activity in a priori ROIs was associated with a change in
CO (biomarker of tobacco smoke exposure), including when key
predictors of behavioral change (i.e. HSI, quit intention) were con-
trolled for. Previous research shows that the vmPFC is involved in
executive functioning and decision-making, particularly with re-
gards to risky behavior (e.g. deciding whether to or not to pur-
chase cigarettes) (Bechara et al., 1996, 1997, 1999; Falk et al., 2010).
Highly relevant prior work by Falk and colleagues (2011) demon-
strated a significant relationship between vmPFC activity and
cessation behavior. Critically, this prior study measured vmPFC
activity elicited by smoking cessation ads. The current study indi-
cated that vmPFC activity, in response to any type of pictorial
HWL (graphic, suffering, symbolic), partially explained subse-
quent changes in CO levels. When models were stratified by par-
ticipant intention to quit, the associations between vmPFC
activity and CO were limited to those who intended to quit (Table
3). These data suggest that activity in the vmPFC is particularly
relevant to individuals that intend to change their behaviors,
confirming work done by Falk and colleagues (2011).

Neural responses observed in the left amygdala significantly
predicted CO change in our sample. Interestingly, only neural
responses to suffering HWLs (not graphic or symbolic HWLs)
improved predictive models based on CO. When the data were
stratified by intention to quit, this relationship was statistically
significant only among smokers who did not intend to quit.
Emotion often enhances memory; emotional events are often
easier to recall, particularly ‘negative’ emotional stimuli (e.g.
HWLs depicting human suffering) (Mickley and Kensinger,
2008). Amygdala activation resulting from HWLs with emotional
appeal has been shown to play a role in quitting and has been
used as a predictor of quitting (Jasinska et al., 2012). However,
unlike the messages used in the current study (i.e. Smoking
causes lung cancer), Jasinska and colleagues (2012) showed tail-
ored smoking-cessation messages (i.e. You want to quit because
you are tired of spending your money on cigarettes), untailored
smoking cessation messages (i.e. Many people quit
with another person so they can support each other), and

neutral (i.e. Bali attracts more tourists than any other
Indonesian island) to 91 smokers who intended to quit and had
completed a smoking cessation intervention and attempted to
quit. Consistent with claims made by Rubinstein (2015), our re-
sults suggest that messaging that evokes activation in emo-
tional brain centers (i.e. the amygdala) is important to
behavioral change. In addition, the results in the present study
suggest that activation in emotional centers may be particularly
valuable in predicting the decision to change behavior in indi-
viduals that have not yet decided to make a change.

Seen from this perspective, activation in the amygdala could
constitute a key part of pre-decision cognition that is highly
relevant to an individual’s plans regarding subsequent behav-
iors. After an individual ‘decides’ to pursue change, it may
be that activation in higher-order cognitive centers (such as the
vmPFC), associated with the ‘self’ broadly defined, become
more relevant. This possibility deserves further scrutiny.
Additional studies could identify the exact time points that de-
cisions to quit are made, and then examine the ability of brain
signals recorded at these sites to predict the direction and size
of behavioral change. Taken together, the present findings re-
garding vmPFC and amygdala activation suggest that behavioral
change in response to health warnings may be best predicted by
activity at specific brain sites, possibly in an attitude (i.e. inten-
tion to quit) dependent manner.

A second important finding that emerges from the current
dataset is that neural responses can add unique predictive
power to models of behavioral change (Tables 5–7). Neural activ-
ity explained up to 32.6% of the total amount of variance in CO
change (Table 6), after accounting for the contribution of self-
report measures. As in the aforementioned analyses, inclusion
of neural data capturing the vmPFC’s response to graphic, suf-
fering, or symbolic stimuli, significantly improved these mod-
els. This was the case both in the overall sample and when
considering smokers who intend to quit (Table 6). Amygdalar re-
sponses to HWLs depicting human suffering also explained
variance in CO change, both in the sample as a whole (Table 5)
and when considering just those who did not intend to quit
(Table 7). Models including a combination of self-report and
neural data accounted for more variability than models incorpo-
rating either one or the other. These findings are consistent
with the possibility discussed above, that behavioral change is
best predicted and variance is best explained by activity at dif-
ferent brain sites in an attitude dependent fashion.

Predicting changes in cigarettes smoked per day (CPD)
with neural responses to HWLs

Self-reported CPD decreased from baseline to follow-up, but nei-
ther neural data recorded in the vmPFC nor the amygdala cap-
tured these changes. It is worth noting that a statistically
significant association was observed between CPD change and
activity in the left amygdala in response to graphic HWLs when
assessing all participants (R2

self-report¼0.675, R2
self-reportþneural activ-

ity¼0.703, R2
change¼0.028, P¼ 0.049) and those who intended

to quit (R2
self-report¼0.853, R2

self-reportþneural activity¼0.888,
R2

change¼0.035, P¼ 0.034). The generally weaker predictive power
of neural data with regards to changes in CPD, as opposed to
change in CO, is interesting to consider. Traditional methods
used to quantify CPD are prone to multiple forms of bias, includ-
ing social desirability and memory biases. Expired CO may be a
more reliable and objective marker of exposure to cigarette
smoke, particularly if participants perceived participation in the
study as an attempt to convince them to quit—even though our

Table 7. Variance in expired CO among those who did not intend to
quit

R2
self-report R2

self-report þ neural activity R2
change P

Left amygdala
All types 0.034 0.274 0.240 0.119
Graphic 0.030 0.058 0.028 0.407
Suffering 0.027 0.204 0.177 0.030
Symbolic 0.009 0.036 0.027 0.418
Right amygdala
All types 0.034 0.176 0.142 0.355
Graphic 0.030 0.090 0.060 0.222
Suffering 0.027 0.119 0.091 0.128
Symbolic 0.009 0.105 0.097 0.120
vmPFC
All types 0.034 0.123 0.089 0.577
Graphic 0.030 0.085 0.054 0.244
Suffering 0.027 0.115 0.087 0.137
Symbolic 0.009 0.080 0.071 0.187

This table shows the variance in expired CO explained by self-reported re-

sponses to our HWLs and self-reported responses to our HWLs combined with

neural activity among participants who did not intend to quit (N¼28). Bold

numerals indicate statistical significance (P < 0.05).
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recruitment and consent materials communicated that this was
not our aim. Mean CPD levels decreased from baseline to follow-
up, a fact that is at least consistent with potential biases in CPD
measurement. Future investigations should continue to evaluate
the utility of multiple measures of behavioral change in order to
maximize experimental sensitivity and validity.

Limitations and future directions

Results from the current study are subject to a few caveats.
First, the models contained relatively few self-report measures
(i.e. HSI, intention to quit) to predict changes in smoking behav-
ior; however, the measures we included are the most consistent
predictors of smoking cessation (Vangeli et al, 2011). Future
studies should nevertheless integrate more detailed self-report
and behavioral measures. Even so, the neural data in our mod-
els accounted for a significant amount of variation (up to
R2

change¼0.326), suggesting that the inclusion of additional self-
report measures is unlikely to explain all of these variations.

A second limitation concerns the disjoint between what the
ROIs were thought to detect (cognitive and emotional process-
ing) and what was captured in self-report (perceived effective-
ness of warnings, which is more cognitive). We would expect
the ROIs to be a stronger predictor of change in smoking since
they captured different cognitive and affective processes than
what the self-report data captured. Future studies should be
conducted to further explore this.

A third limitation concerns the outcomes that were as-
sessed. Smoking cessation was also not assessed, which would
likely require larger sample sizes and longer follow-up than
2 weeks. Larger samples may not be feasible for fMRI studies,
due to the high cost of MRI scanning, which typically ranges
from $500 to $1000 per hour. In light of this fact, it is suggested
that future research considers longer follow-up periods, per-
haps focusing on smokers who are ready to quit and therefore
more likely to change their behavior, as in prior research (Falk
et al., 2011). Our biomarker of tobacco smoke exposure, CO, has
a short half-life of approximately 1 — 4 h (Scherer, 2006), reflects
more recent exposure to smoking, and is dependent on the time
since the last cigarette. Several prior studies have confirmed the
utility of both CPD and CO levels to verify self-reported cigarette
consumption, with correlation coefficients ranging from 0.3 —
0.8 (Perez-Stable et al., 1995; Domino and Ni, 2002; Mustonen
et al., 2005; Scherer, 2006). The correlation is generally stronger
for people with higher CPD (Perez-Stable et al., 1995; Domino
and Ni, 2002; Mustonen et al., 2005), which applies to the major-
ity of our sample. Due to CO’s relatively short half-life, other
biomarkers with longer half-lives (e.g. cotinine) may be con-
sidered for better assessment of tobacco smoke exposure
(Perez-Stable et al., 1995; Ho et al., 2009).

Fourth, over the course of the study, participants showed de-
creases in both expired CO and the number of cigarettes they
smoked per day. The neural response to HWLs was more associ-
ated with CO change than with CPD change. Admittedly, expired
CO is an imperfect measure of recent exposure to cigarette
smoke. Future research should consider collecting additional bio-
markers of exposure, such as cotinine (a nicotine metabolite) and
3-hydroxycotinine, which are more valid than expired CO
(Benowitz, 1983; Benowitz and Jacob, 2001; Benowitz et al., 2002).

General conclusion

The present study examined the hypothesis that neural
responses to emotion-laden pictorial HWLs can predict

subsequent behavioral change. Public policy is changed based
behavioral science, which often relies on self-report models.
The question is whether or not these models benefit from the
inclusion of neural data. If so, what types of neural data are of
particular value? Our findings suggest that these models do
benefit from the inclusion of neural data, and that activation at
both cognitive and affective sites should be considered as valu-
able. Not only did neural responses predict change, they did so
above and beyond self-report measures, in some cases account-
ing for as much as 32.6% of additional variance. Interestingly,
activation in the vmPFC was most useful when predicting
change in individuals who intended to quit smoking, whereas
activation in the amygdala was most useful in models designed
to predict change in individuals that did not intend to quit.
Critically, this is one of the first papers to find that neural acti-
vation in emotion-processing areas (i.e. the amygdala) can be
useful in modeling subsequent behavioral change. This may be
due to the highly emotionally charged nature of the messaging
stimuli used in the current study. It was also found that models
designed to capture changes in CO benefited from inclusion of
different neural data than models designed to capture change
in CPD. This suggests that models of behavioral change based
on different types of outcome data could be differentially in-
formed by specific neural data. Overall, these findings suggest
that, in addition to traditional self-report data, the responses of
specific brain areas (specifically the vmPFC and amygdala) to
different types of health messaging stimuli are useful to con-
sider when attempting to develop HWLs and in similar studies
that aim to understand how health messaging can influence be-
havioral change.
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