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Abstract: 
Delay and noise are inevitable in complex systems that are common in biochemical networks. The system is often disturbed at various 
states irrespective of the size (small or large) of delay and noise. Therefore, it is of interest to describe the significance of delay and noise in 
stochastic Willamowski-Rossler chemical oscillator model using a delay stochastic (having random probability distribution) simulation 
algorithm. Oscillating dynamics moves to stable fixed point when delay at a fixed magnitude of noise drives the system from oscillating 
state to stochastic amplitude death state (complete cessation). However, the amplitude death state is induced to a revived oscillating state 
in stochastic system (which is far from equilibrium state) for noise with a fixed value of delay. Thus, significantly large and small noise 
induces the dynamics of the system to amplitude death state. Hence, we describe the interplay of delay and noise in stochastic systems for 
the proper and efficient functioning of the complex system that are frequent in biological networks. 
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Background: 
Functional organization and regulation in biochemical systems are 
the outcome of chain of molecular interactions/events defined by 
sets of well-defined reactions in various pathways. These molecular 
events in such systems occur in a certain random manner and 
needs to solve these sets of reactions to understand systems’ 
behaviour [1]. Such complicated reaction sets are generally solved 

by using stochastic simulation techniques because of difficulty in 
solving them analytically [2]. Despite each reaction has their own 
role in a system, some reactions are fast and some are slow in 
nature, and overall interaction exhibit emergent behaviour which 
are generally inherent properties of the system [3]. Dynamics of 
biological systems are a continuous set of actions among molecules 
triggered by chemical reactions that leads to certain task or function 
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in the cell [2]. The dynamics of such system involves the properties 
of the system and can explain well state evolution of the systems 
with time, which may correspond to various important cellular 
states [2]. Because of small population of molecular species 
participation in reaction channels of biological systems with 
random interactions among them (random collisions among 
molecular species and random firing of reactions) exhibit 
randomness in the system [1]. These randomness and fluctuations 
become significant in case of very low molecular species population 
in the biological systems and then to explain the dynamics of such 
systems we need to deal the mathematical models by considering 
the noise with stochastic modelling approach [1, 2].  
 
Gillespie considered and modelled that all reactions finish instantly 
as they start and the process is Markovian [1, 2]. The stochastic 
simulation algorithm (SSA) or Gillespie algorithm was based on 
two random events in reaction time and choice of reaction, and 
noise in the dynamics become an inherent property of the complex 
system [2]. The algorithm did not considered delay into account. 
However, various experimental evidences validate the existence of 
delayed reactions in biological systems, for example, transcription 
and translation reactions in gene expression process [4–6], protein 
degradation, feed backing in biological systems [7] and gene 
inhibition mechanism [8] etc. In one of the works of Duan et al., 
they studied the dynamics of calcium of cells in terms of anti 
synchronization as effect of the short, moderate, and long-time 
delay in the system [9]. Hence, one needs to incorporate time delay 
in such systems to capture accurate dynamics of the system. Such 
process become non-Markovian, and SSA was generalized by 
considering delay [10, 11].  
 
Delay has various roles in regulating dynamical systems. In 
deterministic systems, it has been found two contrast roles delay, 
namely, delay induced oscillation death [12] and amplitude death 
[13] on one hand, and on the other hand, revival of oscillation 
driven by delay [14]. There have been few reports that delay can 
induce oscillations in stochastic systems, namely, exhibiting 
oscillations in p53 regulatory network [15, 16], observation of on 
and off states of genes in toggle switch [17], emergence of delay 
induced stochastic oscillations in gene regulation [10] etc. Further, 
in some studies in Drosophila, Neurospora and other organisms 
showed that the oscillations in their dynamics established during 
the transcriptional regulations induced by delay [18–21]. 
Experiments, then, has proven that these oscillations are caused by 
induced delay in gene regulation networks [22, 23]. Those are few 
reports that delay can induce different synchronization for different 
forms of oscillatory behaviours (quasi-periodic, chaotic oscillations 
etc) [9]. Further, delay can also cause various forms of behaviour in 

the system dynamics, and even disappearance of coherence [37]. 
Biologically, if any system parameter (may be delay, noise etc) 
induce switch off of the oscillation, the state may correspond to the 
inactive state or system failure which can be correlated with cell 
death or apoptosis. However, the revival of oscillation technique 
can play an important role to cure or prevent such failures. 
However, the role of delay by intertwining with noise to amplitude 
death, switching mechanism and in revival of oscillations in 
stochastic systems is not fully studied. We studied the switching 
mechanisms/states of oscillations and their relationships with 
delay time using the three variables chemical oscillator model 
proposed by Willamowski and Rossler [24, 27]. 
 

 
Figure 1: Flow chart of the methodology: 
 
Methods: 
Theoretical framework of delay stochastic simulation algorithm 
Biochemical reactions in a system can be broadly divided into two 
types: delayed and non-delayed reactions. Let us take a system 
with N chemical reactions �� : � = 1, 2, . . . , � in which � number 
of chemical species � ={�1 , . . . , ��} take part in reaction channels. 
State change dynamics of chemical species are stored in state vector 
�	
  (�) = [�1 , �2 , �3 , ..., �� ]�, where for ��ℎ species population at 
time � would be �� according to this state vector �(�). Let us 
assume there are �� numbers of delayed and �� numbers of non-
delayed reactions in a system where total number of chemical 
reactions � = �� + �� . Time delays in the system (delayed 
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reactions) are �� = {�1 , �2 , ..., ��} in the probability space with 
the consideration (�� − ��−1)∼�(�), then the time evolution of the 
configurational probability �(�, �) of the system can be described 
by then the modified master equation which incorporates delay 
reactions, known as delay stochastic master equation (DSME) [24] is 
given by, 
 
𝜕𝜕���,�=−����′→���,�+�′���→�′��′,�          
−�∀��∈����′→���,�;��,�−��                     
−�′∀��∈�′���→�′��,�;��−��,�−��                                                      	
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  (1) 
                                            
The probability of being the system in state � at time t is the 
function �(�,�). Where, �� is state change or the stoichiometric 
ratio. Transition probabilities for delayed reactions {�} and 
transition probabilities for non delayed reactions {W[n]}. The first 
two terms of the R.H.S. of equation (1) are non-delay parts, and the 
second two terms are for delay part. Such delay stochastic master 
equation (1) for complex system is quite difficult to solve, and 
hence needed to use computational techniques to solve it. The delay 
reactions generally follow non-Markovian processes [10], and their 
time evolution trajectories cannot be simulated using SSA. In order 
to simulate stochastic systems containing delayed reactions, one 
must use delayed stochastic simulation algorithm (DSSA) proposed 
by Bratsun et al. [10] and Barrio et al. [10]. In this simulation process, 
whenever the delayed reactions occur there will be a change in 
population of chemical species and the corresponding propensity 
function will be changed with every time step encountering delay 
reactions. This DSSA is the extension of original Gillespie algorithm 
by including delay reactions [2]. The pseudo-code of the DSSA is 
given by, 
 
Pseudo-Code of DSSA 
1. Initialize the population of molecular species {�} at time � = �0 . 
2. Calculate propensity functions {a} for all the reactions and 
�0=�=1���. 
3. Generate two uniform random numbers � , � between (0,1). 
4. Calculate reaction time: �=1�0��1�1. 
5. Firing of ��ℎ, j ∈ (1, ..., M ) reaction is determined by: 
�=1�−1��<�2�0<�=1��� 

if   {delayed reaction is scheduled in [�, �+�’) ���ℎ �’ < 
� } then 
        Update �←�+�’, where �’ is the first delayed reaction 
finishing time. 

        Update state vector {�} : � = � + �� 
         Go to Step 2. 

else 
if {non-delayed reaction to finish in this time interval 

[�,�+� + �� )} then 
     Update state vector {�} : � = � + �� 
       Update � ← � + � . 
     Go to Step-2 

end if 
end if  
Stop 

 
Iterate this algorithm until finishing time “�” for “�” numbers of 
reactions. The difference between Gillespie’s SSA and the DSSA is 
handling the delayed reactions, remaining concepts are same. 
Whenever delayed reactions occur we store the finishing time ��′ 
in a list, and will wait till that finishing time to update the state 
vector for molecular species affected by those delayed reactions. 
Once the simulation time reach to that finishing time of delayed 
reaction, the state vector “�” is updated accordingly, as well as 
update the simulation time (�+�) with (��) as new time. Due to 
these changes in state vector of the molecular species, algorithm 
needs to recalculate the propensity functions and � and “��” for 
next iteration. Further, the total numbers of the re-updating time 
“�” is exactly equal the total number of occurrences of the delayed 
reactions [26]. We have presented the flow chart of our 
methodology in figure (Figure 1) from initial data preparation steps 
to final time series data analysis steps. 
 
Stochastic chemical oscillator: Willamowski-Rössler model 
We considered a well-known Willamowski-Rössler model for our 
study [24, 27]. This three-dimensional model (involves three 
variables) can be represented by a set of forward and reverse 
reactions, which can able to exhibit chaotic behaviour [27]. The 
model reactions in the well-stirred system are given by, 
 
�1+�⇄�2�12�;�+�⇄�4�32�;�3+�⇄�6�5�2;�+�⇄�8�7�4;�5+�⇄�
10�92�                                (2) 
 
Where, {��}; � = 1, 2, ..., 10 are rate constants of the reactions in the 
model. {��}; � = 1, 2, ..., 5 are the equilibrium values the respective 
molecular species which are taken to be constants. We used this 
model for our study. 
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Figure 2: Delay stochastic simulation of the Willamowski-Rossler model: Initial population of �=20, �=20, �=20, simulated for time [0−90]. 
(a)Population of � with respect to time at time delay �� = 0.0 (blue) for time range 0−30, �� = 0.1 (green) for time range 30−60 and �� = 0.0 
(red) for time range 60−90. (b)Population of Y with respect to time at time delay �� = 0.0 (blue) for time range 0−30, � = 0.1 (green) for time 
range 30−60 and �� = 0.0 (red) for time range 60−90 (c) Population of � versus population of � (d) Amplitude (�) of � (e) time period (�) of 
� as a function of �� , where, points are means of the amplitudes with error bars. 
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Figure 3: Noise induced system’s dynamics: The time delay is fixed at �� =0.1 throughout the simulation. Dynamics of � and � with 
respect to time, (a) for � = 0.1, �� = 0.1 (amplitude death case), (b) for � = 0.5, �� = 0.1 (amplitude death case), (c) for � = 0.6, �� = 0.1 
(revival of oscillation case), (d) for � = 0.7, �� = 0.1 (revival of oscillation case), (e) for � = 0.8, �� = 0.1 (revival of oscillation case), and (f) 
for � = 1.0, �� = 0.1 (amplitude death case). 
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Results and Discussions: 
We used DSSA to simulate Willamowski-Rössler model (2) by 
taking the parameter values: �1= 31.2, �2=0.2,  �3=1.3,  �4=0.1,  
�5=10.8,  �6=0.12,  �7=1.02,  �8 = 0.01,  �9=16.5 and �10=0.5. The 
initial values of �, � and � are 20, 20 and 20 respectively. We 
considered reactions 2��4� + � and 2��4�+ �5 as the delay 
reactions and the rest eight reactions are taken to be non-delay 
reactions for our simulation and study. The choice of the delay 
reaction/reactions can be done as per the values of rate constant. 
 

 
Figure 4: Dynamical phase diagram: Plot between amplitude of � 
as a function of �. Points are mean amplitudes between � = [20 − 
60] with standard error bars. 
 
Delay induced amplitude death: 
We present the simulation results of the dynamics of � and � for 
time � = [0 − 90], where, for ranges � = [0 − 30] and � = [60 − 90] are 
for delay time �� = 0, and delay with value ��= 0.1 is switched on 
for the range � = [30 − 60]. The system size is fixed at � = 0.1 during 
this simulation (Figure 2 upper two rows). The results show that for 
non-delay case (τd = 0), the X and Y dynamics show oscillatory 
behaviour with well-defined amplitude (�) and time period (�) 
with stochastic fluctuations in the dynamics (Figure 2 middle and 
right panel of the lowest row). Hence, stochastic oscillation is 
obtained for significantly small ��→[0 − 0.02], where, �→1000±150, 

and �→0.77 ± 0.2. However, once the delay is switched on, the 
amplitudes and time periods of the � and � dynamics are 
decreased monotonically, the scenario, which can be known as 
stochastic amplitude death. In stochastic amplitude death 
condition, �→0; �→0 for ��>0.05, and oscillation dynamics moves 
to near fixed-point condition (Figure 2 left panel of the lowest row). 
In this case, oscillatory dynamics did not exactly, but nearly go off. 
This scenario is quite different from the earlier delay induced 
amplitude death observed in deterministic case of coupled system 
with delay [27] and distributed delay [28]. In our case, the delay in 
the system is in fact intrinsic, and is due to the intrinsic nature of 
some of the reactions involved in the system. The results indicate 
that delay is multi-functional, ��=�(�, �, �, �), is sensitive to noise 
�, and has the capability of stabilizing as well as activating the 
system. This amplitude death in the dynamical system can be 
correlated to the system’s failure leading to apoptosis in cellular 
dynamics. 
 
Noise induced revival of oscillation: 
We now consider the Willamowski-Rössler system (2) for stochastic 
amplitude death case � = 0.1, ��=0.1 as obtained in the previous 
section (Figure 3a). The noise � associated with the system’s 
dynamics can be characterized by system’s size � by the relation � 
∝ 1� [30]. Now, keeping delay fixed (�� = 0.1), we varied the 
system size �→[0.1−1.0] and studied the system’s dynamics. We 
found that for a significantly large � (� = 0.6, 0.7, 0.8), the 
oscillations in the system became revived with well defined 
amplitude and time period (Figure 3 panels �,� and �). This 
scenario can be termed as stochastic revival of oscillations with the 
condition: �→� inite >0, �→� �����>0. Further increase in � (� = 
1), the amplitude and time period of oscillations in the system 
became death: �, � → 0 (Figure 3 panel �). From these results we 
found that for a fixed delay, there is a certain range of � where the 
system’s dynamics recover oscillations, beyond this range the 
system’s dynamics moves to amplitude death scenario. In 
biological systems, keeping oscillations in the population dynamics 
of the participating molecular species is important for active and 
proper cell functioning and signal processing [31, 32]. 
 
The interplay of noise and delay is quite important and significant 
in maintaining a dynamical system active for efficient signal 
processing and functioning. We observed this phenomenon in the 
dynamical phase diagram in Figure 4 which showed that there is a 
certain range of � → [0.47 − 0.88] within which oscillations in the 
system’s dynamics is well defined, �, � → � �����≫0, otherwise, 
the system collapsed to amplitude death, �, � → 0. This indicates 
that significantly small and large system’s size V induce amplitude 
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death indicating the system is either in normal or apoptosis state. 
During the revived oscillation state, which is in active state in 
general, the system is in non-equilibrium state. Hence, the noise is 
multifunctional and dependent on �� , such that, � = �(�� , �,  �,  
�,  �). Since noise and delay time are inherent parameters of 
biological systems, these parameters generally play important roles 
to regulate the system as well as protect the system mechanisms 
against various forms of external attacks and internal system 
failures. 
 
Conclusions: 
Delay and noise are two important inherent parameters, which 
involved with system’s dynamics. Their individual roles as well as 
interplay between them in regulating any dynamical system are 
quite important to investigate to predict various dynamical states 
evolved with the system. To understand these roles, we study 
Willamowski-Rossler model by dividing the reactions into two 
groups, delay reactions where, delay is involved in the reactions, 
and rest of the reactions non-delay reactions, where, delay is not 
involved in these reactions. Then we used DSSA to simulate the 
dynamics of the system to explore the roles of delay, noise and their 
interplay to regulate the system. For fixed noise, we observed that 
delay could induce stochastic amplitude death in the system. In 
biological systems, this state may correspond to either normal or 
apoptotic state [32]. The signature of amplitude death in system’s 
dynamics can be used in various problems, for example, in hearing 
mechanisms in frog [33] etc. Hence, in biological systems, such 
significant changes in the rhythmic activity could lead to various 
pathogenic/disease states [34]. Further, delay is quite sensitive in 
regulating the system, and could able to activate and stabilize the 
system. 
 
Noise has very interesting role in regulating Willamowski-Rossler 
dynamical system. For fixed delay, which keep the system at 
amplitude death regime, if we decrease the intrinsic noise strength 
(increasing system’s size �) we observed that the suppressed 
oscillation due to amplitude death become revived with well 
defined amplitude and time period for a certain range of noise 
magnitude. If we further decrease the magnitude of noise, the 
system dynamics moved back to amplitude death again. The 
revival of oscillations for a certain range of noise magnitude in 
stochastic system is quite interesting which may open up many 
other significant roles of noise and delay. Because this state of 
revival of oscillation can be thought of bringing the collapsed state 
to revive active state, where, the system is far from equilibrium and 
works comfortably with efficient signal processing. Hence, the role 
of noise in this regime is quite constructive in this regime where 
stochastic resonance [36] can takes place. Further, it can also be 

understood that nature provides delay and noise as system’s 
inherent properties to enable to work efficiently subjected to any 
internal and external perturbations. Study of interplay of delay and 
noise in field of biological systems, especially in neuroscience, 
cognitive science and complex systems could be quite interesting. 
Further, the exhibited dynamical states (amplitude death, reviving 
oscillating states, forms of oscillating behaviour etc) and the degree 
of changes in the behaviour of these states can be used as the 
indicators of conditions of patients under various diseases. Explore 
of these states in the dynamical patients’ data is quite challenging 
and important which can be beneficial to clinical trials and medical 
practitioners. 
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