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Abstract

The immunogenicity of bacterial flagellin has been reported in different studies. By its close

interaction with the immune system, the flagellin represents an interesting adjuvant and vac-

cine candidate. Salmonella Typhimurium flagellin has already been tested as adjuvant to

stimulate mucosal immunity. Here, we assessed the ability of Clostridium difficile flagellin

FliC to act as a mucosal adjuvant, first combined with ovalbumin as antigen and second

with a C. difficile surface protein, the precursor of the S-layer proteins SlpA. Using ovalbumin

as antigen, we compared the gut mucosal adjuvanticity of FliC to Salmonella Typhimurium

flagellin and cholera toxin. Two routes of immunization were tested in a mouse model:

intra-rectal and intra-peritoneal, following which, gut mucosal and systemic antibody

responses against ovalbumin (Immunoglobulins G and Immunoglobulins A) were analyzed

by Enzyme-Linked Immuno Assay in intestinal contents and in sera. In addition, ovalbumin-

specific immunoglobulin producing cells were detected in the intestinal lamina propria by

Enzyme-Linked Immunospot. Results showed that FliC as adjuvant for immunization target-

ing ovalbumin was able to stimulate a gut mucosal and systemic antibody response inde-

pendently of the immunization route. In order to develop a mucosal vaccine to prevent C.

difficile intestinal colonization, we assessed in a mouse model the efficacy of FliC as adju-

vant compared with cholera toxin co-administrated with the C. difficile S-layer precursor

SlpA as antigen. After challenge, a significant decrease of C. difficile intestinal colonization

was observed in immunized groups compared to the control group. Our results showed that

C. difficile FliC could be used as adjuvant in mucosal vaccination strategy against C. difficile

infections.

Introduction

Clostridium difficile is an anaerobic spore-forming Gram positive bacterium, commonly

found in the environment and frequently isolated in hospitals. C. difficile is an enteropathogen
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responsible for diarrhea and pseudomembranous colitis associated to gut microbiota dysbiosis

frequently consecutive to antibiotic therapy in the elderly [1].

European guidelines for treatment of C. difficile infection (CDI) consist of the discontinua-

tion of CDI-inducing antibiotherapy and administration of specific antibiotics depending on

the severity of the disease [2]. However, approximately 20% of treated patients experience

recurrences, and multiple recurrences are frequent [3]. Thus, alternative therapeutic

approaches to antibiotics are required. Among them, fecal microbiota transplantation and

immunotherapy are promising. To prevent recurrences and trigger a long term protection

against CDI, vaccination appears to be a rational strategy [4]. The toxins TcdA and TcdB are

the main virulence factors responsible for the clinical signs. Several vaccines targeting these

toxins are under investigation in clinical trials and seem to show efficacy after parenteral

immunization (clinical trials Sanofi Pasteur NCT01887912, Pfizer NCT03090191). However,

intestinal colonization is the first step of the C. difficile pathogenic process; therefore targeting

colonization factors represents an interesting vaccine strategy. Indeed, immunity induced by

this approach will reduce the colonization process of infection, limiting the first interaction

between the bacterium and its host and therefore the faecal shedding of bacteria. Several stud-

ies have shown promising results and identified interesting vaccine candidates such as the

Cwp84 protease and the flagellin FliC [5–7]. The precursor of the S-layer proteins (SlpA) has

already been successfully tested [8–11]. Besides the identification of the antigenic target, a bet-

ter knowledge of the protective immune response against C. difficile and the respective role of

the local and systemic response will improve vaccine development [12]. Moreover, since CDI

is strictly located in colonic mucosa, a mucosal immunization appears as a rational strategy to

develop a local intestinal immunity. In addition, for vaccine design, the choice of the adjuvant

related to the administration route is crucial to optimize immune response [13].

Cholera toxin (CT) remains the most commonly used adjuvant for mucosal immunization

assays in animal models [14]. However, the use of CT is not possible in humans [15,16]. As

alternative, several mucosal adjuvants are under investigations such as agonists of pattern rec-

ognition receptors (PRRs) capable of triggering the innate immune system. For instance, fla-

gellins are known to be pathogen-associated molecular patterns (PAMPs) harboring a highly

conserved domain involved in Toll-like receptor 5 (TLR5) interaction but also an antigenic

domain variable among species [17–19]. Thus, bacterial flagellins play a crucial role in trigger-

ing innate and adaptive immunity at the systemic level and in mucosa associated lymphoid

tissue (MALT) [20]. Few studies have investigated the adjuvant effect of flagellin [21]. For

instance, Salmonella Typhimurium flagellin (FLA-ST), administered either via the intra-nasal

or a parenteral route, has been demonstrated to have an effective adjuvanticity [22,23]. The

interest in C. difficile flagellin FliC in vaccination has already been evaluated since FliC plays a

key role in the pathogenesis ranging from bacterial colonization to gene regulation through

immunomodulatory effects [24–28]. FliC immunogenicity has been proven by the detection of

specific antibodies against FliC in CDI patients [29]. This immunogenicity was recently con-

firmed by parenteral immunization assays in mice and hamsters with FliC as antigen [6].

Recently, the interaction between C. difficile flagellin FliC and TLR5 was confirmed in vitro
and in vivo with a similar activity compared to Salmonella Typhimurium flagellin (FLA-ST)

[27,30,31]. These results suggest that FliC could also be used as an adjuvant in mucosal vacci-

nation. An adjuvant able to stimulate the intestinal mucosal immune system and generate

secretory Immunoglobulins A (sIgA) production could be essential in the development of an

effective mucosal vaccine directed against enteropathogens such as C. difficile.

The main objective of this study was to characterize FliC as adjuvant. Firstly, we assessed

the adjuvant property of C. difficile flagellin FliC in comparison to FLA-ST and CT using oval-

bumin (OVA) as antigen in mice. We characterized the gut mucosal and systemic immune
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response according to adjuvants in immunized mice. Secondly, we confirmed the efficacy of

FliC as an adjuvant when administered with the precursor of the S-layer proteins SlpA as anti-

gen, in a mouse model of intra-rectal vaccination against C. difficile colonization.

Materials and methods

FliC and SlpA production

FliC and SlpA recombinant proteins were obtained and purified as previously described

[9,27]. Briefly, the slpA and fliC genes (from the 630 and UK R20291 C. difficile strains, respec-

tively) were cloned in frame with histidine tags. Then, plasmids were introduced by transfor-

mation into E. coli BL21. The SlpA and FliC proteins were obtained after expression by IPTG

and purification by a single-step affinity chromatography using BD Talon cobalt affinity resin

(BD Biosciences). FliC purification steps were verified by SDS-PAGE followed by Western

blot.

Animal models

Animal assays were performed with six weeks old female C57BL/6 J mice (Charles River’s labora-

tories France). For blood sampling and intra-rectal (IR) immunizations, mice were anaesthetized

by intra-peritoneal (IP) injection of Ketamine 1000 (100mg/Kg), Rompun 2% (0.25mL/Kg).

Protocols involving animals and their care were conducted in conformity with the institu-

tional guidelines that are in compliance with national and international laws and policies. All

efforts were made to minimize animal suffering. Animals were humanely euthanized by cervi-

cal dislocation after anesthesia as approved by the Committee on the Ethics of Animal Experi-

ments n˚26 University of Paris-Sud and authorized by the French Ministery of Research

(6164-201607l5154154l8).

Vaccination regimen with ovalbumin as antigen

Ovalbumine (OVA) is a commonly used antigen in order to assess adjuvant activity [19,32]. In

two distinct assays, a total of fourteen mice per group received intra-rectally (IR) 20μg of oval-

bumin (ovalbumin grade VII, Sigma) with 7μg of adjuvant, either cholera toxin (CT) (List Bio-

logical Laboratories, INC), or FLA-ST (Standard flagellin from S. Typhimurium, Invivogen,

France), or purified recombinant FliC. A control group of 14 mice received 20μg of ovalbumin

in phosphate-buffered saline (PBS). In addition, to compare IR (mucosal) immunization with

IP (parenteral) route of immunization with FliC, a group of eight mice received 20μg of oval-

bumin with 7μg of purified recombinant FliC intraperitoneally (IP). Each group of mice

received 3 identical doses: a first one on day 0, a second dose on day 15 and a last dose on day

30. At day 45, mice were humanely euthanized (guidelines of the "Animal Welfare Committee

of the Université Paris Sud") for blood and intestinal content sampling and cell isolation from

intestinal lamina propria.

Evaluation of the immune response after immunization with different

adjuvants co-administered with ovalbumin as antigen

Blood and intestinal content collection. Blood samples from all mice were withdrawn

under anesthesia by cardiac puncture before each immunization on days 0, 15, and 30 and

before their sacrifice on day 45, fifteen days after the last immunization. At this time, caecum

and colon of each mouse were removed, opened and washed with 1mL of PBS containing a

protease inhibitor cocktail (cOmplete™ Mini, Roche, France). Intestinal contents were treated

as already described [10]; briefly they were clarified by a first centrifugation at 4,000×g for 10
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min at (at 4˚C), then the supernatant was centrifuged for 10 min at 12,000×g (at 4˚C). The

supernatants were collected and stored at −80˚C until analysis.

Intestinal lamina propria cell isolation. Protocol was adapted from the method

described by Weigmann et al.[33]. Briefly, caecum and colon from 5 immunized mice of each

group were removed and washed at D45, when mice were sacrificed. Tissues were cut in small

pieces and incubated under shaking at 37˚C for 15 min in a pre-digestion medium and tissues

were retained on a 100μm nylon cell strainer, this pre-digestion was repeated three times (PBS

1X, HEPES 10mM, EDTA 5mM). Tissues were then digested for 25 min on shaker at 37˚C in

digestion medium (20ml RPMI, HEPES 10mM, collagenase type IV 0.25 mg/ml). Digested tis-

sues were disaggregated and filtered through a 70μm nylon cell strainer. Cells were washed

with cell culture medium (DMEM, fetal calf serum 10%, penicillin 100U/ml, streptomycin

5μg/ml), and cell suspensions were centrifuged 20 min at 400×g at 4˚C and resuspended with

1ml of cell culture medium. Living cells were counted using trypan blue exclusion test.

Detection of specific IgA and IgG by ELISA. For each mouse, OVA specific antibody

levels in sera and intestinal samples were assessed using ELISA. Wells of a 96-well microtitre

plate (MaxiSorp, Nunc) were coated with 10μg of OVA in carbonate/bicarbonate buffer pH

9.5. Microplates were washed with PBS/0.01% Tween 20 and then blocked with PBS/1% BSA

(Bovine serum albumin) overnight at 4˚C. A 100 μl aliquot of samples (dilution 1:20 for sera

and 1:10 for intestinal contents) was added in each well and microplates were incubated for 30

min at 37˚C. After washing, 100 μl of biotinylated anti-mouse IgG (dilution 1:20,000) or IgA

(dilution 1:10,000) antibodies (Sigma) were added in each well and plates were incubated 30

min at 37˚C. Then, after washing, 100 μl of HRP-conjugated streptavidin were added in each

well (dilution 1:10,000 Thermo Scientific) and plates were incubated 30 min at 37˚C, and

finally, 100 μl of 3,30,5,50- tetramethylbenzidine (Sigma) were added in each well as develop-

ment reagents. The reaction was stopped by addition of 100 μl of H2SO4 (1N) and the Optical

Density (OD) at 450 nm was determined.

All samples were tested in duplicate and treated simultaneously to avoid inter-assay varia-

tions. Assays with antigen in the absence of sera served as negative controls and an OD two

fold greater than the negative control defines the cut-off value [34]. Thus, mice with samples

yielding an OD greater than the cut-off value were reported as positively responding to the

immunization.

Detection of antigen-specific antibody producing cells by ELISPOT. MultiScreen-HA

sterile plates (0.45 μm surfactant-free mixed cellulose ester membrane, Millipore) were coated

over night at 4˚C with 50 μl of OVA (5 μg/ml) in sterile PBS pH 7.5. After two washes with

ultra pure water, wells were blocked with 150μl of cell culture medium for 2h at 37˚C. A 100 μl

aliquot, containing 50,000 isolated living cells were added per well in quadruplate and plates

were incubated over night in a cell incubator (5% CO2, 37˚C). Plates were washed three times

with washing buffer (PBS, Tween20 0.01%) and twice with PBS only. Biotin-conjugated anti

mouse IgG or IgA was added at a dilution of 1:2000 and plates were incubated for 2h at room

temperature. After washing, streptavidin-HRP (Thermo scientific) was added and plates were

incubated 30 min at 37˚C. After washing, reactions were detected with 3-amino-9-ethyl-carba-

zole (AEC, Sigma) in acetate buffer according to manufacturer’s instructions. After 20 min,

reaction was stopped by washing abundantly with water for 2 min [35]. Plates were read using

an AID ELISPOT reader. Results were expressed in Spot Forming Units (SFU) per 106 cells.

Intra-rectal vaccination regimen with SlpA as antigen

One group of 6 mice received intra-rectally 50μg of purified recombinant SlpA and 5μg of

cholera toxin. Another group of 6 mice received intra-rectally 50μg of purified recombinant

Clostridium difficile FliC interest in mucosal vaccine
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SlpA and 5μg of FliC as adjuvant. The control group of 6 mice received intra-rectally 80μl of

PBS. Mice were vaccinated on days 0, 15, 30. At day 45, mice received an antibiotic treatment

in drinking water for seven days. The cocktail of antibiotics was composed of kanamycin

(0.4mg/mL), gentamicin (0.035mg/mL), colistin (850U/mL), metronidazole (0.215mg/mL),

and vancomycin (0.045 mg/mL) [36]. The concentration of the antimicrobial mixture was cal-

culated based on the average weight of mice and their expected water consumption. On the

third day of treatment (day 48), a dose of clindamycin (10mg/Kg) was IP-administered. One

day after the end of antibiotic treatment (day 53), mice were challenged by oral administration

of 8.102 C. difficile spores of the 630 strain [37]. Vaccination trials were performed twice.

Spores were prepared as previously described [38]. Briefly, cultures of the 630 toxigenic

strain of C. difficile were grown anaerobically at 36˚C for 5–7 days, on blood/agar plates. The

cultures were harvested into 10 mL of PBS, were washed in PBS, and were then heat-shocked

at 56˚C for 10 min. The spores were centrifuged, resuspended in sterile water and conserved at

4˚C until use. Spores were quantified by culture of 10-fold serial dilutions on Columbia agar

plates supplemented with 4% horse blood and sodium taurocholate (0.1%).

C. difficile detection in mouse fecal samples. To assess the intestinal colonization rate

of C. difficile, fecal pellets from each mouse were cultured before antibiotic administration to

ensure the absence of C. difficile before challenge and daily after C. difficile challenge for ten

days. Fecal samples were processed as previously described [10]. Briefly, a fecal suspension of

10 mg/mL in PBS was prepared, and 100μL of ten-fold serial dilutions were cultured in anaero-

biosis on Columbia agar containing 5% of horse blood, 25% (w/v) of D-cycloserine, and 0.8%

(w/v) of cefoxitin and sodium taurocholate (0.1%). Typical fluorescent colonies were counted

under UV light (312 nm). By this method, the threshold of C. difficile detection in animal feces

was 10 CFU/mg.

Statistical analysis

Normality was verified using Kolmogorv-Smirnov test and Shapiro-Wilk test. For normally dis-

tributed data, an unpaired student t-test was used. For non-normally distributed data Mann-

Whitney U-test was used. A p-value p< 0.05 was considered to indicate statistical significance.

Results

Evaluation of the gut mucosal immune response induced by FliC,

FLA-ST, CT as adjuvant and OVA as antigen

To compare the gut mucosal adjuvant potency of FliC with already known adjuvants FLA-ST

and CT, we immunized mice with OVA via IR (mucosal) or IP (parenteral) route. Then, we

evaluated and compared the induction of IgA and IgG specific to OVA in the intestinal con-

tents and sera. In addition, we detected IgA and IgG producing cells in the lamina propria

from mouse colon and ceacum after immunizations.

In intestinal contents of IR-immunized mice with FliC as adjuvant, 4 out of 14 mice showed

an anti-OVA IgA response higher than the defined cut-off value (Fig 1A). Despite inter-indi-

vidual variation, a significant greater production of OVA specific IgA was observed with

FliC as adjuvant compared to mice immunized with CT (p = 0.019) and PBS control mice

(p = 0.020). However, the OVA specific IgA level remains low for these groups. Despite inter-

individual variation, all IP-immunized mice with FliC as adjuvant presented an anti-OVA

IgA response higher than the cut-off value. IP-immunized mice produced significantly more

OVA specific IgA than IR-immunized mice with FliC (p = 0.013), FLA-ST (p = 0.033) or CT

(p = 0.025) and PBS control mice (p = 0.038).

Clostridium difficile FliC interest in mucosal vaccine
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Fig 1. Anti-OVA antibody levels in intestinal contents of immunized mice. Immunization by intra-rectal

route with ovalbumin as antigen (OVA), with cholera toxin (CT) (n = 14), Salmonella Typhimurium flagellin

(FLA-ST) (n = 14), C. difficile flagellin (FliC) (n = 14) respectively as adjuvant and PBS administration for the

control group (n = 14). Immunization by intra-peritoneal route with OVA as antigen and FliC as adjuvant (FliC

IP) (n = 8). (A) Anti-OVA IgA level; (B) anti-OVA IgG level. *: statistically significant difference *: 0.01<p<0.05;

**: 0.001<p<0.01; ***: p<0.001 (student t-test). Dotted-line corresponds to the cut-off value.

https://doi.org/10.1371/journal.pone.0187212.g001
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Regarding IgG in intestinal contents, no IR-immunized mice with FliC or FLA-ST as adju-

vant displayed OVA specific IgG in the intestinal lumen higher than the cut-off value. How-

ever, for IR-immunized mice with CT, only 4 out of 14 mice presented an anti-OVA IgG

response higher than the cut-off value and with a significant difference compared to IR-immu-

nized mice with FliC, FLA-ST and PBS control mice (p = 0.016). Of note, IP-immunized mice

with FliC presented significantly more anti-OVA IgG in intestinal contents than IR-immu-

nized mice whatever the adjuvant used (p< 0.001) (Fig 1B).

To further complete the characterization of the induced local immune response, we also

detected antibody producing cells specific to OVA in the intestinal lamina propria.

We looked at anti-OVA IgA producing cells in the intestinal lamina propria: for IR-immu-

nized mice, no significant difference compared to the PBS control was observed independently

of the adjuvant. In contrast, IP-immunized mice with FliC displayed significantly more anti-

OVA IgA producing cells than IR-immunized mice (p = 0.040) (Fig 2A).

Concerning anti-OVA IgG producing cells in the intestinal lamina propria, despite impor-

tant inter-individual variation, significantly more cells were detected in IR- and IP-immunized

mice with FliC as adjuvant compared to PBS control (p = 0.041, p = 0.014 respectively) (Fig

2B). No significant difference was observed between mice IR-immunized with CT or FLA-ST

and PBS control.

Evaluation of the systemic immune response induced by FliC, FLA-ST,

CT as adjuvant and OVA as antigen

At the systemic level, the three adjuvants tested were able to induce an OVA specific IgG

response compared to the PBS control group (Fig 3). However, three immunizations were

needed via the IR route, whereas only two were sufficient via the IP route with FliC as adju-

vant. The intensity of the induced response was different according to adjuvant. At day 45,

IR-immunized mice with CT as adjuvant presented a significant greater level of OVA specific

IgG than IR-immunized mice with either FLA-ST or FliC (p< 0.001). Interestingly, FliC

IR-immunization induced a significantly higher level of OVA-specific IgG than FLA-ST

(p = 0.048). However, the highest level of OVA-specific IgG in sera was observed in IP-immu-

nized mice with FliC as adjuvant, with a significant difference compared to IR-immunized

with FliC as adjuvant (p = 0.0069).

Intra-rectal vaccination against C. difficile colonization using FliC as

adjuvant and SlpA as antigen

In order to develop a mucosal vaccine to prevent C. difficile intestinal colonization, we tested

the ability of FliC as mucosal adjuvant co-administrated with SlpA as antigen in a mouse

model of infection against C. difficile colonization. Mice were IR-vaccinated with SlpA either

with CT or FliC as adjuvant. The control group received only PBS. Then, mice were challenged

with the virulent C. difficile strain 630. As shown in Fig 4, from day 4 after challenge to day 10,

the C. difficile fecal bacterial count was always lower in the vaccinated groups than in the con-

trol group. At day 10, the difference between vaccinated mice and non-vaccinated mice was

statistically significant (p< 0,002).

Discussion

In this study, we assessed the adjuvant property of C. difficile flagellin FliC in comparison to

flagellin FLA-ST and CT, using OVA as antigen in mice. Then, we tested C. difficile flagellin

FliC as adjuvant as an alternative to CT in IR vaccination strategy against C. difficile.

Clostridium difficile FliC interest in mucosal vaccine
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Fig 2. Number of antibody producing cells specific to OVA in the intestinal lamina propria of

immunized mice expressed in spot forming units (SFUs). Immunization by intra-rectal route with

ovalbumin as antigen (OVA), with cholera toxin (CT) (n = 5), Salmonella Typhimurium flagellin (FLA-ST)

(n = 5), C. difficile flagellin (FliC) (n = 5) respectively as adjuvant and PBS administration for the control group

(n = 5). Immunization by intra-peritoneal route with OVA as antigen and FliC as adjuvant (FliC IP) (n = 5). (A)

Anti-OVA IgA producing cells count; (B) anti-OVA IgG producing cells count *: statistically significant

difference p < 0.05 (Mann-Whitney U-test).

https://doi.org/10.1371/journal.pone.0187212.g002
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Many studies have described the adjuvant property of flagellin inducing both mucosal and

systemic immunity in the context of a broad range of recombinant vaccines administered via

the intra-nasal route or a parenteral route in animal models [23]. Strindelius et al. showed that

immunization with the flagellin of Salmonella enterica serovar Enteritidis alone via the oral

route was able to induce a systemic IgM-IgG response and a specific mucosal IgA response in

Fig 3. Anti-OVA IgG level in sera of immunized mice. Immunization by intra-rectal route with ovalbumin as

antigen (OVA), with cholera toxin (CT) (n = 14), Salmonella Typhimurium flagellin (FLA-ST) (n = 14), C.

difficile flagellin (FliC) (n = 14) respectively as adjuvant and PBS administration for the control group (n = 14).

Immunization by intra-peritoneal route with OVA as antigen and FliC as adjuvant (FliC IP) (n = 8). D0: before

immunization, D15: first immunization, D30: first boost, D45: second boost. *: statistically significant

difference *: 0.01<p < 0.05; **: 0.001<p<0.01; ***: p<0.001 (student t-test). Dotted-line corresponds to the

cut-off value.

https://doi.org/10.1371/journal.pone.0187212.g003

Fig 4. C. difficile colonization in vaccinated mice after challenge. C. difficile count from day 1 to day 10 in

feces of mice intra-rectally vaccinated with SlpA as antigen and FliC (n = 12) or CT (n = 12) as adjuvant

compared to control group (n = 12). *: statistically significant difference between the control and vaccinated

groups p < 0.05 (Mann-Whitney U-test).

https://doi.org/10.1371/journal.pone.0187212.g004
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the intestine [21]. Recently, Ghose et al. approached the question of C. difficile flagellin adju-

vanticity in animal models via a parenteral route using an antigenic cocktail composed of

receptor binding domains of TcdA and TcdB toxins [6]. They observed a significant increase

of anti-TcdA specific IgG in sera of the FliC-adjuvanted mouse group compared to the

non adjuvanted group. Of note, no difference in anti-TcdB IgG production was observed.

For these authors, TcdA as vaccine candidate could also partially acts as an adjuvant. To our

knowledge, the adjuvanticity of C. difficile flagellin FliC has not yet been studied via mucosal

immunization.

In this study, we assessed mucosal and systemic FliC adjuvanticity after IR- and IP-immu-

nization by evaluating the gut mucosal OVA specific IgA and IgG response and in parallel the

systemic OVA specific IgG response. We showed that C. difficile flagellin FliC, used as adju-

vant, was able to promote a gut mucosal and systemic OVA specific antibody response.

According to the route of immunization, FliC as adjuvant can induce a local antigen (Ag)

specific IgA response in intestinal mucosa at different levels and with important inter-individ-

ual variations. Only a few IR-immunized mice with FliC showed a weak positive Ag-specific

IgA response (4/14, 29%). The number of Ag-specific IgA producing cells in the intestinal lam-

ina propria was significantly greater for IP-immunized mice than for IR-immunized mice.

This was correlated with a significant higher Ag-specific IgA level in intestinal content of IP-

immunized mice with FliC than IR-immunized mice with FliC and control mice. Taken

together, these results showed that IP-immunization with FliC allows a full Ag-specific IgA

response.

Flores-Langarica et al. showed that IP-immunization with FLA-ST resulted in a pro-

nounced IgA switching of FLA-ST-specific B cells in mesenteric lymph nodes four days after

boost [39]. In comparison, in our study, IgA antibody producing cells were isolated in the

intestinal lamina propria 15 days after a second boost.

This local IgA response was associated with a local Ag-specific IgG response. All IP-immu-

nized mice with FliC developed a gut mucosal Ag-specific IgG response as attested by anti-

OVA IgG level in intestinal contents and the presence of anti-OVA IgG producing cells in the

intestinal lamina propria. Surprisingly, Ag-specific IgG were detected only in intestinal con-

tent of IP-immunized mice although Ag-specific IgG producing cells in lamina propria were

present after IP and IR immunization with FliC.

Independently of the route of administration, the local antibody response induced by FliC

as adjuvant was associated with a systemic response as attested by the presence of Ag-specific

IgG in immunized mouse sera. As expected, this IgG response was greater with IP-immuniza-

tion compared to IR-immunization. Of note, IR-immunized mice with FliC presented signifi-

cantly more circulating Ag-specific IgG compared to mice immunized with FLA-ST.

It should be noted that the detection of immunoglobulins by ELISA reflects a global pro-

duction whereas antibody producing cell detection by ELISPOT corresponds to a cell num-

ber at a specific time point. However, the discrepancy between the number of Ag-specific

antibody producing cells in intestinal lamina propria and the antibody level in intestinal con-

tent may suggest that IR and IP immunizations induce different immune responses and at

different levels. For instance, Fougeron et al. showed that the intranasal adjuvant activity of

flagellin is linked to the indirect activation of lung dendritic cells but not via TLR5-mediated

signaling from the epithelial cells [22]. In contrast, Kinnebrew et al. showed that flagellin

immunization by parenteral route directly stimulates TLR5 signaling in lamina propria

dendritic cells [40]. The presence of Ag-specific IgG in the intestinal contents could be

explained by a high systemic induced response and the passive diffusion or FcRn-mediated

transport of IgG through the epithelium [41]. Here, IR immunization with FliC induced a

low IgG response locally despite the presence of Ag-specific IgG producing cells. This is in
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accordance with the low level of IgG in sera and the need of three immunizations to induce

a significant IgG response. In contrast, IP immunization can induce a strong systemic IgG

response, attested by the presence of Ag-specific IgG producing cells in intestinal lamina

propria, the high level of Ag-specific IgG in sera and the need of only two immunizations to

induce an IgG response.

The slight differences of immune response induced by FliC and FLA-ST after IR-immuni-

zation could be explained by their origin. Although TLR5 binding domain is highly conserved,

the hypervariable domains of FLA-ST and FliC are different. Nempont et al. showed that the

hypervariable domain of flagellin is essential to trigger systemic innate immunity but not to

stimulate the mucosal innate immunity and adjuvanticity to foreign antigens, suggesting dis-

tinct mechanisms of induction in systemic and mucosal compartments [19].

Adjuvant capacity of CT and flagellins derives from different mechanisms. Indeed CT is

not a TLR-agonist, and is internalized through the glycosphingolipid GM1-ganglioside recep-

tor. CT has been widely experimentally used as mucosal adjuvant in animals and several stud-

ies have investigated the adjuvanticity of CT in many different vaccination regimens and

animal models. After oral immunization, CT has been shown to: i) increase permeability of

the intestinal epithelium leading to enhance uptake of co-administered antigen thus facilitating

antigen presentation by a variety of cell types; ii) promote isotype differentiation in B cells

leading to increased IgA production; iii) induce complex stimulation as well as inhibition

effects on T-cell proliferation and cytokine production [42–44]. In our study, after IR-immuni-

zation with CT, we observed a higher IgG systemic response than those obtained in FliC,

FLA-ST and PBS control groups. Surprisingly, this systemic response was not associated with

a local IgA response. In particular, we observed a greater level of Ag-specific IgA in intestinal

content after immunization with FliC than CT as adjuvant.

In order to develop a vaccine against C. difficile administered by mucosal route, CT has

proved efficacy as adjuvant in IR vaccination assays against C. difficile [5,9–11]. However, bac-

terial flagellin represents a potential good alternative as adjuvant since it seems to be safe and

effective administered via a mucosal route and at very low dose as attested in mouse [21] and

in non-human primate models [45,46]. In addition, it has been reported that flagellin seems to

be effective as adjuvant in the aged mouse immune system, which is promising for a vaccine

targeting the elderly such as C. difficile vaccine.

As FliC seems to be a promising adjuvant, we tested it as an alternative to CT in mucosal

vaccination strategy against C. difficile. Thus, we compared FliC and CT as adjuvant IR-admin-

istered with a surface protein of C. difficile (SlpA) involved in gut colonization as antigen [9].

Immunized mice were less colonized than non-immunized mice with a significant difference

at day 10. Despite a different systemic antibody response between the two adjuvanted groups

(significant higher level of seric SlpA specific IgG in CT group compared to FliC group; S1

Fig), the two groups of mice displayed the same kinetics of gut colonization by C. difficile. This

suggests the potential role of gut mucosal IgA response in addition to systemic IgG response in

FliC immunized mice. In this study, CT and FliC showed the same efficacy. These results sug-

gest that C. difficile flagellin FliC could be used as adjuvant in mucosal vaccine strategy against

CDI targeting colonization factors as an alternative to CT, which has no perspective of use in

human vaccination.

Supporting information

S1 Fig. Anti-SlpA IgG level in sera of immunized mice. Immunization by intra-rectal route

with SlpA as antigen and with cholera toxin (CT) (n = 12) or C. difficile flagellin (FliC)

(n = 12) as adjuvant. D0: before immunization, D45: after the last immunization. � statistically
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significant difference p<0.05 (Mann-Whitney U-test).

(TIF)
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