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ABSTRACT Here, we report draft genome sequences of the halotolerant and allo-
diploid strains Zygosaccharomyces rouxii ATCC 42981 and Zygosaccharomyces sapae
ABT301T. Illumina and Oxford Nanopore MinION sequencing revealed genome sizes
of 20.9 and 24.7 Mb, respectively. This information will be useful for deciphering the
genetics of hybrid adaptation to high salt and sugar concentrations in nonconven-
tional yeasts.

The halotolerant yeasts of the genus Zygosaccharomyces find relevant applications in
food spoilage and fermentation (1). They exhibit high diversity in response to high

solute concentrations, tendency to hybridization, and ectopic recombination at the
mating type loci, leading to ploidy and karyotype variation (2, 3). Zygosaccharomyces
rouxii ATCC 42981 is an allodiploid strain isolated from Japanese miso, which grows at
NaCl and dextrose concentrations up to 3.0 M and 70% (wt/vol), respectively (4).
Zygosaccharomyces sapae represents a novel species, first described in high-sugar
traditional balsamic vinegar (TBV), for which ABT301 (� CBS 12607T � MUCL 54092T �

UMCC 152T) is the type strain (5). ABT301T is a sugar-resistant and slow-growing strain
more sensitive to salt than is ATCC 42981. Under standard conditions, ATCC 42981
produces more glycerol than does ABT301T and better retains it in the cell under
conditions of salt stress (6). ATCC 42981 is thought to have arisen from hybridization
between two divergent parents (3, 5, 7–9), while no evidence about the origin of strain
ABT301T is available. Here, we present the draft genome sequences of ATCC 42981 and
ABT301T.

Single-colony isolates were obtained from the Unimore Microbial Culture Collection
(UMCC) of the University of Modena and Reggio Emilia in Italy. ABT301T was isolated
from a TBV sample in May to June 2004 (10). DNA was extracted by using the phenol-
chloroform-isoamyl alcohol method (11) after cell wall enzymatic lysis with 300 U lyticase
(Sigma, St. Louis, MO) and subjected to short-read and long-read sequencing by using the
MiSeq (Illumina) and MinION (ONT) platforms. Illumina libraries were prepared with an
average insert size of �600 bp and sequenced in paired-end mode on a MiSeq instrument
using a v3 600-cycle chemistry kit. In total, 2,234,027 and 3,452,971 short paired-end reads
were generated for ATCC 42981 and ABT301T, respectively.

MinION libraries were prepared from unsheared genomic DNA using a 1D ligation
sequencing kit with modifications included in the One-Pot ligation manual (https://doi
.org/10.17504/protocols.io.k9acz2e). Genomes were sequenced separately on a MinION
MkIb instrument using SQK-LSK108 chemistry and R9.4.1 flow cells. Total numbers of
260,559 and 197,963 long reads were generated for ATCC 42981 and ABT301T, respec-
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tively. They were basecalled with Albacore v2.1.7, quality trimmed with PoreChop v0.2.1
(https://github.com/rrwick/Porechop) and error corrected with Canu v1.7 (12). Platanus
v1.2.4 (13) was used to assemble the initial contigs, which were subsequently scaf-
folded with corrected MinION reads using DBG2OLC (14). Finally, scaffolds were pol-
ished with long reads using Racon v1.2.0 (15) and with short reads using Pilon v1.22 (16)
and then reduced using Redundans v.014 (17). All software programs were used at
default settings. Genes were annotated by similarity to the closest haploid relative, Z.
rouxii CBS 732T (18), using Exonerate v2.2.0 (19). Assembly completeness was assessed
by BUSCO v3.0.2 (20).

Comparison with haploid CBS 732T showed that the ATCC 42981 and ABT301T

assembled genomes had a 2.14 and 2.53 times larger assembly size and contained a
2.11 and 2.46 times higher number of protein-coding genes, respectively (Table 1). For
both genomes we dissected three haplotypes, and one of them was identical to that of
CBS 732T (identity cutoff, 0.92). The data suggest a recursive hybridization model (21).
The reported assemblies will decipher how hybridization, followed by functional ge-
nome stabilization, may offer a rapid adaptation strategy to salt stress environments in
yeasts.

Data availability. The BioProject has been deposited in GenBank under number
PRJEB26771. All sequencing reads of Z. rouxii ATCC 42981 and Z. sapae ABT301T have
been deposited at EMBL/GenBank under the accession numbers UEMZ01000001 to
UEMZ01000033 and UEGL01000001 to UEGL01000052, respectively.
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