
J Cell Mol Med. 2020;24:6741–6749.     |  6741wileyonlinelibrary.com/journal/jcmm

1  | INTRODUC TION

The incidence of heart failure is increasing worldwide and strongly 
affects public health.1 Depending on age, the prevalence of heart 
failure in the general population is around 1%-4%.2 In heart failure 
patients, disturbed cardiac mitochondrial function contributes to 
contractile dysfunction.3-7 Mitochondrial adenosine triphosphate 

(ATP) production is responsible for the vast majority of ATP demand 
not only in the heart, but also in skeletal muscle. It has been shown 
that skeletal mitochondrial function is compromised in heart failure 
patients.8 Furthermore, it is assumed that skeletal mitochondrial 
dysfunction is associated with fibre atrophy and therefore may con-
tribute to muscle wasting and finally skeletal myopathy.9-11 In rats 
subjected to pressure overload (PO), we have previously shown that 
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Abstract
In heart failure, high-fat diet (HFD) may exert beneficial effects on cardiac mitochon-
dria and contractility. Skeletal muscle mitochondrial dysfunction in heart failure is 
associated with myopathy. However, it is not clear if HFD affects skeletal muscle 
mitochondria in heart failure as well. To induce heart failure, we used pressure over-
load (PO) in rats fed normal chow or HFD. Interfibrillar mitochondria (IFM) and sub-
sarcolemmal mitochondria (SSM) from gastrocnemius were isolated and functionally 
characterized. With PO heart failure, maximal respiratory capacity was impaired in 
IFM but increased in SSM of gastrocnemius. Unexpectedly, HFD affected mitochon-
dria comparably to PO. In combination, PO and HFD showed additive effects on 
mitochondrial subpopulations which were reflected by isolated complex activities. 
While PO impaired diastolic as well as systolic cardiac function and increased glucose 
tolerance, HFD did not affect cardiac function but decreased glucose tolerance. We 
conclude that HFD and PO heart failure have comparable effects leading to more 
severe impairment of IFM. Glucose tolerance seems not causally related to skeletal 
muscle mitochondrial dysfunction. The additive effects of HFD and PO may suggest 
accelerated skeletal muscle mitochondrial dysfunction when heart failure is accom-
panied with a diet containing high fat.
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mitochondrial skeletal muscle function was impaired when heart fail-
ure was pronounced.12 Respiratory capacity and activity of complex 
I as well as complex II were decreased.12

Nutritional strategies to treat heart failure have been suggested.13,14 
High-fat diet (HFD) has received significant attention for its potentially 
protective effect under experimental conditions leading to heart fail-
ure. For instance, Rennison et al described HFD feeding in rats with 
coronary artery ligation to increase oxidative phosphorylation and 
electron transport chain (ETC) complex activities.15 Furthermore, HFD 
feeding led to improvement of left ventricular contractile performance 
in hypertensive rats16 and a survival advantage compared with normal 
chow (NC) feeding under heart failure conditions has been described.17 
However, there is no information if HFD feeding under heart failure 
conditions could maintain or, even though, improve mitochondrial res-
piration in skeletal muscle.

In this context, it is important to consider that two distinct mito-
chondrial subpopulations have been identified in muscle. They differ 
in their subcellular location.18 Under many pathological conditions 
including myocardial infarction, ischemia-reperfusion or diabetes, 
the subpopulations are affected differentially.18 In the heart, we re-
cently showed that PO-induced heart failure leads to a greater de-
pression of respiratory capacity in interfibrillar mitochondria (IFM) 
compared with subsarcolemmal mitochondria (SSM).19

Thus, we now assessed mitochondrial function of skeletal muscle 
when rats were subjected to PO and HFD. We placed special focus 
on IFM and SSM, aiming to prevent PO-induced skeletal muscle mi-
tochondrial dysfunction by HFD.

2  | MATERIAL S AND METHODS

2.1 | Animals

Male Sprague-Dawley rats were obtained from Charles River 
(Sulzfeld, Germany) or Janvier (Genest, France), were fed ad libitum 
and kept at 21°C with a light cycle of 12 hours. The use of animals 
was consistent with the Guide for the Care and Use of Laboratory 
Animals, published by the National Institutes of Health (NIH 
Publication no. 85-23, revised 1996), and the experimental proto-
cols were approved by the local authorities (Thüringer Landesamt 
für Verbraucherschutz).

After mating, dams were fed NC (V1534 with 9 kJ% fat, 24 kJ% 
protein and 67 kJ% carbohydrates) or HFD (D12492 with 60 kJ% 
fat, 20 kJ% protein and 20 kJ% carbohydrates) in a randomized 
manner until weaning. Detailed diet compositions are listed in 
Supporting Information S1. There were no major differences in 
micronutrient content. The respective diet was continuously ap-
plied in weanlings. This protocol was chosen to induce reduced in-
sulin and glucose tolerance already in weanlings. At the same time 
(3 weeks of age), animals of each diet were randomized into two 
groups and subjected to transverse aortic constriction (TAC) to in-
duce PO or kept as controls. Normal chow animals did not receive 
a sham operation. Surgery was a very short intervention and as 

previously published, even after 2 weeks there was no difference 
between sham operated and control animals without surgery.20 
The four resulting experimental groups were as follows: NC (n = 7), 
NC PO (n = 5), HFD (n = 9) and HFD PO (n = 4). All assessments 
were conducted at 10 weeks after PO (13 weeks of age).

2.2 | Materials

Chemicals were obtained from Sigma-Aldrich (Deisenhofen), 
Merck (Darmstadt), Serva (Heidelberg), Essex (München), Bayer 
(Leverkusen), Narkodorm-n (Neumünster), GeriaSan (Heppenheim) 
and Bio-Rad (München). Diet was obtained from SSniff (Soest).

2.3 | Surgical intervention

The model of heart failure21 has been described in detail before. Rats 
of 30-50 g (3 weeks of age) were anaesthetized with intramuscular 
ketamine (50 mg/kg) and xylazine (10 mg/kg), intubated with 16-
gauge tubing and ventilated with room air (1 mL, 96/min). A partial 
median sternotomy and thymectomy were performed. After dissec-
tion of the aortic arch, a titanium clip (0.35 mm internal diameter; 
Pilling-Weck, Kernen, Germany) was placed around the aorta be-
tween the brachiocephalic trunk and the left common carotid artery. 
The sternotomy was closed with interrupted sutures and the skin 
closed with running sutures. After vital signs were re-established, 
rats were extubated and kept on warming pads for the recovery 
periods.

2.4 | Animal care and echocardiography

Rats were weighed and inspected weekly. Echocardiographic ex-
amination was performed 10 weeks postoperatively (13 weeks of 
age) as previously described.20 Briefly, animals were anaesthetized 
with Isoflurane (1.5%). Chests were shavedand the rats were exam-
ined in supine position with a 17.5 MHz phased array transducer 
(RMV716; VisualSonics, Germany). Fractional shortening was de-
termined and two-dimensional short-axis views of the left ventricle 
at the papillary muscle level were obtained. Two-dimensional-
guided M-mode tracings were recorded with a sweep speed of 
100 mm/s. We determined left ventricular wall thickness (poste-
rior wall thickness) and cavity size in diastole (left ventricular end-
diastolic dimension) by the American Society for Echocardiology 
leading edge method and averaged values from five measurements 
for each examination.20

2.5 | Glucose tolerance test

Directly before the glucose22 tolerance test was performed as pre-
viously described, rats were fasted for 6h. Rats were anaesthetized 
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with Isoflurane (1.5%) for injection procedure as well as blood sam-
pling. For glucose tolerance test, a single dose of 20% glucose (2g/
kg) was administered by intraperitoneally injection. One drop of 
peripheral blood was used at 0, 15, 30, 60 and 120 minutes. Blood 
glucose (mmol/L) was measured by using a glucometer (Freestyle 
mini, Abbott; Germany) and blood sugar test stripes (Freestyle; 
Abbott). Area under the curve was determined for data analyses.

2.6 | Organ harvesting

At 13 weeks of age, animals were weighed and  sacrificed. Deep 
anaesthesia was induced using thiopental (150 mg/kg body-
weight)and hearts were explanted and weighed. Musculus (M.) 
gastrocnemius was excised, weighed and prepared for isolation 
of mitochondria. Both, lungs and liver were excised and weighed. 
Lung-to-bodyweight index and liver-to-body index (LiverBI) were 
calculated as lung wet weight (g), liver wet weight (g), respectively, 
to bodyweight (kg). Furthermore, both Musculi solei and epididy-
mal fat pads were excised and weighed. Length of the left tibia 
was measured and heart weight as well as muscle weights to tibia 
length were calculated.

2.7 | Isolation of mitochondria

Skeletal muscle SSM and IFM were isolated using the procedure of 
Palmer et al23 except that a modified Chappell-Perry buffer, contain-
ing (in mmol/L) 100 KCl, 50 MOPS, 1 EGTA, 5 MgSO47H2O and 1 
ATP (pH 7.4 at 4°C), was used for isolation of both mitochondrial 
populations. The IFM were harvested following treatment with 
5 mg/g wet weight trypsin for 10 minutes at 4°C.19 Mitochondrial 
protein concentration was determined by the Bradford method using 
bovine serum albumin as a standard. Mitochondrial citrate synthase 
activity was measured in fresh muscle homogenate and isolated mi-
tochondria according to the protocol by Srere.24 Mitochondrial yield 
was calculated as citrate synthase activity recovered in the respec-
tive subpopulation in relation to total citrate synthase activity in 
homogenate.

2.8 | Mitochondrial respiratory capacity

Oxygen consumption of isolated mitochondria was measured 
using a Clark-type oxygen electrode (Strathkelvin) at 25°C. 
Mitochondria were incubated in a solution containing 80 mmol/L 
KCl, 50 mmol/L MOPS, 1 mmol/L EGTA, 5 mmol/L KH2PO4 and 
1 mg/mL fatty acid-free bovine serum albumin at pH 7.4. The rate 
of respiratory capacity was measured using glutamate, pyruvate 
and malate, palmitoyl-carnitine and malate, palmitoyl-CoA, carni-
tine and malate, succinate and rotenone or tetramethylphenylend-
iamin as substrates and adenosine diphosphate (ADP) as stimulus. 

The ADP-stimulated oxygen consumption (state 3) and the ADP-
limited oxygen consumption (state 4) in the respiratory chamber 
and the ADP/O ratio (ADP added per oxygen consumed) were de-
termined as previously described.19

2.9 | Determination of isolated complex activities

Mitochondria were treated with 1 mg cholate/mg mitochondrial pro-
tein and further prepared according to Rosca et al.25 After one cycle 
of freeze/thaw (−80 to 25°C), ETC complex activities were measured 
as specific donor-acceptor oxidoreductase activities.26 Complex I 
was measured as rotenone-sensitive reduction in 2,6-dichloroindo-
phenol with NADH as substrate.27 Reduction in 2,6-dichloroindo-
phenol with succinate as substrate assesses complex II.28 Complex 
III activity was determined as antimycin-A-sensitive reduction in 
cytochrome c28 using decylubiquinol as substrate, which was pre-
pared as previously described.29 Complex IV activity was measured 
as oxidation of reduced cytochrome c.30 Rotenone-sensitive NADH-
cytochrome c reductase assesses complexes I and III.25 Antimycin 
A-sensitive succinate-cytochrome c reductase assesses complexes 
II and III.25

2.10 | Statistical analysis

Data are presented as means ± SEM. Data were analysed using two-
way ANOVA or Student's t test where appropriate. Post-Hoc com-
parisons among the groups were performed using the Bonferroni 
method. Differences among groups were considered statistically 
significant if P < 0.05. Main effects for mitochondrial population, 
surgery and diet were given in figures and tables. All figures were 
designed with SigmaPlot.

F I G U R E  1   Relative changes in weights of animals 10 wk after 
pressure overload and with high-fat diet (HFD) or in combination 
compared with control. Data are mean + SEM. Normal Chow 
(NC) n = 7, HFD n = 8-9, NC + pressure overload (PO) n = 5 and 
HFD + PO n = 4. *P < 0.05, **P < 0.01, ***P < 0.001 for pressure 
overload (T), diet (D), interaction (I) or to respective control group 
of same surgical treatment; ††P < 0.01, †††P < 0.001 to group of 
same diet
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3  | RESULTS

In the present and earlier studies, aortic constriction surgery was 
well tolerated with an operative mortality of 2%.12,26 After a 3- to 
4-day recovery period, animals demonstrated normal growth. PO 
and HFD led to differing changes in bodyweight. Figure 1 illustrates 
the changes induced by PO, HFD or both in total body and individual 
organ weights (detailed data are shown in Supporting Information 
S2). PO resulted in a decrease of body and skeletal muscle weight 
(M. gastrocnemius and M. soleus), which may be considered as a sign 
of skeletal muscle atrophy. In contrast, heart and lung weights were 
increased. HFD resulted in weight gain without affecting skeletal 
muscle weights. HFD also caused moderate but significant increases 
in heart and lung weight. HFD in combination with PO attenuated 
PO-induced body and skeletal muscle weight loss but aggravated 
the increase in heart and lung weights.

Table 1 shows echocardiographic parameters (which are con-
sistent with heart and lung weight data), suggesting the presence 
of heart failure after 10 weeks of PO. PO increased left ventricular 
posterior wall thickness in diastole (indicating cardiac hypertrophy), 
increased left ventricular end-diastolic dimension (indicating cardiac 
dilation) and increased the ratio of early to late peak velocities flow 
in late diastole (E/A: indicating diastolic dysfunction). In addition, 
PO led to decreased fractional shortening as a sign for decreased 
systolic function. HFD was associated with a trend towards cardiac 
hypertrophy (12.5%, left ventricular posterior wall thickness in dias-
tole) consistent with the mildly elevated heart weight. There was no 
further deviation of cardiac function. Adding HFD to PO enhanced 
hypertrophy, attenuated left ventricular dilatation and also attenu-
ated the impairment of contractile dysfunction.

Figure 2 shows maximal ADP-stimulated respiration as well as 
ADP/O ratio of skeletal muscle mitochondrial subpopulations using 
pyruvate/malate as substrate. Maximal respiration was about 50% 
higher in IFM compared with SSM. Pressure overload led to a signif-
icant reduction in maximal respiration in IFM. In contrast, maximal 

respiration showed a trend towards an increase with PO in SSM. The 
same pattern was found with all other substrates used (Supporting 
Information S3). ADP/O ratio was higher in IFM compared with SSM 
in controls, indicating increased coupling of ATP production to O2 
consumption in IFM. Pressure overload had no effect on ADP/O 
ratios in IFM but significantly increased ADP/O ratios in SSM. 
Unexpectedly, HFD caused identical changes in maximal respiration 
and ADP/O ratios. Even more so, the effects of PO and HFD on mito-
chondrial function were additive. In IFM, a 63% decrease in maximal 
respiration was found and a 100% increase in SSM. The combination 
did not change the individual impact of PO and HFD on ADP/O ratios.

Isolated complex activities are shown in Figure 3. In general, 
there was a trend towards decreased complex activities in IFM and 
increased complex activities in SSM. The combination of PO and 
HFD led to the lowest complex activities in IFM and at the same 
time to the highest complex activities in SSM and therefore reflected 
the changes in respiratory capacity.

To account for potential differences in mitochondrial mass, 
we assessed citrate synthase activity. Citrate synthase activity 
in M gastrocnemius did not change with PO or HFD, indicating no 
differences in mitochondrial mass (see Supporting Information S4 
for details). A combination of PO and HFD resulted again in normal 
values compared with control. Citrate synthase activity of isolated 
IFM was reduced with PO as well as with HFD. In contrast, citrate 
synthase activity of isolated SSM related to protein content was in-
creased with HFD and more pronounced in combination with PO. 
Mitochondrial yield in IFM was higher with HFD as well as combined 
with TAC, indicating greater stability of mitochondria.

Both, HFD and also PO have been described as modifiers of insu-
lin sensitivity. Figure 4 shows the results of glucose tolerance tests. 
Fasting blood glucose was unchanged with PO and elevated with 
HFD. The combination of PO and HFD resulted in normal fasting 
blood glucose. PO improved glucose tolerance, while HFD impaired 
it. The effects were additive in that the combination resulted in nor-
mal blood glucose and glucose tolerance.

TA B L E  1   Echocardiographic parameters of animals after 10 wk of pressure overload and with HFD compared to control

 Control PO HFD PO + HFD T D I

LVPWD [mm] 3.52 ± 0.11 4.92 ± 0.10†††  3.96 ± 0.15 6.14 ± 0.27†††,*** *** *** *

LVEDD [mm] 7.83 ± 0.12 8.63 ± 0.12††  7.99 ± 0.28 8.13 ± 0.29 * ns ns

E/A 1.44 ± 0.05 7.89 ± 0.57†††  1.44 ± 0.06 5.47 ± 1.07†  *** ns ns

FS (%) 45.4 ± 0.95 33.4 ± 1.14†††  54.1 ± 1.64 44.5 ± 3.51†,*** *** *** ns

Note: Data are mean ± SEM.
Abbreviations: E/A, E-wave/A-wave (ratio of peak velocity flow in early diastole to peak velocity flow in late diastole); n = 12-54; FS, fractional 
shortening; HFD, high-fat diet; LVEDD, left ventricular end-diastolic dimension; LVPWD, left ventricular posterior wall thickness in diastole; PO, 
pressure overload.
*P < 0.05, 
***P < 0.001 for pressure overload (T), diet (D), interaction (I) or to respective control group of same surgical treatment; 
†P < 0.05, 
††P < 0.01, 
†††P < 0.001 to group of same diet; ns, non significant. 
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4  | DISCUSSION

We show here for the first time that HFD causes skeletal muscle 
mitochondrial dysfunction comparable to that found in PO induced 
heart failure. The absence of glucose intolerance in PO suggests that 
glucose intolerance may not be related to skeletal muscle mitochon-
drial dysfunction in this model. The effects of PO and HFD on mito-
chondria were additive, which suggests accelerated development of 
skeletal muscle dysfunction when heart failure is accompanied with 
a diet containing high fat.

High fat diet feeding has been shown to improve mitochondrial 
function and/or density.31 However, HFD can be both, beneficial as 
an adaptive response or detrimental, additionally inducing obesity 
and insulin resistance.31 In our investigation, HFD feeding resulted 
in decreased maximal mitochondrial respiration of IFM in skeletal 
muscle, whereas maximal mitochondrial respiration of SSM tended 
to be increased. This was combined with impaired glucose tolerance, 
indicating a pronounced diabetic phenotype. Our results are consis-
tent with Jørgensen et al, who described significantly reduced succi-
nate-dependent mitochondrial respiration combined with increased 
insulin resistance with 1 year of HFD feeding (60% fat).32 In contrast, 
short-term HFD feeding of 15 days led to increased oxidative capac-
ity.33 These observations suggest that the duration of treatment may 
determine the observed effect of HFD. The changes in our investiga-
tion, found with HFD, seem to be rather detrimental than adaptive.

Heart failure patients display functional and structural alter-
ations in skeletal muscle mitochondria.34,35 Consistent with our 
previous results,36 we found a significant decrease in maximal 

respiration in IFM with PO. Additionally, we found a tendency to 
increased maximal respiration in SSM. Impairment in mitochondrial 
function and maximal respiration in heart failure seem independent 
of the model used37-39 but have only rarely been addressed in IFM 
and SSM separately. Differentiating between IFM and SSM led to 
decreased mitochondrial respiration in both mitochondrial popu-
lations in dogs with pacing-induced heart failure.40 However, dif-
ferences in species and the stimulus to induce heart failure do not 
allow for exact comparison with our study. In our model, PO led to 
opposite changes in skeletal muscle IFM and SSM, with impairment 
in IFM function only.

Interestingly, comparison of the influence of HFD and PO on 
mitochondrial function indicates similar effects of both treatments 
on skeletal muscle mitochondrial respiratory capacity as well as re-
spiratory efficiency (increased ADP/O). There are no other studies 
investigating the combined effect of HFD and PO. However, in the 
context of heart failure, HFD has been suggested to prevent the 
development and progression of heart failure along with mainte-
nance of mitochondrial content and function.17 Unexpectedly, we 
found additive effects on mitochondrial respiration when PO and 
HFD were combined. Compared to single treatments, respiratory 
capacity of IFM was decreased more severely and SSM's respiratory 
capacity was significantly increased. The reduction in IFM mito-
chondrial function was not compensated by increased mitochondrial 
mass since we did not find any changes in citrate synthase activity. 
Thus, we are the first to show that a HFD in the context of heart 
failure results in accelerated development of skeletal muscle mito-
chondrial dysfunction.

F I G U R E  2   Maximal mitochondrial respiration (state 3, ADP stimulated; A-C) and ADP/O ratios (D-F) of interfibrillar mitochondria (white 
bars) and subsarcolemmal mitochondria (grey bars) with pyruvate and malate of control animals (empty bars) compared to animals subjected 
to pressure overload (PO) (ascending lines; A, D), compared to animals fed high-fat diet (HFD) (descending lines; B, E) and compared to 
animals with PO and HFD (intersecting lines; C, F). Data are mean + SEM. Normal chow (NC) n = 7, HFD n = 8, NC + PO n = 5 and HFD + PO 
n = 4. *P < 0.05, **P < 0.01, ***P < 0.001 for pressure overload (T), diet (D), interaction (I) or to respective control group of same surgical 
treatment; †P < 0.05, ††P < 0.01, †††P < 0.001 to group of same diet; ns, non significant
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The comparable and additive effect of HFD and PO on mito-
chondrial function raises the question about the underlying mech-
anism. Our results indicate that one potential mechanism may be 
excluded: insulin resistance and heart failure are epidemiologically 
associated,2 and insulin resistance is associated with mitochondrial 
dysfunction.41,42 Mostly, insulin resistance is accompanied by glu-
cose intolerance. In this investigation, PO had no effect on glucose 
tolerance. Furthermore, the combination of PO and HFD resulted 
in normal glucose response. Thus, glucose intolerance seems not to 
be a common mechanism for the changes in mitochondrial function 
found here.

Changes in isolated complex activities may be another poten-
tial cause for impaired mitochondrial function.43 Indeed, our data 
indicate that this seems a common and probable mechanism for 
the comparable and additive effects of PO and HFD. PO or HFD 
as single treatments led to a decrease in some isolated complex 
activities in IFM and to an increase in single-complex activities in 
SSM. Interestingly, the combination of PO and HFD resulted in the 
lowest complex activities in IFM and in the highest complex activi-
ties in SSM. Changes in complex activities matched the changes in 
mitochondrial respiration. Thus, we found an association between 
mitochondrial respiration and complex activities. As a further con-
sequence, the comparable and additive effects of PO and HFD on 
mitochondrial function seem to be directly related to changes in mi-
tochondrial complex activities.

Another new effect is that HFD and PO show a comparable influ-
ence on IFM and SSM but in an opposite direction. First of all, some 
other studies show no difference in mitochondrial skeletal muscle 
respiration with HFD44 or in skeletal muscle of heart failure patients 
compared with controls.45 In these investigations, mitochondrial 
subpopulations have not been separately investigated. Instead, the 
skinned fibre technique has been used where SSM are predomi-
nantly assessed. Thus, we speculate that these results may disguise 
differences in mitochondrial respiration. Further studies should take 
this into account and separate mitochondrial subpopulations.

Furthermore, it has been suggested that IFM mainly deliver ATP 
for muscle contraction, whereas ATP derived from SSM is used for 
maintenance of basic cell function.19 In the present study, PO and 
HFD led to a decrease in mitochondrial respiration in IFM and an in-
crease in SSM. Increased activity of SSM may be seen as a compen-
satory adaptation to meet ATP demand. The fact that the decrease 
in mitochondrial function was present in IFM only would support 
the notion that muscle contractile dysfunction seems to be due to 
insufficient ATP delivery by IFM. Furthermore, the impairment in 
IFM function may reduce the total ATP supply for the cell, as IFM 
represent the majority (80%) of mitochondria within skeletal mus-
cles.46 Consequently, mitochondrial impairment with HFD seems to 
have similar functional relevance and may lead to skeletal myopathy 
comparable to that found in heart failure patients and experimental 
models (with mitochondrial dysfunction).47-51 We speculate that the 

F I G U R E  3   Mitochondrial isolated complex activities of interfibrillar mitochondria (A; white bars) and subsarcolemmal mitochondria 
(B; grey bars) of control animals (empty bars) compared to animals subjected to pressure overload (PO) (ascending lines), compared to animals 
fed high-fat diet (HFD) (descending lines) and compared to animals with PO and HFD (intersecting lines); data are mean + SEM. Normal 
chow (NC) n = 5-9, HFD n = 8-9, NC + PO n = 5-6 and HFD + PO n = 4. *P < 0.05, **P < 0.01, ***P < 0.001 for pressure overload (T), diet (D), 
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observed mitochondrial IFM dysfunction with HFD and PO in com-
bination may contribute to development of accelerated skeletal my-
opathy. One striking feature is the lack of skeletal muscle fibre type 
assessment or functional analysis. We speculate that our observed 
mitochondrial dysfunction may result in skeletal myopathy. Its actual 
presence, however, is not relevant for our observed findings on mito-
chondrial function. Furthermore, we did not directly address mech-
anisms of differential regulation of IFM and SSM. Mitochondrially 
encoded proteins could be regulated differentially. Differences in 
protein import,52 protein degradation,53,54 post-translational mod-
ifications55 or mitochondrial dynamics56 are potential processes 
which may lead to different effects of PO and HFD on mitochondrial 
subpopulations.

The composition of HFD may be an important factor. We used a 
diet containing 60% fat (mainly lard). Long-chain saturated fatty acids 
were present in more than the double amount of long-chain unsat-
urated fatty acids. On the one hand, long-chain saturated instead of 
unsaturated fatty acids have been described to be involved in lipo-
toxic pathways.57 On the other hand, saturated but not unsaturated 
fatty acids increased mitochondrial function in rats.58 Nevertheless, 
our results with a high amount of saturated fatty acids suggest a 
substantial detrimental effect on skeletal muscle. Today, nutrition 
guidelines for heart failure patients mainly focus on sodium restric-
tion but do not provide specific recommendations for fat intake. The 
reason may be that only few human nutrition interventional studies 
exist in this context. Furthermore, the effects of nutrition on skeletal 
muscle in human heart failure have not been addressed so far. While 
our results were obtained in rats, the findings may be relevant in 
humans as well. PO-induced heart failure in rats is a commonly used 
model for heart failure induced by hypertension or aortic valve ste-
nosis in patients. It is clinically relevant since heart failure develops 
with steady progression. Compensated hypertrophy is followed by 
heart failure with first diastolic and subsequently systolic dysfunc-
tion.59 Our results suggest that it may be necessary to control heart 
failure patients diet.

In conclusion, HFD causes skeletal muscle mitochondrial dys-
function comparable to that found in PO heart failure. Furthermore, 
PO and HFD affect mitochondrial subpopulations adversely. The 
absence of glucose intolerance in PO may indicate that glucose 

intolerance is not causally related to skeletal muscle mitochondrial 
dysfunction in this model. In addition, effects of PO and HFD on 
mitochondria were additive leading to more severe impairment of 
IFM. This may suggest accelerated development of skeletal muscle 
dysfunction when heart failure is accompanied by a diet containing 
high amounts of fat.
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