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We consider ordinary differential equation (ODE) model for a pathway network that arises in extracellular matrix (ECM)
degradation. For solving the ODEs, we propose applying the mass conservation law (MCL), together with a stoichiometry called
doubling rule, to them.Then it leads to extracting newunits of variables in theODEs that can be solved explicitly, at least in principle.
The simulation results for the ODE solutions show that the numerical solutions are indeed in good accord with theoretical solutions
and satisfy the MALs.

1. Introduction

Differential equations are a useful method for modeling
dynamics of reaction pathways in cells. They can be used
to formulate biochemical kinetics, that is, the interactive
dynamics of systems consisting of proteins, enzymes, prod-
ucts, and other components in terms of their transitive
concentrations.

The biochemical kinetics of a system describes the
reactions through the mass action law (MAL); this results
in a system of first-order nonlinear ordinary differential
equations (ODEs). In general, the nonlinear ODEs cannot be
solved explicitly, and so they are usually studied by numerical
simulations.

For the modeling of such a system, we propose an idea
of using the mass conservation laws (MCLs) together with
the MALs. That is, the variables in the ODEs obtained by the
MALs are grouped into new units of variables to constitute
new MALs, according to local balancing relations of inflows
and outflows. It is important here that these new MCLs hold
for all 𝑡 ≥ 0. As a result, the nonlinear ODEs presented by the
new units of variables turns out to be a completely integrable
system; that is, the ODEs can be solved explicitly, at least in
principle.

We apply this idea to analyze the kinetics of the molecule
concentration dynamics in cancer cell invasion to the ECMby

a matrix metalloproteinase called MT1-MMP. If we can find
appropriateMCLs for balancing relations in the kinetics, then
such relations turn out to exhibit linear relations between
ODE variables that are valid for all 𝑡 ≥ 0. Also, the nonlinear
ODEs with the new unit of variables are completely solvable
explicitly. That is, these nonlinear ODEs of new unit of
variables can be solved as a group. These groups may often
correspond to network motifs, that is, local functions; they
suggest a bundle of meaningful components in a complex
pathway network (PWN). As the simulation results show, the
numerical solutions are in good accord with the theoretical
solutions, indicating our modeling by the new unit of vari-
ables is right.

We thus clarify how to look at the PWN model of the
ECM degradation with the unit variables. In fact, we indicate
that the relevant system of the PWN can be grouped into
several units of original variables and, with the unit variables,
the system of ODEs can be solved explicitly. Taking linear
combination of ODEs for the grouping has existed so far,
but changing original ODEs into new, solvable ones by the
linear combination has not been considered so far. This is
a special stoichiometry. In addition, in order to enjoy such
grouping method, certain reformulation including doubling
rule is necessary as in the following, which has not been
considered properly so far.
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Table 1: List of associations with 𝑎-𝑏𝐵.
Association with 𝑎-𝑏𝐵 Assoc.

const.
Dissoc.
const.

𝑋1(𝑎)
+X2 (b) 󳨀→ X4 (ab) 𝑘1

𝑙1 = 0+X5 (bc) 󳨀→ X7 (abc) 𝑘1+X8(bcc) 󳨀→ X9(abcc) 𝑘1+X10(bccb) 󳨀→ X11(abccb) 2𝑘1+X11(abccb) 󳨀→ X12(abccba) 𝑘1

Table 2: List of associations/dissociations with 𝐵𝑏-𝑐𝐶.
Association/dissociation with 𝐵𝑏-𝑐𝐶 Assoc.

const.
Dissoc.
const.

X2(b)
+X3(c) ←→ X5(bc) 𝑘2 𝑙2
+X6(cc) ←→ X8(bcc) 2𝑘2 𝑙2
+X8(bcc) ←→ X10(bccb) 𝑘2 2𝑙2
+X9(abcc) ←→ X11(abccb) 𝑘2 𝑙2

X4(ab)
+X3(c) ←→ X7(abc) 𝑘2 𝑙2
+X6(cc) ←→ X9(abcc) 2𝑘2 𝑙2
+X8(bcc) ←→ X11(abccb) 𝑘2 𝑙2
+X9(abcc) ←→ X12(abccba) 𝑘2 2𝑙2

Table 3: List of associations/dissociations with 𝐶𝑐-𝑐𝐶.
Association/dissociation with 𝐶𝑐-𝑐𝐶 Assoc.

const.
Dissoc.
const.

X3(c)
+𝑋3(𝑐) ←→ X6(cc) 2𝑘3 2𝑙3+𝑋5(𝑏𝑐) ←→ X8(bcc) 𝑘3 𝑙3+𝑋7(𝑎𝑏𝑐) ←→ X9(abcc) 𝑘3 𝑙3

X5(bc)
+𝑋3(𝑐) ←→ X8(bcc) 𝑘3 𝑙3+𝑋5(𝑏𝑐) ←→ X10(bccb) 2𝑘3 2𝑙3+𝑋7(𝑎𝑏𝑐) ←→ X11(abccb) 𝑘3 𝑙3

X7(abc)
+𝑋3(𝑐) ←→ X9(abcc) 𝑘3 𝑙3+𝑋5(𝑏𝑐) ←→ X11(abccb) 𝑘3 𝑙3+𝑋7(𝑎𝑏𝑐) ←→ X12(abccba) 2𝑘3 2𝑙3

The organization of the paper is as follows. Section 2
discusses four elementary reaction processes that are mod-
eled by second-order nonlinear ODEs that can be solved
explicitly. In Section 3, the ECM degradation mechanism is
introduced, and we present one of the key concepts behind
the choice of a goodmodel forODEkinetics, the doubling rule
in stoichiometry. In Section 4, as an application of elementary
reaction processes, we consider solving the ODE system that
arises from the PWN of molecule concentration dynamics in
ECM degradation. We list the tables cited in Section 4 and
present the explicit solutions to the ODE system in Tables 1–7
and Appendix A, respectively.

2. Elementary Reaction Processes That Reduce
to Solvable Second-Order Riccati Equations

In this section, wewill showhow theODEs for the elementary
reaction processes can be solved by reduction to the well-
known Riccati equations of a new unit of variables.

In PWN, in addition to the simple dimerization of
monomers, there are polymerizations of higher complexes.
For those complexes that are modified from relevant
monomers, we will assume that the association and disso-
ciation constants are the same as those for the monomer
associations or dimer dissociations, respectively.

For simplicity, we will show the four basic forms of
elementary reactions as in the following.The association dis-
sociation constants are here denoted by 𝑘 and 𝑙, respectively.

(i) Association of two differentmolecules/dissociation of
their product:

𝐴 + 𝐵 𝑘󴀕󴀬
𝑙

𝐴𝐵. (1)

(ii) Association of the same molecules/dissociation of
their product:

𝐴 + 𝐴 𝑘󴀕󴀬
𝑙

𝐴𝐴. (2)

(iii) Association with a modified molecule/dissociation of
their product:

𝐴 + 𝐴𝐵 𝑘󴀕󴀬
𝑙

𝐴𝐵𝐴 or 𝐴𝐴𝐵. (3)

(iv) Association with a homodimer/dissociation of their
product:

𝐴 + 𝐵𝐵 𝑘󴀕󴀬
𝑙

𝐴𝐵𝐵. (4)

Note that 𝐴𝐵 + 𝐵 𝑘󴀕󴀬
𝑙

𝐴𝐵𝐵 is the same as reaction (iii).
We now show that the ODEs for the MALs for reactions

(i)–(iv) can be solved explicitly. First, the MALs for reaction
(i) are

𝑑 [𝐴]𝑑𝑡 = −𝑘 [𝐴] [𝐵] + 𝑙 [𝑃] ,
𝑑 [𝐵]𝑑𝑡 = −𝑘 [𝐴] [𝐵] + 𝑙 [𝑃] ,
𝑑 [𝑃]𝑑𝑡 = 𝑘 [𝐴] [𝐵] − 𝑙 [𝑃] .

(5)

The resulting system of ODEs can be solved explicitly: (5)
implies the MCLs

𝑑 ([𝐴] + [𝑃])𝑑𝑡 = 𝑑 ([𝐵] + [𝑃])𝑑𝑡 = 0 ⇐⇒
[𝐴] + [𝑃] ≡ 𝐼𝐴,
[𝐵] + [𝑃] ≡ 𝐼𝐵,

(6a)
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Table 4: Mass conservation laws of 𝑎, 𝑏, and 𝑐.
Items MCL

𝑎0 𝑑 (𝑋1 + 𝑋4 + 𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12)𝑑𝑡 ≡ 0
𝑏0 𝑑 (𝑋2 + 𝑋4 + 𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)𝑑𝑡 ≡ 0
𝑐0 𝑑 (𝑋3 + 𝑋5 + 2𝑋6 + 𝑋7 + 2𝑋8 + 2𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)𝑑𝑡 ≡ 0

Table 5: Reaction laws of (𝑎, 𝑏), (𝑏, 𝑐), and (𝑐, 𝑐).
(𝑎, 𝑏): 𝑋1 + (X2 + X5 + X8 + 2X10 + X11) 𝑘1󴀕󴀬

𝑙1≡0
(X4 + X7 + X9 + X11 + 2X12) ⇐⇒

{{{{{{{
(𝐸1) 𝑑𝑋1𝑑𝑡 = −𝑘1𝑋1(X2 + X5 + X8 + 2X10 + X11)
(𝐸2581011) 𝑑(X2 + X5 + X8 + 2X10 + X11)𝑑𝑡 = −𝑘1𝑋1(X2 + X5 + X8 + 2X10 + X11).

(𝑏, 𝑐): (X2 + X4) + (X3 + 2X6 + X8 + X9) 𝑘2󴀕󴀬
𝑙2

(𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12) ⇐⇒
{{{{{{{

(𝐸24) 𝑑(X2 + X4)𝑑𝑡 = −𝑘2(X2 + X4)(X3 + 2X6 + X8 + X9) + 𝑙2(𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)
(𝐸3689) 𝑑(X3 + 2X6 + X8 + X9)𝑑𝑡 = −𝑘2(X2 + X4)(X3 + 2X6 + X8 + X9) + 𝑙2(𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12).

(𝑐, 𝑐): (X3 + X5 + X7) + (𝑋3 + 𝑋5 + 𝑋7) 𝑘3󴀕󴀬
𝑙3

(2X6 + X8 + X9 + X8 + 2X10 + X11 + X9 + 𝑋11 + 2X12) ⇐⇒
(𝐸357) 𝑑(𝑋3 + 𝑋5 + 𝑋7)𝑑𝑡 = −2𝑘3(𝑋3 + 𝑋5 + 𝑋7)2 + 2𝑙3(𝑋6 + 𝑋8 + 𝑋9 + 𝑋10 + 𝑋11 + 𝑋12)

Table 6: Processes of obtaining solutions 𝑋1–𝑋12.
Variable Method
𝑋1 Single Riccati equation
𝜉2581011 A companion of 𝑋1𝜉24 Single Riccati equation
𝜉3689 A companion of 𝜉24𝑋2 Method of variation of coefficient
𝑋4 𝑋4 = 𝜉24 − 𝑋2𝜉357 Single Riccati equation
𝑋3, 𝑋5 Method of variation of coefficient
𝑋7 𝑋7 = 𝜉357 − (𝑋3 + 𝑋5)𝑋6, 𝑋8, 𝑋10 Method of variation of coefficient
𝑋9, 𝑋11, 𝑋12 by (41)

𝑑 ([𝐴] − [𝐵])𝑑𝑡 = 0 ⇐⇒
[𝐴] − [𝐵] = 𝐼𝐴 − 𝐼𝐵

(6b)

for some positive constants 𝐼𝐴 and 𝐼𝐵, which are typically the
initial values of [𝐴] + [𝑃] and [𝐵] + [𝑃], respectively. Then,
substituting

[𝐴] = 𝐼𝐴 − [𝑃] ,
[𝐵] = 𝐼𝐵 − [𝑃] (7)

Table 7: Initial values and reaction constants used in the simulation.

Variables Values
𝑎0 2.0 × 10−6 [M]
𝑏0 1.0 × 10−6 [M]
𝑐0 1.0 × 10−6 [M]
𝑘1 2.1 × 107 [M−1 s−1]
𝑙1 0 [M−1 s−1]
𝑘2 2.74 × 106 [M−1 s−1]
𝑙2 2.0 × 10−4 [M−1 s−1]
𝑘3 2.0 × 106 [M−1 s−1]
𝑙3 1.0 × 10−2 [M−1 s−1]
into the third equation in (5), we obtain an equation in only
the variable [𝑃]:

𝑑 [𝑃]𝑑𝑡 = 𝑘 (𝐼𝐴 − [𝑃]) (𝐼𝐵 − [𝑃]) − 𝑙 [𝑃]
= 𝑘 [𝑃]2 − {𝑘 (𝐼𝐴 + 𝐼𝐵) + 𝑙} [𝑃] + 𝑘𝐼𝐴𝐼𝐵
≡ 𝑘 ([𝑃] − 𝑧1) ([𝑃] − 𝑧2) ,

(8)

where the last expression is the factorization of the quadratic
polynomial in the second line. If 𝑧1 ̸= 𝑧2, this leads to

( 1[𝑃] − 𝑧2 −
1[𝑃] − 𝑧1)

𝑑 [𝑃]𝑑𝑡 = −𝑘 (𝑧1 − 𝑧2) , (9)
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or ([𝑃] − 𝑧1)/([𝑃] − 𝑧2) = 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡, and hence the explicit
solution

[𝑃]𝑡 = 𝑧1 − 𝐶𝑧2𝑒−𝑘(𝑧1−𝑧2)𝑡1 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡 = 𝑧2 + 𝑧1 − 𝑧21 − 𝐶𝑒−𝑘(𝑧1−𝑧2)𝑡 ,
𝐶 = [𝑃]0 − 𝑧1[𝑃]0 − 𝑧2

(10)

for 𝑡 ≥ 0. Here, 𝑧1, 𝑧2 are
𝑧1, 𝑧2

= {𝑘 (𝐼𝐴 + 𝐼𝐵) + 𝑙} ± √{𝑘 (𝐼𝐴 + 𝐼𝐵) + 𝑙}2 − 4𝑘2𝐼𝐴𝐼𝐵2𝑘 .
(11)

If 𝑧1 and 𝑧2 are distinct and 𝑧1 − 𝑧2 > 0 so that lim𝑡→∞[𝑃]𝑡 =𝑧1 in (10), then we find that [𝑃]𝑡 is monotonically decreasing
and nonnegative. Solutions to [𝐴] and [𝐵] can be found
in a similar manner by using (7). Although the situation is
slightly different, a similar calculation was presented in ([1],
Section 6.5).

Second, for reaction (ii), theMAL yields kinetic equations
of the form

𝑑 [𝐴]𝑑𝑡 = −2𝑘 [𝐴]2 + 2𝑙 [𝑃] ,
𝑑 [𝑃]𝑑𝑡 = 𝑘 [𝐴]2 − 𝑙 [𝑃] .

(12)

In the first equation of (12), the coefficient of 2 stems
from the fact that, in the reaction 𝐴 + 𝐴 → 𝑃, two
molecules of 𝐴 are consumed; similarly, in the dissociation,
two molecules of 𝐴 are produced. This is called a double rate
of consumption/reproduction.The ODEs (12) imply the MCL

𝑑 ([𝐴] + 2 [𝑃])𝑑𝑡 = 0 ⇐⇒
[𝐴] + 2 [𝑃] ≡ 𝐼𝐴

(13)

for a positive constant 𝐼𝐴. Then, substituting 2[𝑃] = 𝐼𝐴 − [𝐴]
into the first equation of (12), we have

𝑑 [𝐴]𝑑𝑡 = −2𝑘 [𝐴]2 − 𝑙 [𝐴] + 𝑙𝐼𝐴
≡ −2𝑘 ([𝐴] − 𝜁1) ([𝐴] − 𝜁2) ,

[𝐴]𝑡 = 𝜁1 − 𝐶𝜁2𝑒−2𝑘(𝜁1−𝜁2)𝑡1 − 𝐶𝑒−2𝑘(𝜁1−𝜁2)𝑡 = 𝜁2 + 𝜁1 − 𝜁21 − 𝐶𝑒−2𝑘(𝜁1−𝜁2)𝑡 ,
𝐶 = [𝐴]0 − 𝜁1[𝐴]0 − 𝜁2

(14)

for 𝑡 ≥ 0. Here 𝜁1, 𝜁2 are
𝜁1, 𝜁2 = −𝑙 ± √𝑙2 + 8𝑘𝑙𝐼𝐴

4𝑘 . (15)

Since 𝜁1 −𝜁2 > 0, we have lim𝑡→∞[𝐴]𝑡 = 𝜁1. As in case (i), the
solution is monotonically decreasing and nonnegative. The
solution to [𝑃] can also be obtained by the MCL (13).

For reaction (iii), we have the MALs and MCL as shown
in the following:

𝑑 [𝐴]𝑑𝑡 = −𝑘 [𝐴] [𝐴𝐵] + 𝑙 [𝑃] ,
𝑑 [𝐴𝐵]𝑑𝑡 = −𝑘 [𝐴] [𝐴𝐵] + 𝑙 [𝑃] ,
𝑑 [𝑃]𝑑𝑡 = 𝑘 [𝐴] [𝐴𝐵] − 𝑙 [𝑃] ,

(16)

𝑑 ([𝐴] + [𝑃])𝑑𝑡 = 0, (17a)

𝑑 ([𝐴] − [𝐴𝐵])𝑑𝑡 = 0. (17b)

The ODEs (16) can be solved in a manner similar to that
used for reactions (i) and (ii). In fact, the association of𝐴-𝐵𝐴
reduces to reaction (i), and the association of 𝐴-𝐴𝐵 reduces
to reaction (ii).

Finally, for reaction (iv), we have the followingMALs and
the MCL:

𝑑 [𝐴]𝑑𝑡 = −2𝑘 [𝐴] [𝐵𝐵] + 𝑙 [𝐴𝐵𝐵] ,
𝑑 [𝐵𝐵]𝑑𝑡 = −2𝑘 [𝐴] [𝐵𝐵] + 𝑙 [𝐴𝐵𝐵] ,

𝑑 [𝐴𝐵𝐵]𝑑𝑡 = 2𝑘 [𝐴] [𝐵𝐵] − 𝑙 [𝐴𝐵𝐵] ,
(17)

𝑑 ([𝐴] − [𝐵𝐵])𝑑𝑡 = 0,
𝑑 ([𝐴] + [𝐴𝐵𝐵])𝑑𝑡 = 0.

(18)

The coefficient of 2 in (17) arises because a molecule of 𝐴
may bind to either of the two 𝐵 molecules. The solution to
these ODEs (17) is the same as that for reaction (i) but with 𝑘
replaced by 2𝑘. This is called a double chance of association.

These elementary reaction processes (i)–(iv) will be used
below to solve the ODE system for the kinetics of ECM
degradation. The given ODE system is grouped into several
subpathways, and in the reformulation based on these groups,
we will find that the new variables reduce the equations as
groups to those of the elementary reaction processes.

3. Application to the Model of ECM
Degradation by MT1-MMP

In this section, we show how the elementary reaction pro-
cesses in the previous section can be applied to a problem in
cell biology, that of extracellular matrix (ECM) degradation
by membrane type 1 matrix metalloproteinase (MT1-MMP),
which is a step in the progression of cancer.

3.1. ECMDegradationMechanism. As is well known, in order
for the proliferated cancer cells tometastasize from a primary
lesion, they first invade and degrade the ECM and then
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Figure 1: Mechanism of activation of a (MMP2) by b (TIMP2) and c (MT1-MMP).

migrate. The cancer cells secrete MMP, and its dimer MMP2
is then activated byMT1-MMP; theMMP2 then degrades the
ECM.

After the ECM is degraded, other enzymes, including
MT1-MMP, begin degrading the interstitium beyond the
ECM. Therefore, mathematical or biological elucidation of
the activation process of MMP2 is important for finding
a clinical cure or developing drugs. Below, we will denote
MMP2, TIMP2, and MT1-MMP by 𝑎, 𝑏, and 𝑐, respectively.

Sato et al. [2] have revealed experimentally the mecha-
nism of the activation of MMP2. The steps of the activation
scenario of MMP2, as a cell biological model, proceed as
follows (see Figure 1):

(0) Although 𝑐 (MT1-MMP) is an ECM degradation
enzyme as well, it is usually inactivated by 𝑏 (TIMP2)
immediately after vesicle transportation to the cell
membranes. However, 𝑐 activates 𝑎 (MMP2), which
is another ECM degradation enzyme, as follows.

(1) The 𝑐 molecules that penetrate the cell membrane
form homodimers 𝑐𝑐 on the membrane.

(2) On one of the 𝑐 in the dimer -𝑐𝑐-, the heterodimer𝑎𝑏 (pro-MMP2, TIMP2) is coupled to produce the
tetramer 𝑎𝑏𝑐𝑐; alternatively, 𝑎- may be coupled with
the heterotrimer -𝑏𝑐𝑐 to produce the tetramer. Thus,𝑎 is associated with 𝑐𝑐 via 𝑏.

(3) One of the 𝑐 in 𝑎𝑏𝑐𝑐 that is not coupled with 𝑎𝑏 cuts
the connection between 𝑎 and 𝑏.

(4) 𝑎 thatwas cut and released then becomes the activated
one.

This process is thus the associations/dissociations of the three
molecules 𝑎, 𝑏, and 𝑐, and 𝑎𝑏𝑐𝑐 is the key molecule in
the activation of 𝑎. In order to produce certain amount of
activated 𝑎 (MMP2), there must be sufficient 𝑏. However, if
there is too much 𝑏, then the remaining vacant site of 𝑎𝑏𝑐𝑐-
tends to associate with -𝑏, which results in the fact that 𝑎𝑏𝑐𝑐𝑏
or 𝑎𝑏𝑐𝑐𝑏𝑎 will be produced preferentially to 𝑎𝑏𝑐𝑐, and an

a

a

b

b

b

c

c
c

Binding of a (MMP2)
Associating only with 
b (TIMP2) by a single 
binding site

Binding of b (TIMP2)
Associating with 
a (MMP2) or 
c (MT1-MMP) by each of 
the single binding sites, 
respectively

Binding of c (MT1-MMP)
Associating with 
b (TIMP2) or 
c (MT1-MMP) by each of 
the single binding sites, 
respectively

Figure 2: Binding sites of a (MMP2), b (TIMP2), and c (MT1-
MMP).

insignificant amount of 𝑎 will be activated. See Hoshino et
al. [3] and then Watanabe et al. [4].

The molecular binding rules that follow from this sce-
nario are that 𝑎 and 𝑐 do not couple with each other, but
with 𝑏, and 𝑐 may form the homodimer 𝑐𝑐 (see Figure 2).
Although it is difficult to deny the possibility of other binding
patterns, to the best of our knowledge, there is no evidence of
such patterns in the literature. Therefore, we will assume the
following binding patterns:

(1) 𝑎 has a site of binding only with 𝑏.
(2) 𝑏 has a site of binding with 𝑎 and another site of

binding with 𝑐.
(3) 𝑐 has a site of binding with 𝑏 and another site of

binding with 𝑐 itself.
(4) There are no other binding patterns.

By inspection, we see that there appear to be nine com-
plexes (dimers to hexamer) obtainable from the monomers
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abccb

abccba

bccb

bcab

b c

cc

bcc

abcc

abc

aMonomer

Dimer

Trimer

Tetramer

Pentamer

Hexamer

k1
k2, l2
k3, l3

Figure 3: Pathway network of association/dissociation pairs of
complexes of a (MMP2), b (TIMP2), and c (MT1-MMP). Here,
arrows indicating only association are depicted.

𝑎, 𝑏, and 𝑐. The PWN of association or dissociation of these
complexes are shown in Figure 3.

Thus, a quantitative model of ECM degradation can be
based on the kinetics of associations/dissociations of the three
proteins (𝑎: MMP2; 𝑏: TIMP2; and 𝑐: MT1-MMP) and their
nine complexes, for a total of twelve compounds. The PWNs
of the twelve molecules are depicted in Figure 3. A quantita-
tive model was first considered by Karagiannis and Popel [5],
in which the general interactive behavior of the molecules 𝑎,𝑏, and 𝑐 was investigated through simulation in the context
of type-I collagen proteolysis. Further, their behavior in more
realistic situations was considered by Hoshino et al. [3] and
then byWatanabe et al. [4] as themathematical interpretation
of the cell biological model in [2].

In the quantitative models in [3, 4], the detailed cell
biological behaviors of these enzymes (𝑎, 𝑏, and 𝑐) were
studied. In particular, they found that MT1-MMP has two
fluorescence recovery time constants, 29 [s] and 259 [s], and,
in FRAP experiments, they determined that the recovery is
not due to lateral diffusions but to the insertion of a new
membrane. As a result, they verified by simulation that the
inactivation of MT1-MMP by TIMP2 proceeds very quickly
(halving time is 4.5 [s]); therefore, a very rapid turnover of
MT1-MMP must be occurring at the location of the ECM
degradation.

We consider a mathematical treatment of the ODE
kinetics with a more complete theoretical analysis of such
quantitative studies; see (E1)–(E12).

Now, according to the binding rules discussed above, we
have the following three associations or dissociations in the
PWN:

(I) Association of 𝑎-𝑏𝐵 (association constant 𝑘1):
(𝑎-𝑏) 𝑎 + 𝑏𝐵 𝑘1󴀕󴀬

𝑙1≡0
𝑎𝑏𝐵. (19)

The molecules 𝑎 and 𝑏 do not dissociate after they are
once associated. Thus we set 𝑙1 ≡ 0.

(II) Association/dissociation of 𝐵𝑏-𝑐𝐶 (association con-
stant 𝑘2; dissociation constant 𝑙2):

(𝑏-𝑐) 𝑏𝐵 + 𝑐𝐶 𝑘2󴀕󴀬
𝑙2

𝐵𝑏𝑐𝐶. (20)

(III) Association/dissociation of 𝐶𝑐-𝑐𝐶 (association con-
stant 𝑘3; dissociation constant 𝑙3):

(𝑐-𝑐) 𝑐𝐶 + 𝑐𝐶 𝑘3󴀕󴀬
𝑙3

𝐶𝑐𝑐𝐶. (21)

For reactions (I)–(III), there are twelve molecules in the
PWN in Figure 3: 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑏𝑐, 𝑐𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑐, 𝑎𝑏𝑐𝑐, 𝑏𝑐𝑐𝑏, 𝑎𝑏𝑐𝑐𝑏,
and 𝑎𝑏𝑐𝑐𝑏𝑎.Wedenote their concentrations as𝑋1 = [𝑎],𝑋2 =[𝑏], 𝑋3 = [𝑐], and so on. The three association/dissociation
groups are presented in Tables 1, 2, and 3. We make the
following basic assumptions:

(𝐴1) For the association/dissociation of the modified
molecules 𝐴𝑎 and 𝑏𝐵, we use the same associa-
tion/dissociation constants as those used for the
elementary reaction 𝑎-𝑏.The same is assumed for 𝐵𝑏-𝑐𝐶 and 𝐶𝑐-𝑐𝐶.

(𝐴2) The initial concentrations for 𝑋4, . . . , 𝑋12 are all 0:𝑋𝑖(0) = 0, 𝑖 = 4, . . . , 12.
In order to obtain the correct ODEs, it is necessary to extract
the appropriate doubling rules for the reaction coefficients in
the PWN. We will explain it in the next subsection.

3.2. Pathway Network Dynamics and Doubling Rules. From
Figure 3 and Tables 1–3, we can write down the following
twelve second-order nonlinear ODEs:

𝑑𝑋1𝑑𝑡 = −𝑘1𝑋1 (𝑋2 + 𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11) . (E1)
𝑑𝑋2𝑑𝑡 = −𝑘1𝑋1𝑋2 − 𝑘2𝑋2 (𝑋3 + 2𝑋6 + 𝑋8 + 𝑋9)

+ 𝑙2 (𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11) .
(E2)

𝑑𝑋3𝑑𝑡 = −𝑘2𝑋3 (𝑋2 + 𝑋4) − 2𝑘3𝑋3 (𝑋3 + 𝑋5 + 𝑋7)
+ 𝑙2 (𝑋5 + 𝑋7) + 𝑙3 (2𝑋6 + 𝑋8 + 𝑋9) .

(E3)
𝑑𝑋4𝑑𝑡 = 𝑘1𝑋1𝑋2 − 𝑘2𝑋4 (𝑋3 + 2𝑋6 + 𝑋8 + 𝑋9)

+ 𝑙2 (𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12) .
(E4)

𝑑𝑋5𝑑𝑡 = −𝑘1𝑋1𝑋5 + 𝑘2𝑋2𝑋3
− 2𝑘3𝑋5 (𝑋3 + 𝑋5 + 𝑋7) − 𝑙2𝑋5
+ 𝑙3 (𝑋8 + 2𝑋10 + 𝑋11) .

(E5)
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𝑑𝑋6𝑑𝑡 = 𝑘3𝑋23 − 2𝑘2𝑋6 (𝑋2 + 𝑋4) + 𝑙2 (𝑋8 + 𝑋9)
− 𝑙3𝑋6.

(E6)

𝑑𝑋7𝑑𝑡 = 𝑘1𝑋1𝑋5 + 𝑘2𝑋3𝑋4
− 2𝑘3𝑋7 (𝑋3 + 𝑋5 + 𝑋7) − 𝑙2𝑋7
+ 𝑙3 (𝑋9 + 𝑋11 + 2𝑋12) .

(E7)

𝑑𝑋8𝑑𝑡 = −𝑘1𝑋1𝑋8 + 2𝑘2𝑋2𝑋6 − 𝑘2𝑋8 (𝑋2 + 𝑋4)
+ 2𝑘3𝑋3𝑋5 + 𝑙2 (−𝑋8 + 2𝑋10 + 𝑋11)
− 𝑙3𝑋8.

(E8)

𝑑𝑋9𝑑𝑡 = 𝑘1𝑋1𝑋8 − 𝑘2𝑋9 (𝑋2 + 𝑋4) + 2𝑘2𝑋4𝑋6
+ 2𝑘3𝑋3𝑋7 + 𝑙2 (−𝑋9 + 𝑋11 + 2𝑋12)
− 𝑙3𝑋9.

(E9)

𝑑𝑋10𝑑𝑡 = −2𝑘1𝑋1𝑋10 + 𝑘2𝑋2𝑋8 + 𝑘3𝑋25 − 2𝑙2𝑋10
− 𝑙3𝑋10.

(E10)

𝑑𝑋11𝑑𝑡 = 𝑘1𝑋1 (2𝑋10 − 𝑋11) + 𝑘2𝑋2𝑋9 + 𝑘2𝑋4𝑋8
+ 2𝑘3𝑋5𝑋7 − 2𝑙2𝑋11 − 𝑙3𝑋11.

(E11)

𝑑𝑋12𝑑𝑡 = 𝑘1𝑋1𝑋11 + 𝑘2𝑋4𝑋9 + 𝑘3𝑋27 − 2𝑙2𝑋12
− 𝑙3𝑋12.

(E12)

Note that ODEs (E1)–(E12) incorporate doubling rules.
The coefficient of 2 on

(1) 𝑘3𝑋23 in (E3),
(2) 𝑘3𝑋25 in (E5),
(3) 𝑘3𝑋27 in (E7)

corresponds to the double rate of consumption/reproduction
in reaction (ii). See Figure 4. The coefficient of 2 on

(1) 𝑘3𝑋3(𝑋5 + 𝑋7) in (E3),
(2) 𝑘3𝑋5(𝑋3 + 𝑋7) in (E5),
(3) 𝑘3𝑋7(𝑋3 + 𝑋5) in (E7),
(4) 𝑘3𝑋3𝑋5 in (E8),
(5) 𝑘3𝑋3𝑋7 in (E9),
(6) 𝑘3𝑋5𝑋7 in (E11),

b

c c

Double chance of association 
at a time

c cb b

c cb b

Double chance of dissociation 
at a time

Figure 4: Doubling rules in the association/dissociation of 𝑏- and
-𝑐𝐶.

which corresponds to 𝐶𝑐-𝑐𝐶 association or dissociation
reactions in Table 3, will be explained in Section 4.3. The
remaining coefficients of 2 in the ODEs are due to the
double chance of association/dissociation in reaction (iv), as
discussed in Section 2.

What is the rationale for the above doubling rules? It is
the ingeniously well-formed MCLs and reaction laws, which
are shown in the next section.

4. Analyzing the PWN Dynamics

4.1. Kinetics of Those Reactions Containing 𝑎-𝑏𝐵. According
to Table 1, the reactions related to 𝑎-𝑏𝐵 are summarized as

𝑋1 + (X2 + X5 + X8 + 2X10 + X11) 𝑘1󴀕󴀬
𝑙1≡0

(X4 + X7 + X9 + X11 + 2X12) .
(22)

Looking at 𝑋1 and the products (the right hand side) of
this reaction, we infer from the flux balance of consumption-
production that we may have

𝑑 (𝑋1 + X4 + X7 + X9 + X11 + 2X12)𝑑𝑡 ≡ 0. (23)

By taking summation (E1) + (E4) + (E7) + (E9) + (E11) + 2× (E12) of the ODEs, we find that (23) is indeed true. Here,
X12(abccba) has a coefficient of 2 because the decrease in 𝑋1
is equal to the increase in (X4 + X7 + X9 + X11 + 2X12), since
the complex abccba consumes two 𝑎 molecules, unlike the
others: ab, abc, abcc, abccb. Equation (23) is an MCL of form
(6a) or (17a). Equation (23) may be considered as anMCL for𝑎0, since

(𝑋1 + X4 + X7 + X9 + X11 + 2X12) (𝑡) ≡ const.
≡ 𝑋1 (0) = 𝑎0 (24)



8 Computational and Mathematical Methods in Medicine

by assumption (𝐴2); thus, a local balance holds: 𝑎0 − 𝑋1(𝑡) ≡(X4 + X7 + X9 + X11 + 2X12)(𝑡) for all 𝑡 ≥ 0.
From (22), we also have

𝑑 (−𝑋1 + X2 + X5 + X8 + 2X10 + X11)𝑑𝑡 ≡ 0, (25)

which may be considered to represent an MCL for 𝑎0 − 𝑏0,
since

(−𝑋1 + X2 + X5 + X8 + 2X10 + X11) (𝑡) ≡ const.
≡ −𝑋1 (0) + 𝑋2 (0) = −𝑎0 + 𝑏0. (26)

Here, X10 has a coefficient of 2 because the complex bccb has
two b- sites for binding with 𝑎, which implies a double chance
of association, as in reaction (iv). Equation (26) is an MCL of
form (6b) or (17b).

Note that (E1) and (25) suggest that𝑋1 and (X2+X5+X8+2X10 + X11) form a pair of 𝑎-𝑏𝐵 kinetics, (𝐸1) and (𝐸2581011),
as displayed in Table 5.The twoODEs can be solved explicitly
using the method for reaction (i) in Section 2; details are
shown in Appendix A.1.

4.2. Kinetics of Those Reactions Containing 𝐵𝑏-𝑐𝐶. Next, we
consider the kinetics of associations/dissociationswith𝐵𝑏-𝑐𝐶
involved in the ODE system. As can be seen in Table 2, the
reactions related to 𝐵𝑏-𝑐𝐶 are summarized as

(X2 + X4) + (X3 + 2X6 + X8 + X9) 𝑘2󴀕󴀬
𝑙2

(X5 + X8 + 2X10 + X11) + (X7 + X9 + X11 + 2X12) .
(27)

In the manner similar to that used for the𝐴𝑎-𝑏𝐵 kinetics, we
infer, from the flux balance of consumption-production, that
we may have

𝑑 (X2 + X5 + X8 + 2X10 + X11 + X4 + X7 + X9 + X11 + 2X12)𝑑𝑡
= 0;

(28)

that is,

𝑑 (𝑋2 + 𝑋4 + 𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)𝑑𝑡
= 0.

(29)

By taking summation (E1) + (E4) + (E7) + (E9) + (E11) + 2 ×(E12) of the ODEs, we find that (28) is indeed valid. Equation
(28) is an MCL of form (6a) or (17a). Equstion (29) may be
viewed as an MCL of 𝑏0, since

(𝑋2 + 𝑋4 + 𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 + 2𝑋10 + 2𝑋11
+ 2𝑋12) (𝑡) ≡ const. ≡ 𝑋2 (0) = 𝑏0. (30)

From (27), we also have

𝑑 (−X2 − X4 + X3 + 2X6 + X8 + X9)𝑑𝑡 = 0, (31)

which is confirmed by taking the summation −(E2) − (E4) +(E3) + 2× (E6) + (E8) + (E9) of the ODEs. This is an MCL of
form (6b) or (17b). Equation (31) represents anMCL of 𝑏0−𝑐0,
since

(−X2 − X4 + X3 + 2X6 + X8 + X9) (𝑡) ≡ const.
≡ −𝑋2 (0) + 𝑋3 (0) = −𝑏0 + 𝑐0. (32)

Here, X6 has a coefficient of 2 because it has two c- sites for
binding with a or ab.

The MCL (31) implies that 𝜉24(𝑡) ≜ (X2 + X4)(𝑡) and𝜉3689(𝑡) ≜ (X3 + 2X6 + X8 + X9)(𝑡) are governed by
the same ODE, up to the initial values. From the ODEs(E1)–(E12), it follows that the two variables form a pair of𝐵𝑏-𝑐𝐶 kinetics, (𝐸24) and (𝐸3689), as in Table 4. The variables𝜉24(𝑡) and 𝜉3689(𝑡) can be solved explicitly; details are shown
in Appendix A.2.

Now, we find that each of 𝑋2(𝑡) and 𝑋4(𝑡) can be solved
explicitly, as well. This is because the right-hand side of (E2)
contains only known terms, except for 𝑋2:

𝑑𝑋2𝑑𝑡
= − [𝑘1𝑋1 (𝑡) + 𝑘2𝜉24 (𝑡) + 𝑙2 − 𝑘2 (𝑏0 − 𝑐0)]X2 (𝑡)

+ 𝑙2 (𝑋1 (𝑡) − 𝑎0 + 𝑏0) ,
(E2)󸀠

by (26) and (32).Hence𝑋2(𝑡) can be calculated by themethod
of variation of coefficients. See Appendix A.3. In this way,𝑋4(𝑡) can be obtained by 𝑋4(𝑡) = 𝜉24(𝑡) − 𝑋2(𝑡).
4.3. Kinetics of Those Reactions Containing 𝐶𝑐-𝑐𝐶. We finally
consider the kinetics of associations/dissociations of 𝐶𝑐-𝑐𝐶 involved in the ODE system. As shown in Table 2, the
reactions related to 𝐶𝑐-𝑐𝐶 can be summarized as

(X3 + X5 + X7) + (𝑋3 + 𝑋5 + 𝑋7) 𝑘3󴀕󴀬
𝑙3

(2𝑋6 + 𝑋8 + 𝑋9 + 𝑋8 + 2𝑋10 + 𝑋11 + 𝑋9 + 𝑋11
+ 2𝑋12) .

(33)

In amanner similar to that used previously, we infer from
the flux balance of consumption-production that

𝑑 (𝑋3 + 2𝑋6 + 𝑋8 + 𝑋9 + 𝑋5 + 𝑋8 + 2𝑋10 + 𝑋11 + 𝑋7 + 𝑋9 + 𝑋11 + 2𝑋12)𝑑𝑡 = 0; (34)
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that is,

𝑑 (𝑋3 + 𝑋5 + 2𝑋6 + 𝑋7 + 2𝑋8 + 2𝑋9 + 2𝑋10 + 2𝑋11 + 2𝑋12)𝑑𝑡= 0. (35)

By taking the summation (E3) + (E5) + 2 × (E6) + (E7) + 2× (E8) + 2 × (E9) + 2 × (E10) + 2 × (E11) + 2 × (E12) of the
ODEs, we find that (35) is indeed valid. Equation (34) is an
MCL of form (6a) or (17a). Equation (35) may be viewed as
an MCL of 𝑐0, since

(𝑋3 + 𝑋5 + 2𝑋6 + 𝑋7 + 2𝑋8 + 2𝑋9 + 2𝑋10 + 2𝑋11
+ 2𝑋12) (𝑡) ≡ const. ≡ 𝑋3 (0) = 𝑐0. (36)

From (E3), (E5), and (E7), we have the ODE (𝐸357), which
is displayed in Table 5, and in which we have used (30) and
(32). The coefficient of 2 on 𝑘3𝑋3(𝑋3 + 𝑋5 + 𝑋7)2 in (𝐸357) is
a result of the summation of the ODEs (E3), (E5), and (E7).
But then, where do the coefficients of 2 on 𝑘3(𝑋3 + 𝑋5 + 𝑋7)
in (E3), on 𝑘3𝑋5(𝑋3 + 𝑋5 + 𝑋7) in (E5), and on 𝑘3𝑋7(𝑋3 +𝑋5 + 𝑋7) in (E7) come from? They stem from the following
stoichiometry. For those reactions in Table 3 that correspond
to the reaction (ii) in Section 2,

X3 (c) + 𝑋3 (𝑐) ←→ X6 (cc) ,
X5 (bc) + 𝑋5 (𝑏𝑐) ←→ X10 (bccb) ,

X7 (abc) + 𝑋7 (𝑎𝑏𝑐) ←→ X12 (abccba) ,
(37)

the reason is the same as in (12); that is, it is caused by the
double rate of consumption/reproduction. Hence, we must
count these three reactions with the association/dissociation
coefficients on 2𝑘3 and 2𝑙3 in (E3), (E5), and (E7). For the
reaction𝑋3(𝑐)+𝑋5(𝑏𝑐) ↔ 𝑋8(𝑏𝑐𝑐) corresponding to reaction
(iii), both

X3 (c) + 𝑋5 (𝑏𝑐) ←→ X8 (bcc) ,
X5 (bc) + 𝑋3 (𝑐) ←→ X8 (bcc) (38)

must be counted. The first reaction in (38) is the one
contained in (E3), and the second reaction is in (E5). In
the first reaction, the subject is X3(c), and it associates with
the object 𝑋5(𝑏𝑐). We will name this molecule c = 𝑐1. In
the second reaction, the subject is X5(bc), and it associates
with the object 𝑋3(𝑐). We will name this molecule 𝑐 = 𝑐2.
In other words, a molecule of 𝑐 (=object) is associated with
a molecule of bc (=subject). In general, c = 𝑐1 and 𝑐2 are
different molecules.

The first reaction must be counted as a reaction of X3(c).
Also, seen as a reaction of X5(bc), the second reaction
must also be counted. Both reactions take place at the same
time. The association/dissociation coefficients are 𝑘3 and 𝑙3,
respectively, for both reactions.

However, now consider, for example, how 𝑋3(𝑐) is con-
sumed doubly by the amount of 𝑐1 and 𝑐2. In Table 3, other
combinations of this kind are

X5 (bc) + 𝑋7 (𝑎𝑏𝑐) ←→ X11 (abccb) ,
X7 (abc) + 𝑋5 (𝑏𝑐) ←→ X11 (abccb) ,
X3 (c) + 𝑋7 (𝑎𝑏𝑐) ←→ X9 (abcc) ,
X7 (abc) + 𝑋3 (𝑐) ←→ X9 (abcc) .

(39)

The contribution of the reactions in (38) and (39) are
therefore doubled. Combining the doubling of the reactions
in (38), we obtain the third reaction in Table 5, which causes
the term −2𝑘3(𝑋3 + 𝑋5 + 𝑋7)2 in 𝐸357 and the ODEs (E3),(E5), and (E7).

Finally, in considering 𝑋3(𝑐), the dissociation term𝑙3(𝑋8 + 𝑋9) need not be doubled, since only one molecule
of 𝑐 is produced from a molecule of 𝑏𝑐𝑐: 𝑏𝑐-𝑐; also, this
dissociation is not involved in (E5).

By the above arguments for the doubling rules, we have
obtained ingeniously well-formed MCLs and reaction laws,
as shown in Table 4, respectively. This may suggest that our
doubling rules are justified.

Also, the above argument of 𝐶𝑐-𝑐𝐶 kinetics may imply
the following: suppose that, for association of molecules,𝑝1, 𝑝2, . . . , 𝑝𝑛, say, some combinations of coupling 𝑝𝑖-𝑝𝑗 (1 ≤𝑖, 𝑗 ≤ 𝑛), are possible and others not. Then, it does not hold
that

𝑑 (𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛)𝑑𝑡 = −2𝑘 (𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛)2
+ dissociation term

(40)

in general. However, if all of 𝑝𝑖 has a common binding cite,
that is, all 𝑝𝑖 are of the form -𝑐𝐶, then we do have (40). In the
latter case, the doubling rule holds for (𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛) as a
unit, as if (𝑝1, 𝑝2, . . . , 𝑝𝑛) are a single molecule with binding
cite -𝑐, and the elementary doubling rule (12) holds with [𝐴]
in (12) replaced by (𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛).
4.4. Solutions to Remaining Variables. Solutions to the
remaining variables can also be obtained. 𝑋3 and 𝑋5 can be
found by themethod of variation of parameters, as in the case
of𝑋2.𝑋7 can be found by𝑋7(𝑡) = 𝜉357(𝑡)−(𝑋3+𝑋5)(𝑡), where𝜉357(𝑡) is the solution to (𝑋3 + 𝑋5 + 𝑋7)(𝑡). By applying the
solution 𝜉357 to (E3), we obtain the solution to 𝑋3(𝑡) as

𝑑𝑋3𝑑𝑡
= − [(𝑘2 − 𝑙3) 𝜉24 + (2𝑘3 − 𝑙2) 𝜉357 + 𝑙2 + 𝑙3]𝑋3 (𝑡)

+ 𝑙2𝜉357 + 𝑙3𝜉24 − 𝑙3 (𝑏0 − 𝑐0)
(E3)󸀠

by (30) and (32); note that 𝜉24 and 𝜉357 have been obtained
already. Similarly, 𝑋6, 𝑋8, and 𝑋10 can also be found by the
method of variation of coefficient.
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Figure 5: Looking at PWN with unit variables.

All of 𝑋1 to 𝑋8 and 𝑋10 have thus been obtained in
principle. The remaining ones, 𝑋9, 𝑋11, and 𝑋12, can be
obtained by solving

𝑋9 (𝑡) = 𝜉3689 (𝑡) − (𝑋3 + 2𝑋6 + 𝑋8) (𝑡) ,
𝑋11 (𝑡) = 𝑋1 (𝑡) − (𝑋2 + 𝑋5 + 𝑋8 + 2𝑋10) (𝑡) − 𝑎0

+ 𝑏0,
𝑋12 (𝑡) = 12 [𝑎0 − (𝑋1 + 𝑋4 + 𝑋7 + 𝑋9 + 𝑋11) (𝑡)]

(41)

(see (A.8), (26), and (24), resp.). The processes for obtaining
these solutions are listed in Table 6.

4.5. Biomedical Implication. As described in Section 3.1, an
appropriate amount of 𝑋2(𝑏) (TIMP2) is necessary to obtain
a substantial amount of the keymolecule𝑋9(𝑎𝑏𝑐𝑐).Therefore,
development and medication of such drugs that inhibit
TIMP2 outside the cell membrane may be considered to be
effective. Similarly, drugs that inhibit MT1-MMP inside the
cell membrane might be considered to be useful as well.

In addition, upon being clarified the model behaviors we
notice the most important pathways in the PWN. They are
three parts producing 𝜉91112 (association parts just before the
three blue boxes in Figure 5). The PWN may be said to be
such a device that continues to produce 𝜉91112, as explained

in the following. In fact, the key molecule 𝑋9(𝑎𝑏𝑐𝑐) is thus
produced, through 𝜉91112, continuously as far as possible.

The initial concentration 𝑎0 is dispersed in the network,
toX4(ab), X7(abc), X9(abcc),X11(abccb), andX12(abccba),
according to the first MCL in Table 4. Likewise, 𝑏0 and 𝑐0 are
dispersed in the network, according to latter two MCLs in
Table 4, respectively.

The units of variables correspond to both the MCLs in
Table 4 and reactions in Table 5. For example, the first MCL
in Table 4 means that the consumption of𝑋1 and production
ofX4(ab)+X7(abc)+X9(abcc)+X11(abccb)+2X12 are of the
same rate in the reaction (𝑎, 𝑏) in Table 5.

Thus, the initial “mass” continues to exist in the PWN
with its components changing to dimer, trimer, tetramer,. . .: at every moment, such dimer, trimer, . . ., and hexamer
contained in the unit variables coexist. This is true for all the
initial masses 𝑎0, 𝑏0, and 𝑐0. By this, in the reactions by unit
variables,

(1) 𝑋1 versus 𝜉2581011 = X2 + X5 + X8 + 2X10 + X11,
(2) 𝜉24 = X2 + X4 versus 𝜉3689 = X3 + 2X6 + X8 + X9,
(3) 𝜉357 = X3 + X5 + X7 versus 𝜉357 = X3 + X5 + X7,

all possible intermediates of different level oligomers, towards𝑋9, are produced simultaneously at every moment. That is,
the PWN system is settled so as to continue to produce𝑋9 as
much as possible at every moment.
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Figure 6: 𝑋1: simulation result and theoretical solution.
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Figure 7: 𝜉2581011: simulation result and theoretical solution and
MCL (26).

In addition, the node that produces𝑋9(𝑎𝑏𝑐𝑐) is not single.
There are three such nodes in the PWN, each in reaction of(𝑎, 𝑏), (𝑏, 𝑐), and (𝑐, 𝑐). As in Figure 5,𝑋9 is produced through
the production of 𝜉91112 = 𝑋9+𝑋11+2𝑋12. Here, this 𝜉91112 is
only produced and no more reused by feedback or additional
reactions.

Therefore, we may say that the PWN is such a system
that produces 𝑋9 (through 𝜉91112) in the triple way (three
production nodes) and continues the production as much
as possible. This kind of consideration has become possible
because the PWN model is analyzed through the unit
variables.

4.6. On the Simulation Results. We present the time course
plots of the theoretical and numerical solutions in Figures
6–12. The theoretical solutions above are in good agreement
with our simulation results. In Figures 7, 8, 10, and 12, the

Sum of the two

X1(t)

(X4 + X7 + X9 + X11 + 2X12)(t)

1. × 10−6

2. × 10−6

0.40.2
t

Figure 8: 𝜉4791112: simulation result and theoretical solution and
MCL (24).

X2 + X4(t), numerical
X2 + X4(t), theoretical

1. × 10−6

4 6 8 102
t

Figure 9: 𝜉24: simulation result and theoretical solution.

MCLs (26), (24), (32), and (34), respectively, are confirmed;
the solutions are also confirmed. The values of reaction
constants and initial values used in the simulations are listed
in Table 7. The reaction constants are the same as those used
in Watanabe et al. [4], while the initial values are set as
follows: the initial values used in [4] are 𝑎0 = 𝑏0 = 𝑐0 =1.0 × 10−7 [M] based on experimental measurement; if the
initial values are adopted as they stand, then the simulation
causes a time-delay; that is, the responses become much
slower. Therefore, for the sake of convenience in simulation,
we take the initial values with the order of 10−6. In addition,
in order to show the relationship of the behaviors of solutions
and initial values in a more effective way, we set as 𝑎0 =2.0 × 10−6 [M]. For example, in Figure 6, we can see that𝑋1(∞) = 𝑎0 − 𝑏0 indeed (see (A.1)). Also, in Figure 8, the
MCL can be seen visually.

It should be noted that the simulation results obtained
in Watanabe et al. [4] and hence in this paper are based on
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Figure 10: 𝜉3689: simulation result and theoretical solution andMCL
(32).
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Figure 11: 𝜉357: simulation result and theoretical solution.

actual cancer data. The study in this paper provides the exact
solutions to the ODE model and hence a mathematically
rigorous foundation is added to the simulation results.

Concerning the question that if there is a threshold of the
key molecule concentration that leads to ECM degradation,
we do not know the exact threshold at least presently. It
may be considered that, according to the amount of the key
molecule, ECM degradation is promoted weakly or strongly.
However, as for the unit variable 𝜉3689, it is indicated in
Watanabe et al. [4] that, at around 𝑏0 = 100 [nM], transient
peak of 𝜉3689 becomes maximal and the ECM degradation is
promoted thereby the most. See Figures S3, S4, and S5 in [4].

Figure 13 presents the time courses of a simulation result
of the key molecule 𝑋9 for the model with and without the
doubling rule. Here, the initial values of the concentration are𝑎0 = 2 × 10−6 [M], 𝑏0 = 2 × 10−6 [M], and 𝑐0 = 1.8 × 10−6 [M].

1. × 10−6

4 6 8 102
t

(X3 + X6 + 2X8 + X9)(t)

(X7 + X9 + X11 + 2X12)(t)

Sum of the three
(X5 + X8 + 2X10 + X11)(t)

Figure 12: 𝜉3689 + 𝜉581011 + 𝜉791112: simulation result and theoretical
solution and MCL (36).
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Figure 13: Time course of 𝑋9(𝑡): comparison of the models with or
without the doubling rule.

By modifying the model with the doubling rule, the peak at
about 𝑡 = 0.25 was increased by approximately 1.5 times.

Actually, the authors did not begin with the idea of the
doubling rules in Section 3.2. The only doubling rule we had
exploited was the one corresponding to the general basic
model in (12).Thus the only coefficients of 2were on 𝑘3𝑋23 and𝑙3𝑋6 in (E3), 𝑘3𝑋25 and 𝑙3𝑋10 in (E5), 𝑘3𝑋27 and 𝑙3𝑋12 in (E7),
and 𝑙2𝑋11 in (E11). The solutions to this first version of the
model and the modified version in (E1)–(E12) are different,
but they have the same initial and asymptotic behaviors. In
Figure 13, we show as an example the time series of the key
molecule 𝑋9(𝑡).

Figure 14 shows a plot of 𝑋9(∞) versus 𝑋2(0). As
described in Section 3.1, the key molecule of the ECM
degradation is 𝑎𝑏𝑐𝑐 (concentration 𝑋9), and the amount of𝑎𝑏𝑐𝑐 that is produced is influenced primarily by 𝑏0. If there is



Computational and Mathematical Methods in Medicine 13

Model without doubling rule
Model with doubling rule

X
9
(∞

)

4. × 10−8

8. × 10−8

1.2 × 10−7

1.6 × 10−7

2. × 10−7

2.4 × 10−7

−8 −7 −6 −5−9

log10X2(0)

Figure 14: 𝑋9(∞) versus 𝑋2(0): comparison of the models with or
without the doubling rule.

too much or too little 𝑏0, an insignificant amount of 𝑎𝑏𝑐𝑐 will
be produced. As shown in the figure, in both models,𝑋9(∞)
has a peak at around 𝑏0 = 5.1 × 10−7 [M]. The peak increases
when the model was modified.

5. Concluding Remarks

We presented a method for solving a nonlinear ODE system
from cell biology. With the setting in this paper, the ODEs
become a completely integrable system so that they can be
solved explicitly. The key idea was to use the MCL to obtain
linear relations of the ODE variables that would be valid for
all 𝑡 ≥ 0. The previous analysis of such ODE systems was
primarily based on the balance of flux at equilibrium (𝑡 = ∞)
or by computer simulation (for 𝑡 < ∞). The theoretical
solutions to the ODEs are in complete agreement with those
obtained by simulation.

We gained several new insights in analyzing and mod-
eling the PWNs: in the MALs, a coefficient of 2 must be
attached sometimes to appropriate molecules. Determining
all of the doubling laws is crucial for obtaining an integrable
systemofODEs.We have elucidated some situations inwhich
the doubling law is required. We also note that the total
PWN can be grouped into several local PWNs in which local
linear relationships hold. This may suggest a way to obtain
an appropriate view of the composition of network motifs in
systems biology.

In a future study, we will try to determine a sufficient
condition such that the given ODE system is completely inte-
grable. It may be desirable to clarify under which conditions
theODE system framework is sufficiently “close” to a realistic
PDE system; this would be useful for the development of
therapies or drugs.

Appendix

A. Explicit Solutions to the Unit Variables

The solutions to 𝑋1–𝑋12 and related materials are presented
as follows.

A.1. Solution to 𝑋1: Single Riccati Equation.
Theorem A.1. One has the following solution to (𝐸1):

𝑋1 (𝑡) =
{{{{{{{{{{{{{{{{{{{

𝑎0 (𝑎0 − 𝑏0)𝑎0 − 𝑏0𝑒−𝑘1(𝑎0−𝑏0)𝑡 , (𝑎0 > 𝑏0) ,
𝑏01 + 𝑘1𝑏0𝑡 , (𝑎0 = 𝑏0) ,

𝑎0 (𝑏0 − 𝑎0) 𝑒−𝑘1(𝑏0−𝑎0)𝑡𝑏0 − 𝑎0𝑒−𝑘1(𝑏0−𝑎0)𝑡 , (𝑎0 < 𝑏0) .
(A.1)

Corollary A.2. 𝑋1(𝑡) is decreasing monotonically:

𝑋1 (0) = 𝑎0 ↘
𝑋1 (∞) = {{{

𝑎0 − 𝑏0, (𝑎0 > 𝑏0) ,
0, (𝑎0 ≤ 𝑏0) .

(A.2)

Thus 𝑋1(𝑡) is nonnegative as well. Let us denote𝜉2581011(𝑡) ≜ (X2 + X5 + X8 + 2X10 + X11)(𝑡).
Corollary A.3. One has the following solution to (𝐸2581011):

𝜉2581011 (𝑡) =
{{{{{{{{{{{{{{{{{{{

𝑏0 (𝑎0 − 𝑏0) 𝑒−𝑘1(𝑎0−𝑏0)𝑡𝑎0 − 𝑏0𝑒−𝑘1(𝑎0−𝑏0)𝑡 , (𝑎0 > 𝑏0) ,
𝑏01 + 𝑘1𝑏0𝑡 , (𝑎0 = 𝑏0) ,
𝑏0 (𝑏0 − 𝑎0)𝑏0 − 𝑎0𝑒−𝑘1(𝑏0−𝑎0)𝑡 , (𝑎0 < 𝑏0) .

(A.3)

Thus 𝜉2581011(𝑡) is decreasing monotonically:

𝜉2581011 (0) = 𝑏0 ↘
𝜉2581011 (∞) = {{{

0, (𝑎0 ≥ 𝑏0) ,
𝑏0 − 𝑎0, (𝑎0 < 𝑏0)

(A.4)

and is nonnegative.

A.2. Solution to 𝑋2 + 𝑋4: Single Riccati Equation
Theorem A.4. One has the following solution to (𝐸24):
𝜉24 (𝑡) ≜ (X2 + X4) (𝑡) = 𝑧1 − 𝐶24𝑧2𝑒−𝑘2(𝑧1−𝑧2)𝑡1 − 𝐶24𝑒−𝑘2(𝑧1−𝑧2)𝑡 ,

𝐶24 = 𝑏0 − 𝑧1𝑏0 − 𝑧2 ,
(A.5)

where

𝑧1, 𝑧2
= {𝑘2 (𝑏0 − 𝑐0) − 𝑙2} ± √{𝑘2 (𝑏0 − 𝑐0) − 𝑙2}2 + 4𝑘2𝑙2𝑏02𝑘2 . (A.6)
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We note that 𝑏0 − 𝑐0 > 𝑧1 > 0 > 𝑧2. Since (X2 + X4)(𝑡) =𝑧2 + (𝑧1 − 𝑧2)/(1 − 𝐶24𝑒−𝑘2(𝑧1−𝑧2)𝑡), we have the following.
Corollary A.5. 𝜉24(𝑡) is decreasing monotonically:

𝜉24 (0) = 𝑏0 ↘
𝜉24 (∞) = 𝑧1. (A.7)

Thus 𝜉24(𝑡) is nonnegative as well.
Corollary A.6. One has the following solution to (𝐸3689):

𝜉3689 (𝑡) ≜ (X3 + 2X6 + X8 + X9) (𝑡)
= 𝑧1 − 𝐶24𝑧2𝑒−𝑘2(𝑧1−𝑧2)𝑡1 − 𝐶24𝑒−𝑘2(𝑧1−𝑧2)𝑡 − 𝑏0 + 𝑐0, 𝑡 ≥ 0. (A.8)

Thus 𝜉3689(𝑡) is decreasing monotonically:

𝜉3689 (0) = 𝑐0 ↘
𝜉3689 (∞) = 𝑧1 − 𝑏0 + 𝑐0 (A.9)

and is nonnegative.

The solutions 𝜉24(𝑡) and 𝜉3689(𝑡) are thus obtained irre-
spective of 𝑏0 > 𝑐0 or 𝑏0 < 𝑐0. Each of the solutions to 𝑋2(𝑡)
and𝑋4(𝑡), however, does dependon 𝑎0 > 𝑏0,𝑎0 = 𝑏0 or 𝑎0 < 𝑏0
as seen in the following.

A.3. Solution to 𝑋2 and Thus 𝑋4: Method of Variation of
Constant. Let 𝐸1 = 𝑒−𝑘1(𝑏0−𝑎0)𝑡, 𝐸2 = 𝑒−𝑘2(𝑧1−𝑧2)𝑡, and 𝐸3 =𝑒−(𝑘2𝑧1+𝑙2)𝑡.
Theorem A.7. One has

𝑋2 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{

𝐶1,1 (𝑎0 − 𝑏0) 𝐸1𝐸3(1 − 𝐶1,1𝐸1) (1 − 𝐶24𝐸2) [(1 − 𝐶24) + 𝑙2 { 1 − 𝐸3𝑘2𝜁1 + 𝑙2 −
𝐶24 (1 − 𝐸2𝐸3)𝑘2 (𝑧1 − 𝑧2 + 𝜁1) + 𝑙2}] , (𝑎0 > 𝑏0) ,

𝑏0(1 + 𝑘1𝑏0𝑡) (1 − 𝐶24𝐸2) [(1 − 𝐶24) 𝐸3 + 𝑙2𝐶24 {(1 − 𝐸31 + 𝑘1𝑏0𝑡) 𝜅2 − 1 − 𝐸2[𝑘2 (𝑧1 − 𝑧2 − 𝜁1) − 𝑙2] − 1 − 𝐸2 (1 + 𝑘1𝑏0𝑡)−1
[𝑘2 (𝑧1 − 𝑧2 − 𝜁1) − 𝑙2]2}] , (𝑎0 = 𝑏0) ,

𝑏0 − 𝑎0(1 − 𝐶1,3𝐸1) (1 − 𝐶24𝐸2) [(1 − 𝐶24) 𝐸3 + 𝑙2 ( 1 − 𝐸3𝑘2𝑧1 + 𝑙2 +
𝐸3 − 𝐸2𝑘2𝑧2 + 𝑙2)] , (𝑎0 < 𝑏0) ,

(A.10)

respectively. Here 𝜅2 > 0 is given by
𝜅2 = 𝜂 (𝑘2𝜁1 + 𝑙2) + 𝜂 (𝑘2 (𝑧1 − 𝑧2 − 𝜁1) − 𝑙2) ,

with 𝜂 (𝑥) = 𝑥−1 + 𝑘1𝑏0𝑥−2.
(A.11)

The solutions turn out to be nonnegative in either of the
three cases. Now 𝑋4 is given by 𝑋4(𝑡) = 𝜉24(𝑡) − 𝑋2(𝑡),
although we do not write down the solution here because it is
complicated like 𝑋2.
A.4. Solution to 𝑋3 + 𝑋5 + 𝑋7: Single Riccati Equation. The
solution to (𝐸357) is obtained, similarly as 𝜉24.

𝜉357 (𝑡) ≜ (𝑋3 + 𝑋5 + 𝑋7) (𝑡)
= 𝜂1 − 𝜂2𝐶357𝑒−2𝑘3(𝜂1−𝜂2)𝑡1 − 𝐶357𝑒−2𝑘3(𝜂1−𝜂2)𝑡 , 𝐶357 = 𝑐0 − 𝜂1𝑐0 − 𝜂2 ,

(A.12)

where

𝜂1, 𝜂2 = −𝑙3 ± √𝑙23 + 8𝑘3𝑙3𝑐0
4𝑘3 , (A.13)

respectively. Properties of positivity and monotone decreas-
ing of 𝜉357 are valid as well.

The solutions to other variables,𝑋3,𝑋5,𝑋7,𝑋6,𝑋8,𝑋10,𝑋9, 𝑋11, and 𝑋12, are too complicated to write down and
omitted.
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