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Introduction 

Common diseases are a result of the complex interactions between genetic and environ-
mental factors [1]. To date, several genetic studies have been conducted to identify diseas-
es associated genetic variants and have used this gained knowledge as a clinical tool for dis-
ease prediction and prevention [2]. For the last decade, genome-wide association studies 
(GWASs) have been used as an efficient research tool for revealing numerous genetic vari-
ants associated with various diseases and traits [3]. Indeed, there were about 290K variants 
recorded in the NHGRI-EBI GWAS catalog [4]. 

Despite its great success, most GWASs have been conducted in European ancestry sam-
ples, and this Eurocentric bias may produce a significant reduction in disease prediction 
accuracy for non-Europeans [5,6]. This discrepancy might be caused by a difference in al-
lele frequency distribution across populations and population-specific genetic effects [7,8]. 
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Genome-wide association studies (GWASs) facilitated the discovery of countless dis-
ease-associated variants. However, GWASs have mostly been conducted in European an-
cestry samples. Recent studies have reported that these European-based association results 
may reduce disease prediction accuracy when applied in non-Europeans. Therefore, previ-
ously reported variants should be validated in non-European populations to establish reli-
able scientific evidence for precision medicine. In this study, we validated known associa-
tions with type 2 diabetes (T2D) and related metabolic traits in 125,850 samples from a 
Korean population genotyped by the Korea Biobank Array (KBA). At the end of December 
2020, there were 8,823 variants associated with glycemic traits, lipids, liver enzymes, and 
T2D in the GWAS catalog. Considering the availability of imputed datasets in the KBA ge-
nome data, publicly available East Asian T2D summary statistics, and the linkage disequi-
librium among the variants (r2 < 0.2), 2,900 independent variants were selected for further 
analysis. Among these, 1,837 variants (63.3%) were statistically significant (p ≤ 0.05). Most 
of the non-replicated variants (n = 1,063) showed insufficient statistical power and de-
creased minor allele frequencies compared with the replicated variants. Moreover, most of 
known variants showed <10% genetic heritability. These results could provide valuable sci-
entific evidence for future study designs, the current power of GWASs, and future applica-
tions in precision medicine in the Korean population. 
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Therefore, numerous studies have been conducted to validate pre-
viously reported diseases associated loci [9-12]. Here, we aimed to 
validate known associations with type 2 diabetes (T2D) and related 
metabolic traits in a large-scale East Asian population comprising 
of 125,850 Korean samples. Subsequently, this could establish reli-
able scientific evidence for disease prediction based on known T2D 
related associations in the Korean population. 

The genetic components of complex diseases and traits were esti-
mated as 30%–70% based on family-based studies and statistical es-
timation using genome data. However, estimated heritability using 
validated loci showed only limited heritability, implying that there 
are more hidden genetic components to be revealed [13,14]. Since 
genetic variants are rapidly accumulating, it is valuable information 
to observe the current estimated genetic heritability status from 
known genetic variants. Therefore, we also estimated the genetic 
heritability from previously known variants associated with T2D 
and related quantitative traits. 

Methods 

Study subjects 
Since 2001, the Korean Genome and Epidemiology Study (KoG-
ES) has recruited 211,725 participants from three population-based 
cohorts including the including the KoGES_Ansan and Ansung 
study, the KoGES_Health EXAminee (HEXA) study, and the 
KoGES_CardioVascular disease Associations Study (CAVAS) 
[15]. The details of these studies have been described elsewhere 
[15]. All participants were aged between 40 and 69 years and pro-
vided written informed consent. Thousands of variables from these 
participants, including epidemiological surveys, physical examina-
tions, and laboratory tests, were examined. This study was ap-
proved by the institutional review board at the Korea National In-
stitute of Health, Republic of Korea. 

Phenotype measurements 
Glycemic traits, liver enzymes, lipid traits, and T2D were consid-
ered T2D-related traits. Glycemic traits were fasting plasma glucose 
(FPG) and glycated hemoglobin (HbA1c). Liver enzymes includ-
ed alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), and γ-glutamyl transferase (GGT). Lipid traits included 
high-density lipoprotein (HDL), low-density lipoprotein (LDL), 
triglyceride (TG), and total cholesterol (TC). LDL was calculated 
using the Friedewald’s formula [16]. Participants taking medication 
or undergoing therapy likely influencing the traits were excluded 
from further analysis. All quantitative traits were transformed to fol-
low an approximate normal distribution by inverse-variance or 

z-score normalization on residuals after regressing out age, gender, 
and recruitment area. TG was calculated using the log scale prior to 
transformation. 

Genotyping and quality control 
In this study, quality controlled genotypes of 125,850 samples gen-
otyped by the Korea Biobank Array (KBA) were used. The KBA 
was optimized for genome studies in the Korean population com-
prising of approximately 830K variants [17]. The detailed genotyp-
ing and quality control processes have been reported previously 
[12,17]. In brief, genotypes were called by batches containing 
about 3,000 to 8,000 samples considering the recruitment area. 
Chromosomal position was based on hg19. Samples were excluded 
based on the following criteria: gender discrepancy, low call rate 
( < 97%), excessive heterozygosity, 2nd-degree related samples us-
ing KING v2 [18], outliers of principle component analysis by us-
ing FlashPCA [19]. Following quality control, low-quality variants 
were excluded if they had a high missing rate ( >  5%), Hardy-Wein-
berg equilibrium failure (p <  10-6), and low minor allele frequency 
(MAF) ( <  1%). As a result, 125,850 samples were used for further 
analysis.  

Retrieving previously associated variants 
T2D-related variants were retrieved from a GWAS catalog database 
(https://www.ebi.ac.uk/gwas/) [4]. To avoid possible false-positive 
studies with < 1,000 samples were excluded for further analysis. As 
of December 31, 2020, there were 8,823 variants associated with 
glycemic traits, lipid traits, liver enzymes, and T2D listed in the 
GWAS catalog. Chromosomal positions of the variants from 
GWAS catalog were based on hg38. Thus, to match the chromo-
somal positions with the association results, LiftOver from UCSC 
genome browser was used to convert hg38 positions to hg19 [20]. 
Using the p-value of the cataloged variants and linkage disequilibri-
um (LD) information from the 1,000 Genomes project phase 3 
East Asians or Europeans [21], two different clumping analysis was 
conducted to obtain independent variants for East Asians or Euro-
peans (if it was available in the KBA imputed genotype data). For 
clumping analysis, plink was used with options including 
--clump-p1 1 --clump-p2 1 --clump-r2 0.l --clump-kb 500. Two sets 
of independently associated variants for East Asians or Europeans 
were then merged. Subsequently, 2,900 variants were selected as in-
dependent variants and used for further analysis. 

Statistical analysis 
The 8,823 variants associated with T2D related traits were imputed 
if they were not available in the KBA genotype data. KBA genotype 
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data was phased using Eagle v2.3 [22] and imputed using Impute 
v4 (https://jmarchini.org/software/) [23] with a merged reference 
panel of 2,504 samples of 1,000 Genomes project phase 3 and 397 
Korean whole genome sequencing data [17]. Linear regression 
analysis using transformed traits was performed using EPACTS 
v3.4.6 (http://genome.sph.umich.edu/wiki/EPACTS). T2D asso-
ciation results were assessed from publicly available summary statis-
tics of previously conducted East Asian meta-analysis study [8]. R 
statistics program (version 4.0.5; https://www.r-project.org) was 
used to visualize the results. For lipids and T2D, we used LD score 
regression (LDSC) from bigsnpr R package to estimate genetic 
heritability of each trait using all variants matched with HapMap 
phase 3 within ± 500 kb window of the independent variants 
[24,25]. For the other traits, heritability was estimated as the sum 
of estimated heritability for each variant using the effect size of the 
variant and variance of the associated trait. LDSC could not reliably 
calculate the correlation matrix of relatively small number of loci. 

Results 

At the end of 2020, there were 8,823 variants associated with 
T2D-related traits including glycemic traits (FPG and HbA1c), lip-
ids (HDL, LDL, TG, and TC), liver enzymes (AST, ALT, and 
GGT), and T2D in the GWAS catalog database. Because various 
studies have reported index variants closely located to each other, 
only independent variants with a high imputation quality score 
( ≥ 0.8) were selected for further analysis by the clumping method, 
considering a linkage disequilibrium of r2 <  0.2 either in East 
Asians or Europeans based on 1,000 genomes project data. Subse-
quently, 2,900 independent variants were identified and used in the 
association analysis. The overall analysis scheme is summarized in 
Fig. 1. 

T2D-related metabolic traits, and the association results of the 
T2D variants were retrieved from a publicly available summary sta-
tistics of the DIAMANTE East Asians association study [8]. Over-
all, 1,837 variants (63.3%) were statistically significant (p ≤  0.05) 
(Table 1, Supplementary Table 1). The replication rate was the 
lowest for TG (51.9%) and the highest for HbA1c (84.5%). 

The failure of replication in the Korean population could be due 
to insufficient statistical power and differences in genetic architec-
tures. To study the possible reasons for this failure, we analyzed the 
statistical power and effect size distribution by MAF for the unvali-
dated variants (n =  1,063). The estimated statistical power with al-
pha of 0.05 is summarized in Table 2. Most of variants associated 
with T2D-related traits presented with insufficient statistical power, 
ranging from 0.36 for HbA1c to 0.68 for TG. However, 83 of 183 

unvalidated T2D variants (45.3%) presented with enough statisti-
cal power ( > 80%), implicating a possible difference in genetic ar-
chitecture across populations. Effect sizes by MAF of 1,063 non-rep-
licated variants (n =   1,063) were plotted by each trait (Fig. 2,  
Supplementary Figs. 1 and 2). As expected, the effect size increased 
as MAF decreased. The effect sizes of non-replicated variants were 
closed to zero. Non-replicated variants were populated at a lower 
MAF than replicated variants, especially for glycemic traits and 
T2D. 

To observe the current status of estimated genetic heritability 
from known genetic variants, genetic heritability was estimated us-
ing the effect sizes from known genetic variants (Table 3). The esti-
mated heritability was the lowest for AST and ALT (1.32%) and 
the highest for TG (20.37%). However, estimated heritability was 
< 10% for most traits implying that further analysis is needed to 
identify the hidden genetic components of T2D related traits. 

Discussion 

In this study, associations of 2,900 known T2D related variants 

Fig. 1. Schematic representation of analysis flow. GWAS, genome-
wide association study; FPG, fasting plasma glucose; HbA1c, 
glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; TG, triglyceride; TC, total cholesterol; ALT, 
alanine aminotransferase; AST, aspartate aminotransferase; GGT, 
γ-glutamyl transferase; T2D, type 2 diabetes; MAF, minor allele 
frequency; LD, linkage disequilibrium.

3 / 7https://doi.org/10.5808/gi.21071

Genomics & Informatics 2021;19(4):e37

http://
www.r-project.org


were validated in the 125,870 Korean samples. From these known 
variants, 1,837 (63.3%) were replicated, however, 1,063 variants 
were not replicated due to insufficient statistical power and differ-
ence in genetic architecture across populations. Most non-replicat-
ed variants showed insufficient statistical power ( < 0.8) and a rela-
tively lower MAF than the replicated variants. Additionally, we esti-
mated the current status of genetic heritability using the known 
variants. The genetic heritability from known loci was mostly less 
than 10% implying that there is a great portion of missing heritabili-
ty for T2D-related variants. These results could provide valuable 

scientific evidence for future study design, the current power of 
GWAS, and future applications to precision medicine in the Kore-
an population. 

Despite these valuable findings of the current study, there were a 
few limitations and careful interpretation is required. First, given the 
insufficient statistical power from a limited number of sample size 
compared to that in previous studies conducted in Europeans [5-7], 
an association study with a larger sample size is warranted to achieve 
sufficient statistical power to investigate known associations. Sec-
ond, we used the threshold as p ≤  0.05. However, multiple testing 

Table 2. Estimated statistical power of non-replicated variants

Category No. of non-replicated variants
Statistical power

% (power >  80%)
Min Max

Liver enzymes
  ALT 13 0.0501 0.4714 0
  AST 6 0.0543 0.5133 0
  GGT 11 0.0533 0.4250 0
Lipid traits
  HDL 279 0.0500 0.5325 0
  LDL 198 0.0500 0.3633 0
  TG 272 0.0500 0.6796 0
  TC 63 0.0503 0.5133 0
Glycemic traits
  FPG 27 0.0500 0.3633 0
  HbA1c 11 0.0510 0.4877 0
T2D 183 0.0501 0.9994 45.36

ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 
TG, triglyceride; TC, total cholesterol; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; T2D, type 2 diabetes.

Table 1. Summary of replication results

Category No. of variants Replicated (p ≤  0.05)
Not replicated (p >  0.05)

Total %
Liver enzymes
  ALT 35 22 13 62.9
  AST 29 23 6 79.3
  GGT 64 53 11 82.8
Lipid traits
  HDL 662 383 279 57.9
  LDL 484 286 198 59.1
  TG 566 294 272 51.9
  TC 297 234 63 78.8
Glycemic traits
  FPG 80 53 27 66.3
  HbA1c 71 60 11 84.5
T2D 612 429 183 70.1
Total 2,900 1,837 1,063 63.3

ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 
TG, triglyceride; TC, total cholesterol; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; T2D, type 2 diabetes.
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considering number of independent variants is more reliable to 
avoid the inflation of false positives. Third, independent variants 
were selected to avoid missing targets of previous reports based on 
linkage disequilibrium patterns from both East Asian and European 
populations. Therefore, high non-replicability might be caused by 
the inclusion of index variants from previous studies conducted in 
European populations. Finally, heritability was estimated using 
LDSC with all variants within the known loci or the sum of estimat-

ed heritability of independent variants. Some of traits with relatively 
small number of loci were unable to estimate the heritability using 
LDSC. Therefore, further study is warranted to estimate an accurate 
heritability accounting for genetic architecture within the loci. 

Most of the non-replicated variants showed relatively less fre-
quency compared to the replicated variants. To validate these vari-
ants in the Korean population, an immense sample size (up to mil-
lions) is required to obtain sufficient statistical power based on the 
estimated statistical power of non-replicated variants in this study. 
Insufficient statistical power from less frequent variants is a com-
mon problem in single ancestry studies [26,27]. Therefore, a 
trans-ethnic meta-analysis would be an adequate approach to iden-
tify hidden variants. 
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Table 3. Estimated genetic heritability of known variants

Category No. of variants Sample size Estimated 
heritability (%)

Liver enzymes
  ALT 13 109,068 1.32
  AST 6 109,230 1.32
  GGT 11 102,729 6.62
Lipid traits
  HDL 279 120,559 19.99
  LDL 198 77,363 20.37
  TG 272 120,377 14.03
  TC 63 120,561 12.28
Glycemic traits
  FPG 27 109,942 6.17
  HbA1c 11 51,385 8.24
T2D 183 433,540 7.69

ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ 
-glutamyl transferase; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; TG, triglyceride; TC, total cholesterol; FPG, fasting plasma 
glucose; HbA1c, glycated hemoglobin; T2D, type 2 diabetes.

Fig. 2. Effect sizes and minor allele frequency of variants associated with glycemic traits and type 2 diabetes. The X-axis represents the 
minor allele frequency of the variants. The Y-axis represents the absolute scale of effect sizes of variants. Each circle indicates a variant. 
Variants were colored in blue if they were replicated in this study (p ≤ 0.05) and colored in red otherwise (p > 0.05). (A) Fasting plasma 
glucose (FPG). (B) Glycated hemoglobin (HbA1c). (C) Type 2 diabetes (T2D).
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