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ABSTRACT Background: Alzheimer’s disease (AD) is a common neurodegenerative disease occurring
in the elderly population. The effective and accurate classification of AD symptoms by using functional
magnetic resonance imaging (fMRI) has a great significance for the clinical diagnosis and prediction of AD
patients. Methods: Therefore, this paper proposes a new method for identifying AD patients from healthy
subjects by using functional connectivities (FCs) between the activity voxels in the brain based on fMRI data
analysis. Firstly, independent component analysis is used to detect the activity voxels in the fMRI signals
of AD patients and healthy subjects; Secondly, the FCs between the common activity voxels of the two
groups are calculated, and then the FCswith significant differences are further identified by statistical analysis
between them; Finally, the classification of AD patients from healthy subjects is realized by using FCs with
significant differences as the feature samples in support vector machine. Results: The results show that the
proposed identification method can obtain higher classification accuracy, and the FCs between activity voxels
within prefrontal lobe as well as those between prefrontal and parietal lobes play an important role in the
prediction of AD patients. Furthermore, we also find that more brain regions and much more voxels in some
regions are activity in AD group compared with health control group. Conclusion: It has a great potential
value for the AD pathogenesis mechanism study.

INDEX TERMS Activity voxels, fMRI, functional connectivity, independent component analysis, support
vector machine.

I. INTRODUCTION
Alzheimer’s disease (AD) is a progressive neurodegenerative
disease with the characters of memory loss, poor judgment,
language deterioration and so on, which is one of the highest
rates of disease among the elderly [1]. According to the report
released by the AD International (ADI) in 2018, the current
cost of the disease is about a trillion US dollars per year, and
the number of people worldwide suffer fromADwill increase
from the current 50 million to 152 million by 2050 [2].
Therefore, the prediction and diagnosis of AD are very impor-
tant at its early warning, which has become a crucial step to
retard or even avoid dementia.

Many neuroimaging techniques have been used to unveil
neuroanatomical and neurophysiological substrates of AD so

far [3], [4], such as positron emission tomography (PET)
[5], diffusion tensor imaging (DTI) [6], electroencephalo-
gram (EEG) [7] and functional magnetic resonance imaging
(fMRI) [8]. Thereinto, fMRI is one of the most promising
non-invasive techniques for early AD diagnosis [9], [10].
By using fMRI technique, some previous AD studies have
demonstrated that the disrupted functional connectivities
(FCs) mainly concentrated on several key brain regions of
neuronal degeneration in AD, such as the anterior hippocam-
pus [11], inferior parietal lobe [12], thalamus [13], posterior
cingulate cortex [14], and prefrontal cortex [15]. These find-
ings suggested that the FCs with significant differences in AD
patients compared with healthy subjects can be served as a
biomarker for the diagnosis of AD.
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In addition, some other studies have tried to study AD
using the measures in graph theory, for example, Binnewi-
jzend et al. used voxel-wise eigenvector centrality to analyze
individual whole-brain resting-state fMRI data and identified
changes in brain network organization in AD patients that
are related to cognition and underlying AD pathology by a
permutation-based method [16]. Many methods can be used
to study FCs such as elastic net regularized regression [17]
and independent component analysis (ICA) [18]. Among
them, ICA is a very popular blind source separation tech-
nique that has been fruitfully applied in the AD research, for
example, Zhong et al. investigated the differences of effective
connectivity of the default mode network (DMN) in AD
patients and normal controls based on the identification of
DMN using ICA [19].

As a simple and effective means of research, classification
of healthy and unhealthy individuals for a given disease is
a common practice [20]–[24]. Without exception, classifica-
tion is particularly challenging in developing biomarkers for
studies of AD [25]–[27]. Currently, the literatures regarding
AD on automatic classification systems based on fMRI are
depth and breadth [28], [29]. For example, in order to assists
in the diagnosis of AD and supports the monitoring of the
progression of the disease, Tripoliti et al. proposed a six stage
method based on the features extracted from the fMRI data to
classify AD patients [30]. In addition, Dai et al. proposed a
methodological framework called multi-modal imaging and
multi-level characteristics with multi-classifier (M3), to dis-
criminate AD patients from healthy controls [31].

Many methods can be used for the classification of AD.
Among them, machine learning (ML) and pattern classifica-
tion techniques have played an important role in exploring the
brain differences between AD patients and healthy controls
[32]. As the state-of-the-art ML techniques, support vector
machine (SVM) and deep learning (DL) has beenwidely used
in brain imaging classification of AD [33], [34]. For exam-
ple, Khazaee et al. combined graph theoretical approaches
with SVM to classify AD patients from healthy subjects by
studying functional brain network alteration [35]. Sarraf et
al. outlined state-of-the-art DL-based pipelines employed to
distinguish AD’s MRI and fMRI data from normal healthy
control data for the same age group, where the fMRI data
was applied in DL for the first time to achieve medical image
analysis and AD prediction [36]. Recently, Armananzas et al.
proposed the direct use of fMRI activation voxels of brain
to tackle the automatic pattern analysis of AD and healthy
individuals by applying different ML techniques to the clas-
sification of fMRI data for this purpose [37]. However, as far
as we know, there is no literature to study this question from
the view of functional connectivity of activity voxels.

Based on this consideration, in this paper, we propose a
novel identification method based on the FCs between activ-
ity voxels in the whole brain, which is used to distinguish the
AD patients from the health control (HC) groups. First, the
classical ICA method is used to detect the activity voxels of
the AD patients and HC subjects in the resting-state fMRI

data. Second, the FCs between these activity voxels in the
whole-brain are constructed, and then FCs with significant
difference betweenAD andHC groups are identified by T-test
with false discovery rate (FDR) correction, which are used
as the input samples for the next classification. Finally, the
machine learning techniques of SVM is adopted to classify
the AD patients and HC subjects. The experimental results
show that the proposed classificationmethod in this paper can
effectively distinguish AD patients and HC subjects, and can
obtain higher classification accuracy.

The remainder of this paper is organized as follows: the
proposed classification method will first be presented, fol-
lowed by the experimental test which is designed to evaluate
the performance of the classification method. Finally, the
results and analysis will be presented together with interpre-
tations and conclusions related to the advantages and limita-
tions of this new classification method.

II. MATERIALS AND METHOD
A. OBTAINING OF COMMON ACTIVATED VOXELS
Assuming that there are a total ofK subjects in the group, and
all subjects have T time points and V voxels after normaliza-
tion. In order to obtain the common activity voxels of subjects
in the group. Firstly, we implement ICA on the single-subject
level. For subject i, ICA is defined as:

X i = M iSi, (i = 1, 2, . . . ,K ) (1)

where X i represents the observed fMRI data,
Si = (si1, si2, . . . ,siN i )

T is an Ni × V matrix, and each row
represents an independent component (IC). Each column of
M i = (mi1,mi2, . . . ,miN i ) which is a T × Ni mixing matrix
represents the corresponding time courses.

Next, we calculate the location set of activity voxels in
the ICs of each subject at a given threshold θ , and denote it
as AVLi for subject i. Then AVLi (i = 1, 2, . . . ,K ) can be
obtained as follows:

AVLi =
⋃Ni

j=1

{
v|
abs

(
sij (v)

)
≥ θ,

v = 1, 2, · · · ,V ; j = 1, 2, . . . ,Ni

}
(2)

Finally, we can calculate the location set of common activity
voxels in all subjects fromAVLi (i = 1, 2, . . . ,K ) and denote
it asCAVL, which can be obtained according to the following
formula:

CAVL =
⋂K

i=1
AVLi (3)

where CAVL is a 1×N row vector and N denotes the number
of common activated voxels.

B. FEATURES EXTRACTION FOR CLASSIFICATION
According to the method proposed in section ‘‘A. Obtaining
of common activity voxels’’, we firstly can obtain the loca-
tion sets of common activity voxels of subjects in HC and
AD groups, and denote them as CAVL1 and CAVL2 which
include N1 and N2 voxels, respectively. Then the location set
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of common activity voxels of the two groups can be obtained,
and denotes it as CAVL12 which include N12 voxels.

CAVL12 = CAVL1
⋂

CAVL2 (4)

Next, we calculate the FC between each pair of voxels in
CAVL12 for each subject in each group, and denote the set
of FCs as FC i for subject i which is a 1 × N12 (N12 − 1)/2
row vector. In this study, FC is measured by the correlation
coefficient, so that FC i can be calculated as follows:

FC i =

{
corr (X i (:,CAVL12 (p)) ,X i (:,CAVL12 (q)))
p, q = 1, · · · ,N12, p < q

}
(5)

where corr (·) represents the correlation operator, X i is a
T × V matrix represents the observed fMRI data for subject i.

Assuming that HC group and AD group include K1 and K2
subjects, respectively, and denotes the FCs of all subjects of
HC group and AD group as FC1 and FC2.
Once FC1 and FC2 are obtained, the two-sample T-test is

implemented on each FC to obtain the FCs with significant
difference between AD group and HC group, and denotes the
index set of FCs with significant difference as DFCI which
can be obtained as follows:

DFCI =
{
k

∣∣∣∣Pttest (FC1 (:, k) ,FC2 (:, k))<P0,k = 1, 2, · · · ,N12 (N12 − 1)
/
2

}
(6)

where Pttest (·) represents the P-value operator after FDR cor-
rection in T-test, P0 represents the given level of significance
which is 0.05 in our study. FC1 (:, k) and FC2 (:, k) repre-
sents the kth column of FC1 and FC2, respectively.
Finally, let DFC1 and DFC2 denotes the FCs with signif-

icant differences in HC group and AD group, which can be
obtained according to the index set DFCI of FCs with sig-
nificant difference between HC group and AD group. Once
DFC1 and DFC2 are obtained, they are used as the input
samples into the process of SVM for the classification of HC
subjects and AD patients. The detailed schematic diagram of
the implementation steps of the proposedmethodwas showed
in Fig. 1.

III. EXPERIMENTS AND DATA PROCESSING
A. EXPERIMENTAL DATA
The resting-state fMRI datasets of sixty-seven patients with
AD from 71 to 87 (mean = 77.30 ± 8.53) and seventy-six
age-matched HC subjects from 71 to 87 (mean = 77.71 ±
5.71) from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (www.adni-info.org) were used to evaluate
the classification performance of the proposed method in this
study. Data for this study were selected based on availability
of resting-state fMRI datasets for age-matched HC subjects
and patients with AD.

According to ADNI protocol (http://adni.loni.usc.edu/),
the resting-state fMRI data was acquired on 3.0 Tesla Philips
scanners while subjects were instructed to keep their eyes
open. The images dataset was acquired using single-shot
SENSE gradient an echo planar imaging (EPI) with 48 slices,

FIGURE 1. The chart flow of the proposed method.
Xi

(
i = 1, 2, . . . , Kj |j = 1, 2

)
and Si

(
i = 1, 2, . . . , Kj |j = 1, 2

)
represent

the observed fMRI data within the brain mask and the ICs obtained using
ICA for each subject respectively, and AVLi

(
i = 1, 2, . . . , Kj |j = 1, 2

)
represents the location set of activity voxels for each subject. CAVL1 and
CAVL2 represent the location set of common activity voxels for HC group
and AD group respectively, and CAVL12 represents the location set of
common activity voxels for HC and AD groups.
FC i

(
i = 1, 2, . . . , Kj |j = 1, 2

)
represents the FCs between the common

activity voxels for each subject. DFC i
(

i = 1, 2, . . . , Kj |j = 1, 2
)

represents the FCs with significant differences between HC and AD
groups for each subject.

providing whole-brain coverage and 140 volumes, a repeti-
tion time (TR) of 3s, an echo time (TE) of 30ms, a flip-angle
(FA) of 80, and a scan resolution of 64 × 64. The in-plane
resolution was 3.31 mm × 3.31 mm, and the slice thickness
was 3.31mm.

B. DATA PREPROCESSING
In this study, the preprocessing steps as well as all com-
putations were running on the Matlab platform (Mat-
lab, 2013a, Math-Works Inc., Sherborn, MA, USA). The
fMRI data were preprocessed using the DPARSF software
(http://rfmri.org/DPARSF), including removing the first 10
slices, slice timing, motion correction, spatial normalization
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TABLE 1. The Statistical distribution of activity voxels of AD group and HC group in the AAL brain regions and their corresponding MNI coordinates. The
‘‘voxel number’’ represrnts the number of activity voxels in the brain region, And The ‘‘voxel ratio’’ represents the percentage of obtained activity voxels
over the total voxels in the corresponding brain region.

and smoothing with the Gaussian kernel set to 4 mm, band-
pass filtering (0.01-0.08Hz) and detrending. Meanwhile, the
whole-brain signal was removed by a multiple linear regres-
sion analysis to reduce the effect of the physiological artifacts,
and the head motion as well as the cerebrospinal fluid and
white matter signals was removed as nuisance covariates to
reduce the effects of motion and non-neuronal blood oxygen
level-dependent fluctuations. Spatial ICA was implemented
using FastICA algorithm [38] in all experiments. Particularly,
ICASSO [39] with 20 runs of ICA and both ‘RandInit’ and
‘Bootstrap’ was used to obtain reliable ICs, and MDL [40]
was used to estimate the number of ICs. Furthermore, the
location and display of these networks were assessed using
the MRIcro software (http://www.mricro.com).

IV. RESULTS AND ANALYSIS
In this study, we mainly consider the activity voxels in the
graymatter region of brain. These activity voxels are obtained
with threshold |z| ≥ 2 after z-scored the ICs of spatial ICA.
Table 1 shows the statistical distribution of activity voxels
of AD and HC groups in the automated anatomical label-
ing (AAL) brain regions of cerebral cortex and their corre-
spondingMontreal Neurological Institute (MNI) coordinates,
which are considered as activity. Each brain region contains
more than 10 voxels and accounts for more than 1% of the
total voxels in the region.

It can be seen from Table 1 that there are no activ-
ity voxels in the brain regions of Frontal_Mid_Orb_L
(ORBmid.L/ ORBsupmed.L) and Parietal_Sup_L in AD
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FIGURE 2. (A) the results of t-test on the FCs between the common activity voxels of AD group and HC group; (B) the spatial brain
network between AAL regions corresponding to the activity voxels of FCs with significant differences.

group compared with HC group. But there are also many
brain regions that are individually activated in AD group
such as Precentral_R, Frontal_Inf_Tri_L, Frontal_Inf_Orb
(L/R), Supp_Motor_Area (L/R), ParaHippocampal (L/R),
Lingual_R, Postcentral_R, Parietal_Inf_R and Tempo-
ral_Sup_R. At the same time, it can be found that the number
of activity voxels in AD group is significantly increased
in the brain regions of Frontal_Sup (L/R), Frontal_Mid
(L/R), Frontal_Sup_Medial (L/R), Temporal_Pole_Sup_R
compared with those in HC group. In addition, the common
activity voxels of AD and HC groups are mainly located in
the brain regions of Frontal_Sup (L/R), Frontal_Mid (L/R),
Frontal_Sup_Medial (L/R), Cuneus_L, Parietal_Sup_R, Pre-
cuneus (L/R) and Temporal_Pole_Sup (L/R).

Fig.2 (A) shows statistical test results on the FCs between
the common activity voxels of AD and HC groups, which are
obtained by t-test with a confidence level of 95% after FDR
correction. Fig.2 (B) shows the spatial brain network between
AAL regions corresponding to the activity voxels of FCs
with significant differences, where the size of edge between
different AAL regions represents the number of FCs with
significant difference between the common activity voxels.
The voxels number and ratio of these AAL regions and the
correspondingMNI coordinates are shown in Table 2 , which
are more than 10 voxels and accounts for more than 1% of the
total voxels.

It can be seen clearly from Fig.2 (B) that the num-
ber of FCs between Frontal_Sup_L and Frontal_Mid_L,
Frontal_Sup_R/ Frontal_Sup_Medial_R and Frontal_Mid_R,
Frontal_Mid (L/R) and Frontal_Sup_Medial_L,
Frontal_Sup_L/Frontal_Mid (L/R) and Precuneus_L,
Frontal_Sup_R/Frontal_Mid (L/R) /Parietal_Sup_R and Pre-
cuneus_R are higher than those between other regions.
At the same time, there is almost no FCs between
Frontal_Sup_L/Frontal_Sup_Medial_R/Precuneus (L/R) and

Cuneus_L, Frontal_Sup_R/Frontal_Sup_Medial (L/R)/Cuneus_
L/Precuneus (L/R)/Temporal_Pole_Sup_R and Tempo-
ral_Pole_Sup_L, Frontal_Sup_R/Parietal_Sup_R/Cuneus_L/
Frontal_Sup_Medial_R/Precuneus (L/R) and Temporal_Pole_
Sup_R.

These results can also be found from Fig.3, which shows
the number of FCs with significant differences among the
common activity voxels between different AAL regions in
Table 2 . We can draw the similar conclusions of Fig.2 from
Fig.3. Moreover, it can be further found from the figure
that there are many FCs with significant differences between
the common activity voxels of AD group and HC group in
each AAL brain region except for the regions of Cuneus_L,
Parietal_Sup_R and Temporal_Pole_Sup_R.

Fig.4 shows the classification accuracy, sensitivity and
specificity of AD and HC subjects, which obtained using
SVMon all FCs and FCswith significant differences between
the common activity voxels of AD and HC groups. In partic-
ular, the value of parameter C = 1 and linear kernel function
were used in the SVM, and the cross-validation was used to
control the over-fitting problem [41]. Specifically, the dataset
was randomly divided into halves, 80% of which were used
as training and the rest 20% were used as testing, and this
process was run 1000 times. The average accuracy of the
1000 times was used as the final results, and the sensitivity
and specificity of these 1000 results were also given simul-
taneously, as shown in the figure. It can be seen clearly
from the figure that the classification accuracy, sensitivity and
specificity obtained using FCswith significant differences are
significant higher than those obtained using all FCs between
the common activity voxels of AD and HC groups, which
means that the FCs with significant differences between the
common activity voxels play an important role in the classi-
fication of AD and HC subjects and has a potential value for
the AD neural pathogenesis research.

VOLUME 8, 2020 1400211



Y. Shi et al.: Identification of AD Using Functional Connectivity Between Activity Voxels

FIGURE 3. The number of FCs with significant differences between the AAL regions corresponding to the activity voxels of FCs with
significant differences.

FIGURE 4. The classification accuracy, sensitivity and specificity using all
FCs and FCs with significant differences (DFCs) between the common
activated voxels of AD group and HC group.

In order to evaluate whether the change of this parameter
affects the stability of SVM classification results, multiple
thresholds are adopted for the study in this paper, and the clas-
sification results of SVM are shown in Fig.5. It can be seen
from the figure that the change of threshold parameters does

not affect the robustness of SVM classification results, and
the advantages of classification performance become more
and more obvious with the increase of threshold parameters,
especially for the cases of threshold parameter larger than
2.0. Meanwhile, in order to verify the classification effect
of SVM, we compared the classification results of Linear
SVM (LSVM) with a variety of classification algorithms in
the revised manuscript according to the comment of reviewer,
including Decision Tree (DT), Linear Discriminant (LD),
Logistic Regression (LR), K-Nearest Neighbor (KNN), and
Gaussian SVM (GSVM), as shown in Table 3 . It can be
seen clearly that the classification effect of LSVM is better
than that of other methods regard to accuracy, sensitivity and
specificity.

V. DISCUSSION
Currently, the most studies are mainly focus on the activation
degree of brain regions, brain networks or voxels as well as
the FC differences between them in the fMRI data analysis
of AD, but there are few studies to explore the difference
between AD and HC groups from the perspective of activity
voxel. Recently, Armananzas et al. used the activity voxels
as features to classify AD patients from healthy subjects, and
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FIGURE 5. The classification accuracy, sensitivity and specificity using all FCs and FCs with significant differences (DFCs) between
the common activity voxels on the cases of different threshold parameters, which ranges from 1.5 to 2.5 with a step-length of 0.1.

TABLE 2. The statistical distribution of activity voxels with FCS of significant difference in the aal brain regions and their corresponding MNI coordinates.
The ‘‘voxel number’’ represrnts the number of activity voxels in the brain region, And The ‘‘voxel ratio’’ represents the percentage of obtained activity
voxels over the total voxels in the corresponding brain region.

TABLE 3. The classification performance of multiple algorithms, including
DT, LD, LR, KNN, GSVM, and LSVM.

achieved a good recognition effect [37]. However, they did
not explore how FCs between these activity voxels differs in
healthy subjects and AD patients. Moreover, we can easily
obtain the differences for different activity voxels between
AD and HC groups, but whether the common activity voxels
show the consistency between them, there are no relevant

researches at present. In addition, Irajia et al. showed that
the analysis of fMRI data in the connectivity domain had
more advantageous than that in the time domain, and could
better explain the correlation rules of neurological diseases
such AD [42].

Therefore, the main contribution of this study is to explore
the distribution of activity voxels and FCs between them in
AD and HC groups, and to analyze the FCs of common activ-
ity voxels between AD and HC groups in the connectivity
domain, and to study their roles in distinguishing between
AD patients and healthy subjects, so as to provide a certain
reference basis for exploring the neuropathogenesis of AD.
First, we made a statistical analysis of the distribution of
activated voxels for the two groups of subjects in the AAL
template, as shown in Table 1, in which the activity voxels
were obtained by the method proposed in this paper, and
elaborated on the cognitive function of the brain areas related
to these activity voxels and the correlation with AD research.
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FIGURE 6. The classification accuracy, sensitivity and specificity using all
FCs and DFCs between the common activated voxels of MCI and HC
groups.

Although the information about brain activity in AD
patients can be obtained directly by comparing the differ-
ences of brain regions or activity voxels between AD and
HC groups, there is no relevant conclusion on whether the
common activity voxels are consistent in AD patients and
healthy subjects. Moreover, recent studies have shown that
the analysis of fMRI data in the connectivity domain has
more advantageous than that in the time domain, which can be
better used to explain the related laws of neurological diseases
such as AD [42]. Therefore, we also conducted a detailed and
in-depth analysis on the FCs between the same activity voxels
of the two groups of subjects in addition to directly analyze
the distribution of activated voxel in the AD and HC groups
as well as the related neurocognitive functions, and found
the FCs with significant differences between AD and HC
groups.

Then, these FCs with significant differences and the dis-
tribution of related activity voxels in the AAL brain regions
were analyzed, which were consistent with previous stud-
ies about AD. In order to further verify the dissimilarity
of the FCs with significant difference between AD patients
and HC subjects and the significance of them in studying
neuromechanism of AD, they were used as features to clas-
sify AD patients and HC subjects through SVM. SVM is a
supervised machine learning algorithm derived from binary
classification problem. Its advantage is that it can get much
better results than other algorithms on a small sample train-
ing set, with strong generalization ability, fast classification
speed and easy interpretation of results. This is because its
optimizations object aims to minimize structural risk, not
empirical risk, thus reducing the requirement for data size
and data distribution. The results showed that these FCs have
a good discrimination performance in recognition of AD
patients from HC subjects compared with all FCs between
the common activity voxels of the two groups, thus providing
certain reference significances for the AD research at voxel
level.

Many methods have been used for the study of AD clas-
sification, such as Deep Learning, AdaBoost, Support Vec-
tor Machines and Convolutional Neural Network [33]–[36],
which have achieved a good classification effect, but they
used different classification features, so there were different
problems. For example, it is easy to ignore the boundary
information between structural regions and functional regions
when using 90 brain regions in AAL template to construct
classification features from the fMRI data of AD, and also
easy to miss the functional integration information of other
brain regions on AD when specific brain functional regions
are used. In addition, although recent studies have explored
AD from the perspective of activated voxels [37], they have
not considered the role of FCs between these activated voxels
in AD prediction, and studies have shown that fMRI data
analysis in the connectivity domain had more advantageous
than that in time domain [42]. Therefore, this paper carried
out relevant studies on AD based on the FCs between acti-
vated voxels, and achieved a good classification accuracy,
which has a certain significance for the clinical diagnosis
of AD.

As a classical method for detecting brain functional con-
nectivity, ICA is a blind source separation method based on
higher order statistical moments. The purpose of ICA is to
decompose the observed multivariate data into the source
signals which are assumed statistically independent and non-
Gaussian, and it has been successfully applied to study of
fMRI data and to find the underlying independent sources.
Therefore, it was adopted to detect the activity voxels in this
study, in which the number of ICs was estimated by MDL.
When using ICA to obtain the activity voxels for each subject,
the brain mask was built automatically from the data itself,
and then the fMRI data within the mask was used to obtain
the activity voxels. Since all subjects had the same amount
of voxels after the preprocessing of spatial normalization, so
that they were corresponding to the same spatial locations
in the standardized space. Once the activity voxels of each
subject and their corresponding positions in the standardized
space are obtained, we can calculate the common activity
voxels of all subjects to represent the common active areas
of the corresponding group. In fact, although there are some
structural differences in the brains of each subject, most areas
remain the same in the standardized space, so this method
allows us to preserve some individual differences while also
maximizing their commonality at the activity voxel level.

In the process of obtaining activity voxels, the activity
voxels in the brain region for each subject were used to
preserve the individual specificity, while the common activity
voxels of all subjects were used as the common activity region
on behalf of the corresponding subjects in the group, such
as AD group and HC group in our study. Furthermore, the
common activity voxels need to be further screened through
the known structural templates such as the AAL template,
to determine which activity voxel is really caused by brain
information. Only those voxels that belong to corresponding
brain regions and reach a certain amount and proportion can
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be selected as the truly meaningful activity voxels, as shown
in Table 1 of this paper. It can be seen from the table that
these voxels are located in areas of the brain associated with
certain cognitive functions.

This may be because the noise-induced activity voxel is
less likely to occur in all ICs at once than in real neural
signals. In general, the activity voxels with physiologically
significant have little difference at the results of different
running times, while the noise-induced pseudoactivator vox-
els vary greatly between subjects. Currently, there have been
a number of preliminary studies in this area. For example,
Armananzas et al. proposed the direct use of fMRI activation
voxels of brain to tackle the automatic pattern analysis of
AD and healthy individuals by applying different machine
learning techniques to the classification of fMRI data for this
purpose [37]. Therefore, the activity voxel detection method
proposed in this paper can retain the useful voxels of phys-
iological significance to the maximum extent and remove
the voxels caused by noise. These voxels not only depict the
differences between individuals, but also reflect the common
characteristics at the group level.

In addition, it is worth noting that the classification method
proposed in this paper may be related to some factors, such
as the number of subjects in AD and HC groups and the
number of ICs used in ICA. Different activity voxels may
be obtained due to the different number of subjects or ICs,
and it further leads to different FCs samples. Meanwhile, it
needs to predefine a threshold parameter θ in formula (2)
as the standard to determine whether a voxel is activity, and
different voxels may be obtained with different threshold θ
in the process of activity voxel calculation. In this study, θ =
2 was selected as the threshold parameter to determine the
activity voxels in the ICs after z-score transformation.

In order to illustrate the effectiveness of FCs samples selec-
tion in the proposed classification method, the FCs between
the common activity voxels of AD and HC groups are used
as the input samples for SVM classification. However, com-
pared with the using of FCs with significant differences
as input samples, the classification accuracy is significantly
lower. Furthermore, the sample size of FCs with significant
differences is far lower than that of FCs between the common
activity voxels, which reduces the computational complex-
ity of SVM in classification. In other words, the original
sample contains many FCs that have no practical effect on
classification. Therefore, the proposed classification method
is expected to provide a new way for the clinical auxiliary
diagnosis and prediction of AD.

In this paper, the fMRI data of AD and HC groups in
this study were downloaded from public database ADNI
(http://adni.loni.usc.edu/), which had the same fMRI data
scanning parameters and similar demographic information.
But there was no fMRI data of mild cognitive impairment
(MCI) with the corresponding conditions, so only the fMRI
data of AD andHCwere used for this study, whichwas indeed
a deficiency. Therefore, in order to illustrate the significance
of the proposed method in the diagnosis of MCI, we used

the fMRI data of 50 patients with MCI from ADNI database
(www.adni-info.org) to evaluate the performance of the pro-
posed method, and the data description and results analysis
were presented in APPENDIX.

VI. CONCLUSION
In this paper, we proposed a newmethod for the identification
of AD patients from HC subjects by using the FCs between
the activity voxels in the fMRI data. ICA was firstly used to
detect the common activity voxels from the fMRI data of AD
andHC groups, and then the FCs of subjects in the two groups
between these voxels were obtained. Finally, two sample
T-test was used to find the FCs with significant differences
betweenADgroup andHC group, and then those were further
used as the feature samples of SVM for the classification of
AD patients. The experimental results demonstrated that the
proposed method could obtain a high classification accuracy
for AD patients, and also showed that more regions and more
voxels in some brain regions were activity in the brain of AD
patients, which may be due to the reason of compensation
mechanism in the brain, and it provided a new perspective
for the study of AD pathogenesis.

According to the statistical distribution of activity voxels
of AD and HC groups in Table 1, the results showed that
more brain regions of Inferior frontal gyrus, Supplementary
motor area, Parahippocampal gyrus, Lingual gyrus, Postcen-
tral gyrus, Inferior parietal, Precuneus and Superior temporal
gyrus were active in AD group compared with HC group,
although there were no activity voxels in Frontal_Mid_Orb_L
of Middle frontal gyrus, Frontal_Mid_Orb_L of Superior
frontal gyrus, and Parietal_Sup_L of Superior parietal gyrus.
They were mainly located in Prefrontal lobe, Parietal lobe,
Temporal lobe, Occipital lobe and other parts of Frontal
lobe. In addition, more voxels in Superior frontal gyrus,
Middle frontal gyrus, Superior frontal gyrus and Superior
temporal gyrus (Temporal pole) were activity in AD group,
and they were mainly in Prefrontal lobe and Temporal lobe.
These results were consistent with previous studies about AD,
which reports significant changes in these brain regions, and
the changes of FCs within each brain lobe as well as those
between brain lobes in AD [43]–[46].

Moreover, the results in Fig.4-Fig.5 showed that the iden-
tification performance using only FCs with significant differ-
ence between the activity voxels was better than that using
all FCs between the activity voxels in the classification of
AD patients and HC subjects. According to the distribution of
the activity voxels related to FCs with significant difference
shown in Table 2 , they were mainly located in the brain
regions of Superior frontal gyrus, Middle frontal gyrus, Supe-
rior frontal gyrus, Superior parietal gyrus, and Precuneus.
Based on the statistics of the number of FCs with significant
difference between different brain regions in Fig.3, we found
that the FCs between activity voxels within prefrontal lobe as
well as those between prefrontal and parietal lobes played an
important role in the classification prediction of AD patients,
which were shown in Fig.2. Therefore, we will further use
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more AD, MCI and HC fMRI data to evaluate the effective-
ness of the proposed algorithm in the future, which may be
providing a new perspective for the study of AD pathogenesis
mechanism.

APPENDIX
The resting-state fMRI datasets of 50 patients with MCI
from 66 to 78 (mean = 72.40± 6.32) from ADNI database
were used to evaluate the classification performance of the
proposed method in this study. According to ADNI protocol,
the resting-state fMRI data was acquired on 3.0 Tesla Philips
scanners. The images dataset was acquired using single-shot
SENSE gradient an EPI with 38 slices, providing whole-brain
coverage and 160 volumes, a TR of 3s, a TE of 30ms, a FA of
90, and a scan resolution of 64× 64. The in-plane resolution
was 3.39 mm × 3.39 mm, and the slice thickness was 3.39
mm.

After these MCI data have processed by the same data
preprocessing steps in Section B ‘‘Data preprocessing’’ of
III ‘‘EXPERIMENTS ANDDATA PROCESSING’’, the FCs
and DFCs features corresponding to MCI and NC groups are
obtained by using the method proposed in this paper. Then,
we also used SVMwith linear kernel function to classifyMCI
patients and HC subjects, and the classification results were
shown in Fig.s1. Fig.s1 showed the classification accuracy,
sensitivity and specificity of MCI and HC subjects, which
obtained using SVM on all FCs and DFCs between the com-
mon activity voxels of MCI and HC groups. It can be seen
clearly from the figure that a better classification accuracy,
sensitivity and specificity has been obtained by using DFCs
between the common activity voxels of MCI and HC groups,
which means that the DFCs between the common activity
voxels play an important role in the classification of MCI and
HC subjects and has a potential value for the MCI diagnosed.
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