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ABSTRACT: Small-angle scattering (SAS) is a widely used
characterization technique that provides structural information in
soft materials at varying length scales (nanometers to microns).
The output of an SAS measurement is the scattered intensity I(q)
as a function of q, the scattered wavevector with respect to the
incident wave; the latter is represented by its magnitude |q| ≡ q
(in inverse distance units) and azimuthal angle θ. While isotropic
structural arrangement can be interpreted by analysis of the
azimuthally averaged one-dimensional (1D) scattering profile, to
understand anisotropic arrangements, one has to interpret the two-
dimensional (2D) scattering profile, I(q, θ). Manual interpretation
of such 2D profiles usually involves fitting of approximate analytical
models to azimuthally averaged sections of the 2D profile. In this paper, we present a new method called CREASE-2D that
interprets, without any azimuthal averaging, the entire 2D scattering profile, I(q, θ), and outputs the relevant structural features.
CREASE-2D is an extension of the “computational reverse engineering analysis for scattering experiments” (CREASE) method that
has been used successfully to analyze 1D SAS profiles for a variety of soft materials. CREASE-2D goes beyond CREASE by enabling
analysis of 2D scattering profiles, which is far more challenging to interpret than the azimuthally averaged 1D profiles. The CREASE-
2D workflow identifies the structural features whose computed I(q, θ) profiles, calculated using a surrogate XGBoost machine
learning model, match the input experimental I(q, θ). We expect that this CREASE-2D method will be a valuable tool for materials’
researchers who need direct interpretation of the 2D scattering profiles in contrast to analyzing azimuthally averaged 1D I(q) vs q
profiles that can lose important information related to structural anisotropy.
KEYWORDS: small-angle scattering, 3D structure, computational analysis, two-dimensional scattering profile, CREASE, XGBoost,
genetic algorithms

Researchers studying soft materials, namely, polymers, colloids,
liquid crystals, gels, and chemical formulations, aim to establish
molecular design−structure−property relationships to engineer
new materials with improved physical properties. Toward this
goal, microscopy and scattering are two prominent character-
ization techniques for understanding the structure formed
within such soft materials. Microscopy techniques that are
commonly used for soft materials include optical microscopy
to probe structures with length scales above 10 μm and
scanning electron/transmission electron/atomic force micros-
copy (SEM/TEM/AFM) to probe structures with features
below 10 μm. Such microscopy methods can reveal the
pertinent structural features in the area of the material that is
imaged, albeit only over a narrow range of length scales.
Furthermore, microscopy only outputs a two-dimensional
(2D) projection of the structure and the depth information can
be nontrivial to interpret. In contrast, bulk structural
characterization techniques that rely on scattering of light
(X-rays/visible/infrared) or neutrons are able to reveal three-

dimensional (3D) structural information across multiple length
scales. In particular, for soft materials, small-angle X-ray
scattering (SAXS) and small-angle neutron scattering (SANS)
techniques1−8 are used widely to elucidate spatial distributions
of amorphous (i.e., not crystalline) ordered or disordered
structures at various length scales.
A typical SAXS or SANS measurement captures the

scattered intensity I(q) as a function of the scattered
wavevector q with respect to the incident wave, expressed by
its magnitude |q| ≡ q (in inverse distance units) and the
azimuthal angle θ. For materials that have isotropic structural
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arrangements, the patterns found in the 2D SAXS/SANS
profiles, I(q, θ), are expected to exhibit a spherical or
cylindrical symmetry. The analysis of such symmetric
scattering profiles involves integrating over all azimuthal angles
and fitting analytical models to the one-dimensional (1D) form
of the scattering profile�I(q) vs q. The presence of a peak in
these 1D scattering profiles at a certain q value indicates the
presence of structural correlations at length scales around 2π/
q, either due to the dimensions of the constituent particles [i.e.,
form factor, P(q)] or the arrangement of particles that
influences their interparticle spacing [i.e., structure factor,
S(q)]. Therefore, even when a structure consists of anisotropic
particles that are devoid of any interparticle orientational order,
the 1D scattering profile can reveal most of the relevant
structural details about the material. Furthermore, in the case
of dilute solutions (e.g., amphiphilic polymer solutions at low
polymer concentrations), the form factor of the primary
particle (e.g., assembled micelles) can be analyzed using shape-
dependent or shape-independent models to obtain the
dimensions of the primary particles.9 However, in cases
where there is significant dispersity in dimensions of the
primary particles, such models can be poor approximations,
and the resulting analysis can be flawed. In the case of
concentrated solutions (e.g., amphiphilic polymer solutions at
high concentrations), in addition to the form factor of the
primary particle, one has to analyze the structure factor which
holds the information about spatial arrangement of the primary
particles (e.g., interparticle or intermicelle arrangement). In
such cases, if one assumes that the form factor remains
constant with a changing concentration, then one can use the
analyzed form factor obtained at dilute concentration to
interpret the structure factor. Analytical structure factor models
like the “sticky hard sphere” or “Percus−Yevick”10 can be used
to interpret isotropic structures with low dispersity. However,
in the case of systems where the values of the primary particle’s
shape and size or entire distributions of the shape and size of
primary particles change with concentration or systems in
which the structure develops anisotropy during processing or
rheological measurements;11−13 the interpretation of these
scattering profiles can be challenging.
To circumvent these challenges with traditional approaches

involving manual fitting with shape-dependent or shape-
independent models that can be approximate or incorrect in
some cases, there is a need for other analysis approaches.
Additionally, the surge in high-throughput measurements and
the quest for artificial intelligence (AI)-driven manufacturing
demand analysis methods that can be fast and automated in
interpreting scattering profiles and complementary character-
ization results, as and when the measurement is done. We
direct readers to a recent perspective by Anker et al. that covers
many ongoing developments and studies within this topic of
fast computational analysis of scattering and spectroscopic
measurements in materials sciences.14 The challenges for
computational methods being developed for fast or automated
scattering analyses in the area of synthetic soft materials are
different from inorganic hard materials or biological molecules.
This is because (nonbiological) soft material structures tend to
be mostly amorphous, often exhibiting significant dispersity in
structural dimensions, unlike the precise crystalline order seen
in inorganic materials or secondary and tertiary structures of
proteins,15−17 To address this specific need in the area of soft
materials with amorphous structures, Jayaraman and co-
workers recently developed the “computational reverse

engineering analysis of scattering experiments” (CREASE)
method.18−26

The CREASE method outputs the features or descriptors of
the 3D structures that produce “computed” scattering profiles,
Icomp(q), which closely resemble the scattering profile obtained
in experiments, Iexp(q). Rather than iterating exhaustively over
3D structures themselves, which can be a computationally
intensive and slow process, in CREASE, the optimization cycle
iterates over a lower dimensional representation of the 3D
structures. We call these lower-dimensional descriptors of the
structure as structural features; as we use the genetic algorithm
(GA) for optimization, in the jargon of evolutionary
algorithms, we refer to these structural features as “genes”.
In a typical GA optimization loop, an initial population of

“individuals” is generated where each individual has a unique
set of structural features or “genes”. The structural features can
have single values of structural parameters or encode
parameters representing distributions of structural parameters.
For each individual, these structural features are converted to a
computed scattering profile using a surrogate machine learning
(ML) model. The computed scattering profile Icomp(q) of each
individual is then compared to the input scattering profile
Iexp(q). The extent of the match between Icomp(q) and Iexp(q) is
calculated as a fitness value for that individual. After the fitness
value has been calculated for all individuals in a generation,
then a new “generation” of individuals is created based on the
current generation’s fitness ranking and genetic operations like
“pairing” and “mutations”.27 As the optimization proceeds,
with each new “generation”, the individuals progressively
exhibit better fitness values, i.e., improvement in the match
between their Icomp(q) and the input Iexp(q). At the end of the
GA cycle, upon convergence in fitness values, CREASE
outputs multiple individuals (i.e., sets of structural features)
that all have mutually similar scattering profiles that also match
the input scattering profile. If the GA results consist of multiple
distinct sets of structural features, then one would use either
their domain knowledge or guidance for imaging techniques
and/or molecular modeling and simulations to remove the
“individual(s)” that are deemed unphysical and keep only
those “individual(s)” that are physically possible.
Within the optimization loop, the use of surrogate ML

models for calculation of Icomp(q) for each individual has
significantly accelerated the computational speed of CREASE.
Traditionally, for 3D structures with known positional
coordinates of each particle or constituents of each particle,
one would use the computationally intensive Debye scattering
equation to calculate scattering profiles. To accelerate this step
of calculating Icomp(q), in recent CREASE studies, Jayaraman
and co-workers introduced the idea of using a surrogate ML
model [e.g., artificial neural networks (ANNs)] that connects
the structural features (i.e., lower dimensional representation
of the 3D structure) to its Icomp(q).

20,22,23 Using this ML-
enhanced CREASE, one can interpret input scattering profiles
fast and on modest computational resources, as described in
refs 19, 20, and 23.
There have been multiple soft material systems where

CREASE has been used successfully to analyze the 1D
scattering profiles, and in many cases, CREASE has performed
better than existing analytical models. For example, CREASE
has been used to analyze the form factor of assembled
structures in dilute solutions; for example, spherical micelles,18

cylindrical micelles,21,22 and vesicles24 formed by novel
polymers or macromolecules in solution. In these cases, the
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existing analytical models were either too approximate18 or
could not handle dispersity in structural dimensions well.24 In
some cases, CREASE was used to test hypotheses of potential
assembled structures in the solution which could not have been
done with analytical models alone.28 CREASE has also been
used to interpret the scattering profiles of concentrated particle
systems where the form of the particle was known a priori (e.g.,
simple spherical particles); in this case, CREASE was used to
understand the extent of mixing within binary nanoparticle
mixtures.20,25 CREASE has also been extended to the “P(q)
and S(q) CREASE” version that can analyze both form and the
structure factors of the primary particles simultaneously.19 This
“P(q) and S(q) CREASE” method was used to understand a
system of silica particles coated with surfactant (core−shell
particles) at varying temperature and salt concentrations. Both
temperature and salts affect the cationic surfactants in the shell
around the particles and as a result, the form of the surfactant-
coated particles and interparticle structure.29

While all of the above applications of CREASE involved
isotropic structures and the 1D scattering profile from
experiments as the input, in this paper, we have extended
the CREASE method to CREASE-2D that can analyze 2D
scattering profiles directly and, in turn, enable interpretation of
structures that may have anisotropy.
The input to CREASE-2D is a 2D scattering profile coming

from structures that have some orientational order within the
material’s structure either produced by processing conditions
(e.g., shear or field-induced alignment of domains) and/or
because of the form of primary particles (e.g., ellipsoidal
domain). In such cases, characterization of structural
anisotropy requires the use of the 2D SAS profiles, Iexp(q, θ),
which hold information on the length scales of arrangements
that can vary along various azimuthal angles, θ.
In this paper, we present all relevant details of CREASE-2D

method development and demonstrate its successful applica-
tion by correctly outputting the structural features of the 3D
structures that gave rise to the input in silico 2D scattering
profile .

■ CREASE-2D: OVERVIEW AND DEVELOPMENT
Figure 1 provides an overview of the CREASE-2D workflow
presented in this paper. The overall development of CREASE-
2D involves four key steps:

1. Generating a data set of 3D structures having an
extensive variation of all important structural features.
The structural features that we demonstrate in this study
are distributions of domain sizes, shapes, orientational
order, and volume fraction of domains that produce the
scattering;

2. Computing the 2D scattering profiles for each of those
3D structures;

3. Using the combined data set of structural features and
their computed 2D scattering to train the surrogate ML
model that will output a computed scattering profile for
an input of structural features; and

4. Incorporating the trained ML model within the GA
optimization loop to fulfill the CREASE-2D workflow.

While step 4 above enables a smooth and fast execution of
the CREASE-2D method, steps 1−3 are necessary for an
accurate and reliable representation of experimentally relevant
structural configurations and their scattering profiles. The
amount and quality of data generated in steps 1 and 2 will also
determine the accuracy of the surrogate ML model in step 3,
which, in turn, dictates the efficacy of the CREASE-2D
optimization. Before we describe each of the above steps in
more detail, we note the similarities and differences between
CREASE-2D and prior implementations of CREASE.
Similar to previous implementations, the CREASE-2D

method also uses a GA to optimize structural features. The
GA loop proceeds in a similar manner as in the previous uses
of CREASE and stops when fitness of the individuals
converges, i.e., an individual’s computed 2D scattering profile
Icomp(q, θ) matches the input profile Iexp(q, θ). One difference
between the previous CREASE implementation and CREASE-
2D is in the choice of the surrogate ML model to calculate the
Icomp(q, θ) for each individual. The surrogate ML model
needed in this case needs to not only handle the input in the
form of a table having multidimensional variation of its
structural features but also to output a 2D scattering profile
rather than a 1D scattering curve of Icomp(q) vs q. More details
are provided in the steps 3 and 4 subsections below.
Step 1: Generating a Data Set of 3D Structures with
Varying Structural Features
To develop a reliable surrogate ML model for linking structural
features to the 2D scattering profile, we need a training data set
that contains sufficient samples of 3D structures with all

Figure 1. CREASE-2D method workflow used in this paper. For proving the CREASE-2D works correctly, we used as the input an in silico 2D
scattering profile generated from a 3D structure with a predefined set of structural features. Only the “experimental: 2D scattering profile, Iexp(q, θ)
where q is magnitude of scattered wavevector and θ is the azimuthal angle, is used as the input to the CREASE-2D method. The GA optimizes
toward structural features whose Icomp(q, θ) closely resembles Iexp(q, θ). By comparing the optimized structural features to the ones used to create
the Iexp(q, θ), we can show that CREASE-2D works well.
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potential variations in structural features that influence their
computed 2D scattering profiles. This subsection describes this
process of generating such a data set.
In principle, structural features condense the detailed

representation (e.g., x, y, and z coordinates of all particles)
of the 3D structure to a few numerical values that pertain to
the distributions of parameters describing the 3D structure. In
the ML jargon, structural features are similar to the lower
dimensional latent space variables encoding a higher-dimen-
sional input function. Our philosophy is that the structural
features should be information that a soft materials researcher
would understand and find relevant. By relevance, we mean
that the interested structural features (e.g., shapes, sizes, and
spatial arrangement of the domains, extent of mixing/demixing
within domains/between domains, orientational alignment of
domains, grain boundaries, etc.) will likely control properties/
function of the soft material. Thus, we choose not to have
automatically encoded latent space variables that lack a
physical meaning and are not easily interpreted by humans
and instead, define our own structural features using our soft
material domain knowledge.

To demonstrate our choices of structural features for a
representative example of soft materials with structural
anisotropy, we consider a model system of spheroidal particles
with well-defined distributions of shapes, sizes, and orienta-
tions (shown schematically in Figure 1), along with variations
in the particles’ packing fractions in the material. Generation of
such 3D structures is facilitated by our recently developed
(open source) computational method called CASGAP
(computational approach for structure generation of aniso-
tropic particles).30 In the original manuscript,30 we demon-
strated the versatility of the CASGAP method to generate 3D
structures for user-provided distribution of particle sizes,
shapes, and orientations at or close to the target volume
fraction. Accordingly, the CASGAP method uses parameters
Rμ, Rσ, γμ, γσ, and κ to generate the 3D anisotropic structure
with a target ϕtarget. These structural descriptors serve as the
structural features for use in this development of the CREASE-
2D workflow. While the detailed description of these structural
features can be found in the original manuscript,30 we review
some relevant details below:

Figure 2. (a) Histograms and scatter plots describing how the mean and standard deviations of the volumetric radius R are varied in each of the
3000 samples in the data set. (b) Similar to (a), but for the mean and standard deviations of the aspect ratio γ. (c) Histograms describing the
distribution in the orientational anisotropy parameter κ for the vMF distribution.30 The histogram in the range of 0.1 ≤ κ ≤ 10 is shown separately
(on top) to indicate the distribution of nearly 50% samples uniformly drawn from this range. (d) Histogram describing the distribution in the
volume fraction ϕ of the generated structures. (e−g) Representative snapshots of 3D structures drawn from the data set, showing size, shape, and
orientation variations, respectively. The use of different colors facilitates easy distinction of individual particles visually. The structures in (e) and (f)
correspond to points highlighted in the scatter plots of (a) and (b), respectively. The detailed information about their structural features is provided
in Table 1.
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1. The particle sizes and shapes are expressed by the
spheroidal volumetric radius =R a c23 and the
spheroidal aspect ratio γ = c/a, where a and c are the
lengths of the semiminor and semimajor axes of the
spheroid, respectively. As done in the original manu-
script,30 the variations in the size and shape are modeled
by a log−normal distribution, each with their means (Rμ,
γμ) and standard deviations (Rσ, γσ). These quantities
provide us with the first four structural features for
CREASE-2D.

2. The orientation in the structure is quantified by a 3D
vector pointing along the major axis V of the spheroid.
With such description of orientations, we adopt the 3D
von Mises−Fisher (vMF) distribution (see details in ref
30) to model the distribution of the orientational order
expressed succinctly by the κ parameter. The κ
parameter is a measure of the inverse dispersity in
orientation and is defined around a preferred orientation
Λ. κ = 0 indicates complete lack of the orientational
order (i.e., V is uniformly distributed on the surface of a
sphere) and κ → ∞ indicates the perfect orientational
order (i.e., V = Λ). Relying on the premise that for an
anisotropic structure, the principal axes of anisotropy
can be aligned with the laboratory frame of reference
during scattering measurements such that Λ = x̂, enables
us to use only κ as the fifth structural feature.

3. Lastly, the concentration of particles is quantified by the
volume fraction of particles, ϕ. If dense particle
configuration is desired, a trade-off is observed between
the computational time for structure generation and the
value of volume fraction achieved in that time. The
CASGAP method is designed with this trade-off in mind
and can be terminated at any point of the structure
generation while maintaining a structure that adheres to
the desired structural features’ distribution. However, in
such cases of early termination, the actual volume
fraction ϕ may not reach the value of ϕtarget leading to ϕ
≤ ϕtarget. With such an expectation, we use the actual ϕ
evaluated after the structure is generated as the sixth
structural feature since the scattering profile computed
in step 2 (described in the next subsection) can be
significantly influenced by the actual volume fraction of
the particles.

Leveraging the computational efficiency of the CASGAP
method, we generate a data set of 3000 3D structures. This

data set has a numerical index from 1−3000 used as their
Sample ID along with numerical values of all their structural
features. We share some examples from this data set openly on
Zenodo.31 In Figure 2, we describe how each of the structural
features are varied. Since each structural feature represents a
physically relevant quantity with significant influence over the
morphology of the particles, these could not simply be varied
using a uniform distribution over their respective ranges. As a
result, some of these quantities have a normal-like or a skewed
distribution in their chosen ranges, as shown in the plots in
Figure 2a−d. The numerical details of the random sampling,
which is a version of the Monte Carlo sampling, are discussed
in detail in Supporting Information Section S1. We represent
all our structures by a cubic representative volume of length L
= 300 distance units (in this study, 1 distance unit corresponds
to 1 Å, but this correspondence can be changed to a different
length scale, as desired). Figure 2e−g and the accompanying
Table 1 provide some representative structure snapshots along
with their structural features. Some extreme values of structural
features have been listed in Table 1 with bold font; we selected
the Sample IDs with these extreme values of structural features
to visualize their effects on the overall structure.
The mean volumetric radius ,Rμ, is nearly uniformly sampled

over a range of 3 to 30 Å, representing a variation of 1% L to
10% L (as shown in the histogram of Figure 2a). To keep the
size variation reasonable within the prescribed log−normal
distributions, the standard deviation of volumetric radius is
controlled by the mean value, such that whenever Rμ
approaches its extreme values, i.e., 3 or 30 Å, Rσ → 0. This
is shown in the scatter plot of Figure 2a, where an envelope
shape over the Rσ distribution is observed. In Figure 2e, sample
31 and sample 332 depict the structure when Rμ’s are ∼3 and
∼30, respectively. While Sample IDs 2941 and 1291 (with
similar Rμ) depict the extreme values of Rσ.
Figure 2b shows the variation in aspect ratio, γ, in the range

of 1/10 to 10. Since this is a ratio, the values below 1
(representing oblate spheroids) are analogous, by a reciprocal
relationship, to those above 1 (representing prolate spheroids).
To ensure fair sampling of both of these shape types, the values
are nearly uniformly sampled over the logarithmic scale
between 1/10 and 10, as shown in the histogram of Figure
2b. Here, too, we ensure that whenever the mean aspect ratio
γμ approaches the extremes, γσ approaches 0 as seen from the
scatter plot in Figure 2b. In Figure 2e, Sample IDs 1770 and
1172 depict the structure when γμ’s are ∼0.1 and ∼10,

Table 1. Values of Structural Features for Selected Few Samples, in the Same Order as Shown in Figure 2a

Sample ID Rμ Rσ γμ γσ κ ϕ
31 3.07 0.00101 7.48 0.263 3.11 × 10−1 0.245
332 30.0 0.00185 0.785 0.0352 4.41 × 10−1 0.389
2941 10.2 0.576 1.28 0.200 5.89 × 10−10 0.361
1291 10.2 3.38 0.488 0.176 6.31 × 100° 0.401
1770 17.4 1.87 0.100 0.000 2.18 × 10−2 0.237
1172 3.57 0.201 9.96 0.00558 1.36 × 10−1 0.194
2291 19.5 2.19 1.00 0.0358 1.35 × 108 0.422
949 12.9 0.802 1.00 0.591 3.83 × 104 0.409
40 7.80 1.50 0.511 0.0696 1.09×10−10 0.430
585 6.80 1.63 0.881 0.0669 1.23×10−1 0.461
172 14.1 3.69 0.654 0.122 9.70×100 0.459
2495 3.64 0.0662 2.99 1.24 9.68×109 0.357

aBolded text is used to highlight the relevant structural features depicted in Figure 2.
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respectively. While Sample IDs 2291 and 949 (with similar γμ)
depict extreme values of γσ.
To vary the degree of the orientational order, the κ

parameter (Figure 2c) can be varied by sampling equally from
four intervals defined by the end points: 10−10, 0.1, 1, 10, and
1010. Here, values 10−10 ≈ 0 and 1010 ≈ ∞ are chosen to
sample the perfectly isotropic and anisotropic structures,
respectively. Structures from each of these intervals are in
Figure 2e with Sample IDs 40, 585, 172, and 2495, where κ
values are nearly 10−10, 0.1, 10, and 1010, respectively.
In Figure 2d, the histogram shows the variation in volume

fraction, ϕ, for the entire data set. Unlike all other structural
features, the distribution of volume fraction ϕ is not prescribed
but is a result of CASGAP structure generation with ϕtarget =
0.5, as explained previously. If a stricter control over ϕ is
desired, more samples at lower ϕ can easily be generated and
added to the data set to change the shape of the distribution.
Having the data set of 3D structures, we calculate each of

their 2D scattering profiles in step 2. The 2D scattering profiles
and the structural features then become the intended “output”
and “input” data for training and testing the surrogate ML
model in step 3, respectively.
Step 2: Calculating 2D Scattering Profile for Each 3D
Structure

In all previous implementations of the CREASE method, we
used the pairwise Debye scattering equation to calculate the
scattering intensity contribution of N particles with known
form factors f1,2,...,N(q) as follows
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I q
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The above equation is only applicable for isotropic
arrangement of particles and is obtained by integration over
all possible orientations of the scattering vector q, which is
equivalent to azimuthal averaging performed on the exper-
imental 2D scattering profiles. Notably, this equation has a
double-summation term which necessitates pairwise consid-
eration of particles and their contributions to the scattering
profiles and has the effect of making the scattering calculations
computationally intensive and harder to parallelize. Together
with the time required to generate structures, the additional
time needed to perform scattering calculations for that
structure makes them unfit for use directly within the CREASE
workflow. This motivated the need for surrogate ML models
that are time efficient in the prediction of Icomp(q) (as
described in step 3 subsection).
For CREASE-2D implementation, we compute the 2D

scattering intensity Icomp(q) from the scattering amplitude
Acomp(q) as = | |I q V A q( ) 1/ ( )comp comp

2. Here, the Acomp(q) is
the complex Fourier transform of the fluctuation in the
scattering length density Δρn,32−34 and is expressed as
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The above expression only has a single summation term,
which significantly reduces the computational complexity of
the scattering calculation from O(N2) to O(N) and has
enabled the computation to be parallelized; this was also noted
by Brisard and Levitz as the “simple sums” computation.34 For
our model system, due to the simplicity of the ellipsoidal

shape, computation of eq 2 is further simplified with the
anisotropic form factor f n(q) of a spheroid, which can also be
obtained from Pedersen’s tabulation of analytical form factors.8

f n(q) is provided as
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In the above equation, j1(·) is the first spherical Bessel
function, and rn(θ) is an effective radius (of particle n) that
depends on the azimuthal angle θ. A more detailed expression
for the analytical form factor can be found in Supporting
Information Section S2. We note that for shapes of particles
that are complex, without easily available analytical forms of
shapes, one can calculate the entire 2D scattering profile by
placing point scatterers in the box and using a sufficient
number of point scatterers to resolve the particle shapes and
particle−particle spatial arrangements. We are currently
finalizing a computational efficient, GPU-based code, to
calculate 2D scattering profiles for any shape of the particle
using this scatterer approach; we will share that as open-source
code on https://github.com/arthijayaraman-lab.
As the structure is contained in the shape of a cubical box of

length L, the scattering calculations can be heavily dominated
by the form factor of the cubical box, referred to as the “finite
size effects” in the literature.34 These finite size effects greatly
obscure the 2D scattering profile of the structure and make it
hard to interpret their variation purely due to the structural
features. By accounting for the volume fraction of each particle,
we can subtract the form factor of the box as a correction to
the scattering profile of the structure. We have adapted the
correction scheme described by Brisard and Levitz34 to remove
these finite size effects as discussed in Supporting Information
Section S2. Some simplifications such as considering the full
shape of the particles at the boundaries can be made and work
well as long as the cubic box size is much larger than the size of
the particles, which in our case is below 10% L.
We note that in real experimental measurements, the

scattering profiles are sometimes influenced heavily by noise,
positions of the beam stops, the choice of the q-ranges, and/or
other factors like Ewald sphere curvature-related distortions.
All of these factors may affect the correct interpretation of the
scattering data. If these effects on experimental scattering
profiles cannot be removed successfully prior to analysis by
CREASE-2D, then we can emulate them and incorporate them
in the computed scattering profiles in step 2. Subsequently, the
surrogate ML model can be trained on these more “realistic”
scattering profiles.
Figure 3a−f provides some representative examples of

scattering profile variations computed using eq 3 after applying
the finite size effects correction. In each panel, a structure
denoted by their Sample ID is shown together with two
representations of the computed scattering profiles, which are
obtained as the color-coded intensity plots for each q and θ
value. The left scattering plots in Figure 3 are referred to as the
Cartesian scattering intensity plots, Icomp(q, θ), with axes
magnitude of scattered wave vector q and azimuthal angle θ.
The right scattering plots show the polar form of the scattering
plot: scattering intensity Icomp(qx, qy), with axes qx and qy, two
components of scattering vector q. The polar form is easily
recognizable to the soft materials experts, and is the typical
representation of 2D scattering profiles directly produced from
SAXS/SANS measurements. Both the “Cartesian” and “polar”
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forms of 2D scattering profiles are numerically equivalent and
only differ in their visual representation. We have included the
polar scattering intensity plots as a reference to the reader for
easier comparison to relevant experimental scattering profiles.
However, for the further analysis, the Cartesian representation
provides a convenient and straightforward representation of
the numerical data, since only half of the complete plot θ = 0°
to θ = 180° needs to be represented due to the inversion
symmetry with the other half of the profile, i.e. I(q) = I(−q).
As demonstrated further, the Cartesian representation can be
easily serialized to obtain the complete training and testing
data in a tabular form that is convenient for training the
surrogate ML model as described in the next subsection.
The structures chosen in Figure 3 are used to demonstrate

how structural variations can influence the scattering profile.
For example, Figure 3a,b each demonstrate an isotropic
scattering profile, while having different shapes of the
individual particles; more spherical in the former and
disordered (low κ) prolate-spheroidal in the latter. Figure 3c
shows weakly aligned structure (intermediate κ), while Figure
3d−f show highly aligned structures (high κ). Another
distinguishing effect is the change in the intensity at low q
for Figure 3d,e; this is due to the drastic change in the average
size of the particles. One can see similarities between the
qualitative trends of increasing local alignment in structural
configurations, and the tightening of the scattering profile
along the axial direction, with the observations for semiflexible
polymer systems as they undergo isotropic to nematic
transition as depicted in refs 35 and 36.
Step 3: Training the ML Model to Link Structural Features
to Computed Scattering Profiles

With a streamlined implementation of steps 1 and 2, the data
set of 3000 3D structures and their corresponding 2D
scattering profiles is ready for the ML model training and
testing (or validation). 80% of the data (2400 structures) is
used for training the ML model and the remaining 20% (600
structures) is used for validation of the ML model’s
performance.
In our efforts to apply an appropriate ML method that

predicts the 2D scattering profile from a given set of structural
features, we identify the need to use a supervised ML
approach, where continuous-valued quantities can be predicted
from a small set of other continuous parameters. Traditionally,
both deep learning (DL) and ensemble learning approaches
have been successfully applied to achieve these tasks.
With the many DL approaches, one can create a generative

model that is conditionally trained on all of the structural
features. However, successful training of generative models
requires a lot more data than provided in our data set, roughly
estimated to be well above 10,000−100,000 images for model
training alone.37,38 On the other hand, ensemble learning
methods combine the prediction of multiple standalone
models, to create an overall “ensemble” predictive model
that is more accurate than the individual predictions from the
standalone models. Many ensemble learning approaches can be
easily implemented using decision trees, which are simpler to
work with than neural networks, and have been shown to
perform exceptionally well, outperforming neural networks39

for tabular data, as is also the case for Icomp(q, θ). Motivated by
these advantages, we use a decision tree-based ML model to
predict the value of Icomp(q, θ) for each of the 6 structural
features and the given q and azimuthal angle θ values.

Figure 3. (a−f) From left to right, representative snapshots of a
structure with Sample ID denoted on the top, the Cartesian form of
their scattering intensity profile Icomp(q, θ) with axes magnitude of
scattered wave vector q and azimuthal angle θ, and the polar form of
their scattering intensity profile Icomp(qx, qy) with axes qx and qy. Here,
qx and qy are components of the scattering vector q that are
(reciprocally) aligned with the laboratory frame axes x and y,
respectively. The polar form of the scattering intensity profile
maintains the logarithmic scaling of the scattering vector magnitudes,
and as a result the center of the profile is not at q = 0 but truncated to
q = 10−2.
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In the realm of decision tree-based ML models, especially
when dealing with tabular data, boosting ML techniques have
gained popularity.40−43 This is because boosting ML
techniques combine groups of weak predictive learners
sequentially and correct previous models’ training loss to
form a strong ensemble model. Here, we choose the XGBoost
algorithm,44 which stands for eXtreme Gradient Boosting, to
be the surrogate ML model in CREASE-2D, due to its
exceptional performance and lower scope of overfitting.
XGBoost is a generalized algorithm that can be implemented

to solve a wide range of problems. During training, XGBoost
assigns weights to all features it trains on, referred to as feature
importance, and accordingly adjusts the construction of
decision trees. XGBoost also offers a wide range of hyper-
parameters that can be fine-tuned to a diverse set of training
data. In our work, we utilize these advantages of XGBoost to
train the surrogate ML model that outputs a 2D scattering
intensity for the input of structural features and (q, θ) values.
To use the XGBoost algorithm, the training data set is

reformatted into a table, where each row contains all 6
structural features as fields, combined with a serialized
representation of the scattering profiles. Thus, each training
data set row reads as Rμ, Rσ, γμ, γσ, κ, ϕ, q, θ, and I(q, θ).
During serialization of the data set, the resolution of the
scattering profile can have a dominant effect on the efficiency
of training. This is because a higher resolution will result in
better quality of the data but also increases the computational
overhead and memory requirements during training. The 2D
scattering profiles calculated in step 2 are generated over a (q,

θ) grid of 501 × 181 = 90,681 data points, which amounts to
over 200 million points for all 2400 samples in the training
data set. In principle, one could use all these points to train the
surrogate ML model, if the user has outstanding computational
resources with limitless memory. For users with modest
computational resources (including cost-effective subscriptions
to Google Colab), subsampling of the data is deemed
necessary. We therefore adopted a grid-based subsampling
approach where we uniformly sample every fourth q value and
every fifth θ value to obtain a (q, θ) grid of 127 × 37 = 4662
data points. This results in around 11 million tabular entries for
the 2400 samples that can be handled reasonably well by the
ML model.
To tune the architecture of the decision trees in the

XGBoost model, Bayesian search optimization45 with cross-
validation is performed over a large range of hyperparameters
to identify their best configuration that provides reliable
accuracy in the predicted 2D scattering profiles. More details
about configurations of Bayesian optimization are provided in
Supporting Information Section S3. As an example, after this
optimization, we find that the predicted intensity values are the
most reliable when for each decision tree and for each node of
a decision tree, only 90 and 80% of the structural features are
randomly sampled, respectively. Other hyperparameters that
determine the learning rate, step size, maximum depth of the
decision tree, etc., are also optimized and described in more
detail in Supporting Information Section S3 along with their
optimum values that are used to train the ML model. Careful
tuning of these hyperparameters is essential for achieving

Figure 4. (a) Correlation matrix for all 6 structural features along with q, azimuthal angle θ and I(q) values that together form the data set for
training and validation. (b) Importance histogram for each feature evaluated by the model after training. (c) Learning curve during training of the
surrogate ML model, where R2 error of the training (black) and validation (green) data entries is plotted against the number of data entries. (d)
Performance of the ML model using the R2 and the structural similarity index measure (SSIM) scores for all 3000 samples in the data set. We note
that the index in the x-axis for this plot runs from 1 to 3000 but it is different from Sample IDs; the index distinguishes the randomly selected 2400
samples used for training and 600 samples for the validation. (e−h) Original and predicted scattering profiles for a selected few samples from the
validation data set, each marked with their R2 and SSIM scores.
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optimal model performance and avoiding overfitting on the
given data set. Bayesian optimization of the hyperparameters
takes just over an hour to optimize, when using the V100
GPUs with 51 GB RAM as provided by our Google Colab Pro
subscription. Once the tuned hyperparameters are obtained,
the XGBoost model is trained on CPUs within 10 min.
To understand the data, we present the correlation matrix in

Figure 4a and to understand how the ML model interprets the
data after training, we present the histogram that measures the
feature importance in Figure 4b. The correlation matrix
indicates weak correlations between the means and standard
deviations of R and γ, possibly due to the way these values are
sampled, as indicated in step 1. Some correlations are also
observed for volume fraction ϕ and all remaining structural
features; as noted above in the CASGAP structure generation,
the volume fraction ϕ value is not directly varied during
structure generation and is evaluated only after the structure is
generated. The strongest (inverse) correlation is observed
between the scattering intensity I(q, θ) and the magnitude of
the wavevector q; this is expected as the scattering intensity
values display a drastic dependence on the q values.
Consequently, after training, the ML model assigns the highest
importance to q, as shown in Figure 4b. Figure 4c shows the
learning curve where the performance is measured using the R2

error, which is a normalized version of the mean squared error
(MSE) and plotted against the number of data entries that the
model has already used for training. Both training and the
validation errors are found to converge quickly to beyond
99.5%, indicating that the surrogate ML model does not over
fit the training data.
In Figure 4d, we evaluate the performance of the surrogate

ML model using two metrics for all 3000 samples, where we
have assigned an index (different from Sample ID) to separate
the training samples from the validation (or test) samples. The
first metric is the R2 error evaluated in a similar way as done
during ML model training. These R2 scores provide
information about the prediction accuracy of the ML model
at each q and θ value on an individual basis (i.e., without
necessarily considering the local context). We find that the R2

values converge to 0.995 and do not differ much for training vs
validation samples, indicating excellent prediction accuracy of
the ML model. However, to also evaluate the performance of
the ML model to output the entire 2D scattering profile, we
need another metric that takes into account the performance of
the model at all values in the local vicinity of q and θ. For this
reason, we choose the structural similarity index measure
(SSIM) score which infers the structural differences between
the two scattering profiles, by using image-based characteristics
like luminescence, contrast, and pattern; these quantities are
derived from the mean, variance, and covariance information
on the local pixel data. An SSIM score near 1 indicates a good
performance of the ML model in predicting the entire
scattering profile for a given set of structural features. In
Figure 4d, the SSIM scores converge to above ∼0.8, indicating
a reliable prediction accuracy of the ML model.
A visual comparison between the original and the ML-

predicted scattering profiles is also shown in Figure 4e−h,
along with their R2 and SSIM scores. We note that among all of
the Sample IDs, Sample ID 1910 shown in this figure has the
least SSIM score. A more detailed comparison between the
original and predicted profiles is provided in Supporting
Information Section S4, by overlaying their 1D scattering
profiles at a few selected θ values to further demonstrate the

similarities in the two profiles. These results demonstrate that
the trained surrogate ML model performs reasonably well. It is
important to note that the quality of the surrogate model
training will impact how well CREASE-2D performs. We
encourage the users of CREASE-2D to invest the appropriate
time for the ML model training and to ensure that poor
training and testing do not manifest as poor analyses from
CREASE-2D.
Step 4: Optimization within GA in CREASE-2D

The final step in the CREASE-2D implementation is to put
together the predictive capacity and the speed of the surrogate
ML model within the GA optimization loop. We refer the
reader to previous CREASE publications18−26 for detailed
implementations of the GA optimization loop in the successful
execution of the CREASE (1D) method. In the current
implementation, one major distinction is the use of a
continuous parameter GA in contrast to the binary GA used
in the previous work. The continuous parameter GA is better
suited for evolving “genes” that represent continuous
parameters, and has a more straightforward interpretation of
the crossover and mutation operations.46 As noted before, the
6 structural features (Rμ, Rσ, γμ, γσ, κ, ϕ) are represented as 6
corresponding “genes” and every “individual” has a unique set
of values for these genes in the GA optimization loop. We first
normalize values of the genes, using a scheme similar to the
one used to obtain their randomized distribution; for more
detail see Supporting Information Section S5. The normal-
ization schemes assign a value between 0 and 1 as the value of
the gene and have a monotonic one-to-one correspondence
with the value of the corresponding structural feature.
For every “individual” with a unique set of genes, a scattering

profile is predicted from the surrogate ML model using the
individual’s structural features as the input. All individuals in
each generation are then ranked by their “fitness” value which
is quantified by the SSIM of the individual’s computed
scattering profile with respect to the experimental input
scattering profile. The objective of the GA optimization loop is
to improve the fitness of an individual; in other words,
improvement of the SSIM score of its computed scattering
profile Icomp(q, θ) as compared to Iexp(q, θ).
The other important consideration in the implementation of

the GA optimization loop is the choice of the number of
individuals to sample in each generation (i.e., the population
size) as well as the selection procedures for determining
individuals that move to the next generation. In our
implementation, we use a fixed population of 100 individuals
per generation that is always ranked according to their fitness.
In each generation, the top 30 individuals with the highest
fitness are selected. These 30 individuals serve as parents who
are randomly paired to form 70 children using a single-point
crossover method. Subsequently, the 30 parents and 70
children together form 100 individuals for the next generation.
For these 100 individuals, the next set of operations is related
to mutation. The top two elite individuals’ gene values are kept
unchanged as they progress to the next generation. The
remaining 98 individuals undergo adaptive mutation, where
the mutation probability and step size are varied based on the
L2 distance (or the squared Euclidean distance) of the
individual from the mean value of all individuals. Adaptive
mutation is usually recommended to prevent the GA from
converging too quickly to a local minimum and to have
sufficient diversity in the genes and individuals in the
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population.47 With this next generation of 100 individuals, the
GA optimization loop is then continued. As the number of
generations increases, the fitness of a generation should
converge, and upon convergence, the GA loop can be stopped.

■ PERFORMANCE OF CREASE-2D
To evaluate the performance of the CREASE-2D method, we
use all 600 test samples out of the 3000 total samples (the
reader will recall that out of the data set of 3000 samples, 2400
samples are used to train the surrogate model) and run GA five
separate times for each sample. We run five GA separate runs
for each sample to check how different the output structural
features from CREASE-2D are for each sample’s input
scattering profile; this allows us to understand degeneracy in
optimized GA solutions. In Figure 5a, the fitness measured in
the form of the SSIM scores for all 600 samples, tested in
CREASE-2D, are all found to be in the 0.7 to 0.9 range. We
note that this SSIM score range is similar to the performance

of the surrogate ML model indicating a reliable match between
the input and output scattering profiles. For each sample, the
standard deviations in the SSIM scores from its five GA
replicates are small (within 1% of the value shown) and thus,
not shown in the plot for clarity. We note that CREASE-2D
method performs only as well as the surrogate ML model and
it should not be expected to outperform the prediction
accuracy of the surrogate ML model.
In Figure 5b, we compare how well CREASE-2D predicts

each structural parameter value for all 600 test samples whose
structural features we (but not CREASE-2D) know a priori. To
make an effective visual comparison, we use the gene values
directly instead of the structural features in these plots. For
some structural features, especially ϕ, Rμ, and γμ (i.e., volume
fraction and means of particle size and shape distributions), the
accuracy of prediction is high, as indicated by the clustering of
points close to the red line with the unit slope. For Rσ and γσ
(which measure the dispersity in the particle size and shape),

Figure 5. Performance of GA in CREASE-2D. (a) SSIM scores for all 600 test samples as input to CREASE-2D; SSIM quantifies the similarity
between the GA-optimized or “best” Icomp(q, θ) at the end of the GA loop with the input Iexp(q, θ). (b) The comparison of GA-optimized values of
the normalized “gene” or structural features and the original value of the structural feature, normalized to represent a target gene value for all 600
samples tested with CREASE-2D. (c,d) Two selected samples�Sample IDs 1076 and 1910�out of the 600 samples tested with CREASE-2D. We
show visual comparison of the input scattering profile and outputs from three independent GA runs and plot their corresponding evolution of
structural feature predictions during each GA run for Sample IDs 1076 and 1910. The solid colored curves in the plots in (c,d) are the three GA
runs and the black dashed curve is the value of the structural feature corresponding to the original scattering, with the exact value of that structural
feature denoted in the text.
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the prediction accuracy is low, despite having a high SSIM
score. This indicates that precise values of the extent of
dispersity in the particle size and shape have a minimal impact
on the variation of the scattering intensity; this is in line with
observations in experiments that the presence of dispersity
broadens peaks of the scattering profile but does not alter the
shape of the profile with the value of dispersity. As a result, for
Rσ and γσ, the CREASE-2D method is dealing with larger
degeneracy in solutions. For κ that quantifies the orientational
order, the accuracy is high only for samples that have high
values of κ, and the accuracy is low for samples with lower κ
values (i.e., low orientational order). As one would expect, at
low values of κ which represent isotropic ordering of
anisotropic particles, the precise numerical value of the κ
value has minimal impact on the scattering intensities.
To further demonstrate the performance of the CREASE-2D

method for the four representative samples (same as from
Figure 4), in Figure 5c,d, the results for Sample IDs 1076 and
1910 are presented, and the results for Sample IDs 1097 and
2176 are provided in Supporting Information Section S5. The
evolution of their fitness values is also presented in Supporting
Information Section S5. In Figure 5, we show the predicted
scattering profiles for the best outputs from 3 out of the 5 GA
runs per system along with the evolution of structural features
over 1000 generations from those 3 GA runs. In each run, the
GA loop converges closely to the original value of the
structural feature in the first few generations, as indicated by
the convergence of the curves to the dashed line (the numbers
in the plots denote the target structural feature value of that
sample). We note that one GA optimization loop with 1000
generations of 100 individuals uses 30−45 min in real time to
complete when implemented on a single-(CPU) core laptop/
computer with modest hardware.
We would like to emphasize that our choice of the model

system with spheroidal particles and the variation of relevant
structural features was motivated by the convenience of
generating structures using the existing CASGAP method.30

To extend CREASE-2D to interpret 2D scattering profiles
from other soft material systems (e.g., processed polymers with
orientational alignment or structures accessed during rheology
in Rheo-SANS experiments), the user should follow similar
steps as described for the model system: (1) identify the
structural features of relevance (e.g., orientational order
parameters, and distribution of domain sizes and shapes);
(2) generate “synthetic” or in silico structures for varying
values of such structural features; (3) calculate the 2D
scattering profiles using the scatterer placements within these
structures; (4) train the surrogate XGBoost model or other
ML models with such structures as input and 2D scattering
profiles as output; and (5) incorporate the surrogate model
within the CREASE-2D loop to optimize toward the structural
features that gives rise to a scattering profile like the input
scattering profile.
In conclusion, we have developed a new CREASE-2D

method that analyzes 2D scattering profiles as is without any
averaging along all or few angle- and output-relevant structural
features like domain size and shape distribution, extent of the
orientational order in the structure, and packing fraction of the
domains in the structure. The development of CREASE-2D
relied on the generation of the data set with 3000 samples each
with a desired set of structural features and the corresponding
3D structures generated using CASGAP30 and the correspond-
ing computed 2D scattering profile. This data set enabled

training of a surrogate XGBoost-based model that outputs the
2D scattering profile for a given set of structural features. Using
this surrogate ML model within a GA optimization loop, we
are able to identify all of the structural features (and
reconstruct 3D real-space configurations, if needed) that
produce a scattering profile that matches the input 2D
scattering profile. We believe that soft material researchers
who aim to understand how macroscopic properties (e.g.,
rheology and flow) depend on the structural anisotropy and
the hierarchy of structural length scales within the materials
will find this CREASE-2D method useful. CREASE-2D enables
users to analyze the output of scattering experiments
holistically without having to use approximate analytical
models to fit to averaged 1D profiles or limit analysis to only
averaged angular sections of the 2D profiles.
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