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Simple Summary: Malignant melanoma is one of the most aggressive cancer types among the solid
tumors; therefore, more clinically applicable protein biomarkers predicting survival and therapy
response have mandatory importance, impacting patient treatment. The aim of the study was
to discover new proteins in biobanked FFPE samples that relate to progression-free survival and
response to targeted- and immuno-therapies in patients with melanoma. Protein expressions were
detected and quantified by high-resolution mass spectrometry and were integrated with the clinical
data and in-depth histopathology characterization. Sample groups with distinct protein expression
profiles were connected to longer and shorter survival as well as other clinicopathologic features.
In addition, key regulating proteins were assigned, as predictive of progression-free survival in
immuno- and/or targeted therapy. Some of the proteins exhibited functionally important correlations
to progression and therapy response, which ultimately contributes to a better understanding of
melanoma pathology.

Abstract: The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of
formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand
the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited
in tumor biobanks and available at hospital pathology departments. In our retrospective biobank
pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed
by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein
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expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in
clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters
with enrichment for longer survival. The cohort’s heterogeneity was addressed by comparing primary
and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted
therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased
activity of immune cells, extracellular matrix, and metabolic pathways were positively associated
with patient outcome. To summarize, we were able to (i) link global protein expression profiles
to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify
proteins that are potential predictors of a patient’s response to immunotherapy and targeted therapy,
suggesting new opportunities for precision medicine developments.

Keywords: metastatic melanoma; immunotherapy and targeted therapy responder; prognostic and
predictive biomarkers; protein expression pattern in long and short survival; proteomics

1. Introduction

Malignant melanoma is the most metastatic human cancer among all tumor types [1,2]
and was responsible for more than 50,000 deaths worldwide in 2020 [3].

The incidence of melanoma is anticipated to increase 3% annually at least until 2022
in Norway, Sweden, the UK and the US [4].

While the primary prevention and patient education (e.g., patient factors: knowledge
of the disease, educational level, patient–doctor relationship) are better than they were
decades ago, the unpredictable behavior of the disease and the maintenance of a proper
therapy regimen is still a struggle of the healthcare systems.

Nowadays, the first- and second-line therapy of disseminated melanoma is based
on the kinase and immune checkpoint inhibitor approaches. The kinase inhibitor thera-
pies, such as BRAF inhibitors, combined with MEK inhibitors, achieve a dramatic tumor
response rate in a short period with the prolongation of the progression-free survival
(PFS) and the overall survival (OS). The immune checkpoint inhibitors, such as anti-PD-1,
PD-L1 and CTLA4 agents, have a prolonged effect both on the melanoma niche and on the
innocent immune cells [5]. Due to the molecular mechanisms of therapy resistance and
toxicity, the relapse of the disease is a common phenomenon during the treatment. Even
though the effect of targeted and immunotherapy extend the objective response rate of
metastatic melanoma patients to approximately 50–70% [4,6], there are no proper predictive
biomarkers or tools with high sensitivity and specificity values to predict ad hoc therapy
response and distinguish among biological therapies.

Currently, at the genetic level, the mutations of driver oncogenic genes such as BRAF,
NRAS, KIT, PTEN, TP53 and NF1 are considered as the mainstay of melanoma develop-
ment. Interestingly, a previous study revealed that the mutated proteins of the aforemen-
tioned genes have an effect on survival [7] and may have an impact on further therapy
response.

Moving forward, multiple studies demonstrated the molecular mechanisms behind the
new therapies [8–10]. In a recent trial, the melanoma patients treated with anti-PD-L1 ther-
apy showed responsiveness with the overexpression of IFN-gamma and IRE genes [1,11].

Furthermore, according to the Genomic Classification of Cutaneous Melanoma [12],
PTEN mutations, PD-1, PD-L1 and MITF genes were observed in significantly higher copy
numbers in BRAF-subtype melanomas defined with the presence of hot-spot mutations;
thus, these genetic alterations and the aforementioned immune mechanisms explicate the
importance of applied immunotherapies or the need for predictive markers regarding
therapy choice and survival.

This retrospective pilot study is based on a previous analysis that could establish a
high-throughput proteomic and phosphoproteomic dataset on formalin-fixed, paraffin-
embedded (FFPE) tumor samples compared to analysis of fresh frozen tumor (FFT) samples



Cancers 2021, 13, 6105 3 of 26

for the first time. A total of 7629 proteins and 12,659 phosphopeptides were identified,
including the phospho-site quantification of the BRAF-MEK-ERK pathway [13].

In this study, we have conducted a comprehensive proteomic analysis on the FFPE
melanoma samples to represent the potential molecular changes between samples, address
the intratumoral heterogeneity on histopathology validation and detect proteins predictive
of therapy outcome and survival. In the pilot study, 90 samples from 77 patients were
involved and analyzed for both histopathologic features and for global proteomic analysis
(Figure 1). We detected six groups of samples based on unsupervised hierarchical protein
clustering and correlated the clusters with clinical and histopathological parameters. We
also examined proteomic differences between primary and metastasis samples and iden-
tified proteins differentially expressed between the clinical stages. Additionally, protein
expressions were evaluated based on whether they represent potential predictive markers
for immuno/targeted therapy response. Our study aimed to address the following ques-
tion: can proteomics provide us with new potential biomarkers or dysregulated pathways
that are predictive of therapy response?

Figure 1. The overview of our study. Scheme illustrating the general working process of our study, showing the timeline
of the melanoma disease, from the tumor diagnosis, through progression until the appearance of the distant metastases.
This study included 90 FFPE melanoma samples collected during the oncology care and follow-up. The collected samples
were submitted for histopathology and protein analysis by high-resolution mass spectrometry. Proteins and pathways were
detected indicating survival and therapy response.

2. Materials and Methods
2.1. Patient Cohort

The melanoma samples were collected from the Department of Dermatology and
Immunology of the University of Szeged. This study was conducted according to the
guidelines of the Declarations of Helsinki, and approved by the Hungarian Ministry of
Human Resources, Deputy State Secretary for National Chief Medical Officer, Department
of Health Administration. The protocol code is MEL-PROTEO-001, the approval number is
4463-6/2018/EÜIG and the date of approval is 12 March 2018.
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In the study, 52 patients with primary and 25 patients with metastatic melanoma were
enrolled, 53 primary and 37 metastatic melanoma samples were analyzed, and 8 paired
primary-metastasis correlations were compared.

The patients were selected from 2005 to 2020 whose primary melanoma or melanoma
metastasis is archived in paraffin-embedded tissue blocks. All primary tumors resulted in
loco-regional and/or disseminated disease. The histopathological slides were made from
formalin-fixed, paraffin-embedded (FFPE) blocks.

A total of 90 samples were collected with the clinical information, including gender
(39 males and 38 females), age at primary tumor (mean = 64.33 yrs, SD ± 10.9, n = 77 (in 3
cases the age at primary was not available), age at metastasis (mean = 65.93 yrs, SD ± 10.93,
n = 77), age at collection date (mean = 64.98 yrs, SD ± 10.81, n = 77), localization of primary
tumor (trunk = 17, lower limbs = 13, upper limbs = 8, head and neck region = 14, acral region
= 1) and metastases, long-term follow up data of the patients: disease-free survival (DFS)
(mean = 17 months, SD ± 28, n = 77), progression-free survival (PFS) (mean = 42 months, SD
± 39.27, n = 77), overall survival (OS) (mean = 51 months, SD ± 45.3, n = 77) (in 3 cases the
DFS, PFS and OS were not available). Histological subtypes (SSM—superficial spreading
melanoma, NM—nodular melanoma, ALM—acrolentiginous melanoma, LMM—lentigo
maligna melanoma etc.), pathological TNM staging (according to the 8th edition American
Joint Committee on Cancer (AJCC8) cancer staging system), histological parameters of
the primary tumor (Clark level, Breslow level, presence of regression and ulceration),
BRAF status (WT, BRAFV600E, BRAFV600K and D5879). Twenty-two patients received
immunotherapy (CTL4-inhibitors—ipilimumab, PD-1 inhibitors—pembrolizumab and
nivolumab, PD-L1 inhibitor—atezolizumab); 15 patients received targeted therapy (BRAFi
(dabrafenib and vemurafenib) and MEKi (trametinib and cobimetinib); 59 patients received
other therapies (irradiation, chemotherapy, IFN therapy and electrochemotherapy); and
18 patients did not receive any treatments. Three patients received both immunotherapy
and targeted therapy. OS was calculated from the date of diagnosis of primary melanoma
to the date of last follow-up (long survival group, live status marked with 1, n = 34) or death
(short survival group, live status marked with 0, n = 43), PFS was calculated from the date
of diagnosis of primary melanoma to the date of progression, DFS was calculated from the
date of diagnosis of primary melanoma to the date of first metastasis. The clinicopathologic
data of the samples were collected in an Excel file for statistical analysis.

Survival Analysis of Patient Cohort

Kaplan–Meier (KM) survival analyses were conducted with the disease-free survival
(DFS), progression-free survival (PFS) and overall survival (OS) (measured with months) us-
ing different statistical approaches (KM including log-rank, Breslow and Tarone-Ware tests).
Kaplan–Meier survival analyses and figures showing p-values, quartile values, mean values
and 95% confidence intervals were produced by IBM SPSS statistics package (26.0 version)
software. Alpha was set to 0.05 and p-values less than 0.05 were considered significant.

2.2. FFPE Sample Preparation and Histology Validation

A total of 90 primary and metastasis samples were collected retrospectively and
obtained by excision or biopsy of melanoma or metastatic organs and archived by formalin-
fixed and paraffin-embedded (FFPE) routine methodology. Stepwise sectioning of the
FFPE tissues was conducted by a conventional microtome. The setting is adjusted to the
slice thickness at 10 µm. FFPE tissue sections were placed on glass slides and stained with
hematoxylin and eosin. After staining, the slices were placed in an automated slide scanner
system (3D Histech Ltd., Budapest, Hungary). The slides were evaluated for the tumor
and stroma ratio.

FFPE Sample Processing

The FFPE tumor slides were incubated for 10 min at 97 ◦C, 500 rpm in 1 mL of
EnVision Agilent solution (Agilent, CA, USA) (dilution 1:50). After incubation, the samples
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were centrifuged (14,000× g, 3 min, 4 ◦C), discarding the supernatants. For a complete
deparaffinization, this step was repeated four times until the supernatant was cleared out.
Samples were resuspended in 500 µL of protein extraction buffer (25 mM DTT, 10% (w/v)
SDS in 100 mM TEAB pH 8.0) incubating for 1 h at 99 ◦C in constant agitation (500 rpm).
Next, tissues were sonicated (40 cycles, 15 s on/off) in the Bioruptor (Diagenode, Denville,
NJ, USA) followed by centrifugation at 20,000× g for 20 min at 18 ◦C. Supernatants were
stored at −80 ◦C until further use, separating a sample aliquot for protein determination
(660 nm Protein Assay/Ionic Detergent Compatibility Reagent–Thermo Fisher, Rockford,
IL, USA).

2.3. Protein Digestion

Before protein digestion, a spike-in of Lysozyme C protein from Gallus (Sigma-Aldrich,
St. Louis, Missouri, USA) was done in each sample for batch normalization (100:1 ratio,
Sample/Lysozyme C). Protein alkylation was performed with iodoacetamide 50 mM in
dark condition for 30 min at room temperature. S-Trap™ 96-well plate was used for sample
digestion (c). First, an incubation with LysC (enzyme: substrate, 1:50) was added to the
samples for 2 h, at 37 ◦C, followed by trypsin (enzyme: substrate, 1:50) incubation overnight
at 37 ◦C. The samples were acidified with 100% formic acid (FA) (~10% final concentration)
to stop the digestion process. Peptides were dried in a speed-vac (Thermo Fisher Scientific)
and resuspended in a solution of 0.1% trifluoroacetic acid (TFA)/2% acetonitrile (ACN).
The quantitative colorimetric peptide assay (Pierce™—Thermo Ficher, Rockford, IL, USA)
was used for the determination of peptide concentration. Peptide samples were spike-in
with an indexed retention time (iRT) standard (Biognosys, Schlieren, Switzerland) for the
control quality of batch normalization.

2.4. LC-MS/MS Analysis

Two micrograms of the peptides was injected into the UltiMate 3000 RSLCnano
system (Dionex, Sunnyvale, CA, USA) using a trap-column (Acclaim® PepMapTM 100,
75 µm × 2 cm, nanoViper 2Pk, Thermo scientific) and an analytical column (PepMap RSLC
C18, 2 µm, 100 Å, 75 µm × 25 cm Thermo Scientific) online to Q-Exactive HF-X mass
spectrometer instrument (Thermo Scientific). Chromatographic separation of peptides was
performed in a linear gradient of 160 min in a flow rate of 300 nL min−1, using 0.1% FA
(buffer A) and 0.1% FA/80% ACN (buffer B) solution. The solvent gradient was: 0–3 min
2% of B, 3–115 min 25% of B, 115–125 min 32% B, 125–132 min 45% B, 132–140 90% B
140–145 90% B.

The spectra were acquired in a data-dependent acquisition mode. Spray voltage was
set at 1.85 kV. The full scan resolution was 120,000, considering a dynamic exclusion time
of 30 s. The AGC and injection time (IT) were 3 × 106 and 50 ms, respectively. The 20 most
intense ions were selected for fragmentation using a higher-energy collisional dissociation.
The MS2 resolution was 15,000, using an AGC of 1 × 105, 50 ms of IT, and normalized
collisional energy of 28 EV.

2.5. Database Searching

Data were searched against the UniProt human database (2020/05/26) and two spec-
tral libraries such as the Proteome tools HCD 28 PD and NIST Human Orbitrap HCD
using the Proteome Discoverer 2.4 software (Thermo Scientific). Two missing cleavages
for trypsin digestion were allowed. The precursor and fragment mass tolerance were
set to 10 ppm and 0.02 Da, respectively. Briefly, the pipeline includes two nodes using
the spectrum confidence filter tool. The first node, the dynamics modification at the pep-
tide level, includes the methionine oxidation and lysine methylation of peptides. The
acetylation, met-loss, and met-loss + acetyl of the protein N-terminal were also set as
dynamic modifications at the protein level. Finally, the carbamidomethylation of cysteine
was included as a static modification. The second search node considers the methionine
oxidation and lysine methylation of peptides and the protein N-terminal acetylation as
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dynamic modifications. Static modifications such as cysteine carbamidomethylation were
also considered. In addition, the Minora Feature Detector and the Feature Mapper nodes
were used as a tool for the data search workflow.

2.6. Data Normalization and Batch Effect Correction

No imputation was performed on either a peptide or a protein level during data
processing. The raw protein intensities were log2-transformed and median-normalized
(by centering around the global median, which included all non-zero values of the whole
dataset). The spike-in protein Lysozyme C, which was added in equal amounts during
sample preparation and therefore expected to have constant expression across the samples,
exhibited a continuous drift in its intensity according to the injection order, and this batch
effect was visible also on the PCA plot of the samples (Figure S1A,D). To correct for this
technical factor, a continuous batch correction method implemented in the proBatch R
package (v. 1.6.0) [14] was utilized. Firstly, discrete batches were defined based on the
injection order: 1–24, 25–49, 50–74, 75–90, and then a non-linear trend was fitted to the
Lysozyme C expression values in each batch (Figure S1B). The locally estimated scatterplot
smoothing (LOESS) span was set to 0.9, leading to a smoother fitted curve, which is
less prone to overfitting. This trend, estimated based on the spike-in protein, was then
subsequently subtracted from all protein intensity values. The efficiency of the batch
correction was checked on the iRT peptides’ intensity, which was added to the samples
before the MS measurement in equal amounts. The iRT peptide levels were found to be
very similar after batch correction in the samples; moreover, the PCA plot of the samples
now showed no separation based on injection order (Figure S1C,D). Moreover, a separation
between tumor samples retrieved from cutaneous (Cut) and lymph node (LN) origins arose
after batch correction (Figure S1D), showing sample grouping according to tissue type.
Therefore, the normalized and batch-corrected expression values were used for subsequent
analyses. Intensity distributions of the samples before and after median-normalization and
after batch effect correction are visualized in Figure S1E.

All data post-processing steps and subsequent statistical tests were performed in R v.
4.0.4 using RStudio v. 1.4.1106. Visualizations were made using ggplot2 v.3.3.3 [15], ggbiplot
v.0.55 [16], cowplot v.1.1.1 [17], gridExtra v.2.3 [18] and ComplexHeatmap v.2.6.2 [19].

2.7. Proteomics Data Analysis

Unsupervised clustering of the samples was performed using proteins that have
intensity values in at least 50% of the samples. The hierarchical clustering was done on the
Z-score normalized protein expression table using Euclidean distance and complete linkage.
The Euclidean distance was selected as it gives equal weight to all proteins, and the best
results were achieved using complete linkage. Detection of individual clusters was done via
the dynamic tree cutting method, a method implemented in the dynamicTreeCut R package
(v. 1.63-1), with the following settings: minClusterSize = 0, method = hybrid, deepSplit = 4.
The dynamic tree cutting [20] over constant-height tree cutting was selected as it can identify
nested clusters (see Figure S2A), and it automatically detects the optimal number of clusters.
Overrepresentation of any clinical or histopathological characteristics in the sample clusters
was determined using one-sided Fisher’s exact test. Alpha was set to 0.05 and nominal
p-values less than 0.05 were considered significant, but clinical/histopathologic traits with
nominal p-values between 0.05 and 0.01 were also discussed.

For the proteomic characterization of the sample clusters, a one-way Analysis of
Variance (ANOVA) test with pairwise Tukey’s honest significant difference (HSD) post-
hoc tests were performed to identify proteins showing differential expression between
the sample clusters. No prior filter for valid values was applied on the expression table,
but statistics was performed only on proteins that were quantified in at least 80% of
the minimum 2 sample clusters. Benjamini–Hochberg adjusted p-values values (FDR)
of ANOVA tests less than 0.05 were considered significant. Unsupervised hierarchical
clustering of the top 1000 most differentially expressed proteins was performed using
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Euclidean distance and complete linkage, followed by dynamic tree cutting with the
settings minClustersize = 50, method = hybrid, deepSplit = 0. Pathway enrichment analysis
of the resulting protein clusters was conducted using Kyoto Encyclopedia of Genes and
Genomes (KEGG) [21] and Reactome [22] databases.

Proteins showing differential expression between primary and metastasis samples
were examined via t-tests (independent t-tests for the whole cohort and paired t-tests
for the paired primary and metastasis samples). Only proteins with min. 80% valid
values in both groups were included in the analysis. For the paired t-test, the log2 fold
changes (FCs) were calculated by calculating log2FC between the paired samples, and then
taking the average of those paired differences. Proteins were ranked based on the log2FC
× −log10 nominal p-value for the subsequent pre-ranked gene set enrichment analysis
(pGSEA). Linear relationship between stage and protein expression was assessed using
Analysis of Covariance (ANCOVA), where both stage as a numerical variable (2, 3 and
4) and tumor type as a categorical variable (primary or metastasis) were included in the
model. Only proteins with min. 80% valid values in all three stages were considered in
the analysis. Regression coefficients for stage and nominal p-values were extracted, which
were used to rank the proteins (coefficient × −log10 nominal p-value) for the pGSEA. The
pGSEA was performed via the clusterProfiler R package [23]. The GO biological process,
KEGG, Reactome and Wikipathways gene sets were utilized for the analysis. The gene
sets were downloaded from the Molecular Signatures Database v7.4 [24–26]. For primary
vs. metastasis comparisons, the FDR-corrected pGSEA p-value < 0.05 was considered
significant, whereas for stage comparisons, nominal p-value < 0.05.

Proteins that are potential predictors of long or short progression-free survival after the
patients received immunotherapy or targeted therapy were detected via survival analysis.
For this, multiple Cox regression models were fitted to the progression-free survival data
in both the immunotherapy and targeted therapy subgroup. Individual protein expression
data were used as a covariate in the model (provided that the protein had min. 80%
valid values within the therapy subgroup’s samples), and samples were stratified based
on the tumor type (Primary or Metastasis). Alpha was set to 0.05 and nominal p-values
less than 0.05 were regarded as significant. Proteins where the proportional hazards
assumption was not met (checked by the cox.zph function of the survival R package,
p-value < 0.05) were deleted from the list of significant proteins. Protein networks were
drawn via STRING (v.11.5) [27]. Overrepresentation analysis of GO biological processes [28]
and KEGG pathways, as well as interaction network construction (confidence cutoff 0.4)
using the significant proteins, was performed in Cytoscape (v.3.8.2) [29]. The processes
showing FDR < 0.05 were visualized and used for biological interpretation.

2.8. Data Availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE [1] partner repository with the dataset identifier PXD028930.
Project name is Proteomic Analysis on Paraffine Archived Melanoma. Project accession
is PXD028930, project DOI is not applicable, username is reviewer_pxd028930@ebi.ac.uk,
and password is TaHGkBGm.

Proteomic data summary, ANOVA and Tukey’s HSD test results of sample cluster
comparisons, Cox regression analysis results for immunotherapy and targeted therapy
subgroups, t-test results (paired/independent) for primary vs. metastasis comparisons
as well as ANCOVA results for the comparison of disease stages are provided in Supple-
mentary Document S1. The scripts used for the proteomic data normalization, batch effect
correction and statistics are available at https://github.com/bszeitz/MM_pilot (accessed
on 21 November 2021). Clinical information of individual patients cannot be provided due
to the ethics restrictions.

2.9. Figure Illustration

Some of the figure illustrations were created with BioRender 2021 software.

https://github.com/bszeitz/MM_pilot
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3. Results and Discussion
3.1. The Clinical Significance of the Study
Clinicopathologic Characteristics of the Patient Cohort

The applied retrospective cohort is composed of 90 melanoma samples from 77 patients
with mainly progressed melanoma. The samples consist of 53 primary and 37 metastatic
melanoma samples representing both lymphatic and cutaneous metastases and eight pairs
of primary-metastasis correlation. The clinicopathologic data of the samples are summa-
rized in Table 1. From the investigated cases, 51% were male individuals and 56% of the
participants were not alive at the collection date (short survival group). The melanomas
were stratified according to the 8th edition of the American Joint Committee on Cancer
(AJCC8) staging system [30] and the 3rd edition of the WHO classification [31]. The
metastatic cohort had a predominance of patients who had stage III (40%) at the time of
primary tumor sampling (Table 1). Furthermore, data of the BRAF mutation were also
collected from the primary and metastatic samples, with 51% coming from the mutated
BRAFV600 state.

The 90 analyzed melanoma samples included 58.9% primary tumors, 26.66% locore-
gional lymph node metastases and 14.44% cutaneous metastasis samples. The majority of
the samples were surgically removed from the trunk (32%) and the dominant histotype of
the primary tumors were nodular melanoma (51%). The tumors spread into the deeper
layers of the dermis or subcutaneous layer of the skin in 51% of the primary samples
(Breslow thickness > 4 mm) (Table 1).

The examined FFPE tumor samples varied from medium-thick (1–2 mm–pT2) to thick
(high risk: 2–4 mm–pT3, very high risk: >4 mm–pT4) melanomas with a dominance of
the thick/very high-risk cases up to even 22 mm of thickness. The primary melanomas
mainly showed a poorly differentiated solid area reaching at least Clark III level, indicating
a vertical growth pattern even at superficial spreading or lentigo melanoma cases. The per-
itumoral niche varied from lymphocyte- and macrophage-rich areas to regressive, fibrotic,
pauci-cell microenvironment. Focal necrotic areas as well as intratumoral pigmentation
were assessed. In the lymphatic and cutaneous metastases, variable degrees of alteration
in necrotic areas, viable tumor counterparts, tumor burden, and regressive signs were
observed. In addition, the tumor/stroma ratios were evaluated in each sample. (Figure 2).

Figure 2. Histopathologic features of the representative cases in the study. Image captures, representing the spectrum
of melanoma sample subtypes, including SSM (superficial spreading melanoma) (A), SSM with a vertical involvement
(superficial spreading melanoma with vertical involvement) (B), NM (nodular melanoma) (C), ALM (acrolentiginous
melanoma) (D), as well as both cutaneous (E) and lymphatic (F) metastases. Each sample also underwent a tumor
(TU)/stroma (STR) ratio assessment (G) (HE (hematoxylin-eosin); OM (optimal magnitude) 112×).
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Table 1. Clinicopathologic data of the patient cohort.

Clinicopathological Properties

Patients Variable n Median Range

Age Age at primary 1 77 64 yrs 54–74 yrs

Survival

DFS (m) 1 74 17 months 0–45 months

PFS (m) 1 74 42 months 3–81 months

OS (m) 1 74 51 months 6–96 months

Treatments

Variable n % of total (n = 77)

Immunotherapy 22 28.57
CTL4i 2 2.59

PD-1i, PD-L1i 22 28.57

Targeted therapy 15 19.48
BRAFi 15 19.48
MEKi 14 18.18

Targeted-plus
Immunotherapy 3 3.89

Other therapies 59 76.62
irradiation 35 45.45

chemotherapy 9 11.68
ECT 4 5.19

IFN-therapy 13 16.88

No treatments 18 23.37

Clinical stage (AJCC8)

St. I 7 9.1

St. II 24 31.16

St. III 31 40.26

St. IV 14 18.18

NA 1 1.3

Tumor samples

Variable n % of total (n = 90)

Primary tumors 53 58.9

SSM with vertical
growth 15/53 28.3

SSM 5/53 9.43

NM 27/53 51

ALM 3/53 5.66

ALM with vertical
growth 1/53 1.88

ALM with SSM 1/53 1.88

LMM 1/53 1.88

Locoregional lymph.
met. 24/90 26.66

Cutaneous met. 13/90 14.44

The table represents the clinicopathologic parameters of the patients and their selected primary melanomas and metastases included in the
pilot patient cohort. DFS—disease-free survival, PFS—progression-free survival, OS—overall survival; CTL4i—cytotoxic T-lymphocyte
associated protein inhibitor, PD-1i-programmed cell death protein 1 inhibitor, PD-L1i-programmed death ligand 1 inhibitor, BRAFi—BRAF
kinase inhibitor, MEKi—MEK kinase inhibitor, ECT—electrochemotherapy; AJCC8—The 8th edition American Joint Committee on
Cancer staging system; yrs—years; SSM—superficial spreading melanoma, LMM—lentigo maligna melanoma, NM—nodular melanoma,
ALM—acrolentiginous melanoma, NA—no available data. 1 In three cases, the age at primary diagnosis, the disease-free survival, the
progression-free survival and the overall survival were not available.
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3.2. Proteomic Analysis Reveals Sample Clustering According to Relevant Histopathological and
Clinical Parameters Associated with Survival and Tumor Progression

A total of 90 samples from 77 patients were analyzed based on their clinical- and global
proteomic expression data. Mass spectrometry analysis quantified 7881 protein groups
across all datasets (Supplementary Document S1). The unsupervised hierarchical cluster
analysis revealed six major sample clusters and one outlier sample labeled as Cluster 0
(Figure 3A). A total of 4437 protein groups showing variability among these clusters were
detected (Figure 3A). Enrichment analyses revealed a correlation of one of each cluster
to relevant clinical parameters. Cluster 1 corresponded to better overall survival in the
interval of 101 to 205 months (Fisher test p < 0.05), Cluster 2 corresponded to samples
with the host tissue of cutaneous origin, exclusively (Fisher test p < 0.001), and a tendency
for poorer disease-free survival ranging from 11 to 30 months (Fisher test p = 0.0835) was
observed. Cluster 3 showed a borderline significant (Fisher test p = 0.0913) enrichment of
better progression-free survival values (between 61 and 100 months). On the other hand,
samples in Cluster 4 had the host tissue of lymphoid origin (Fisher test p < 0.001), as well as
enrichment of the AJCC8 St. IIID stage (Fisher test p < 0.05) and the Breslow level between
4.1 and 8 mm (Fisher test p = 0.0616) was observed. Moreover, the dominant gender was
male (Fisher test p = 0.0703), and a borderline significant association with poor disease-free
survival with less than 10 months (Fisher test p = 0.0778) was also noted. In Cluster 5, three
out of five samples, all primary tumors, can be categorized into the ALM subtype (Fisher
test p < 0.05). Moreover, the gender was exclusively female (Fisher test p < 0.05). The AJCC8
St. IIA (Fisher test p = 0.0647), progression-free survival between 11 and 30 months (Fisher
test p = 0.0662), and overall survival between 11 and 30 months (Fisher test p = 0.0662) were
also borderline enriched. Cluster 6 corresponded to a better disease-free survival ranging
from 31 to 60 months (Fisher test p < 0.05); however, these samples exhibited low overall
protein coverage, and can therefore be regarded as outlier samples (Table S1). Similarly,
Cluster 0 was built up from one outlier sample; therefore, associations with clinical and
histopathological characteristics were not evaluated (Figure 3A).

To unveil the molecular signature behind the sample clusters, we performed a bi-
ological pathway analysis considering the top 1000 most variable proteins (ANOVA
FDR < 1.05 × 10−4). Figure 3A shows the protein clusters obtained by hierarchical cluster-
ing, and Figure 3B shows the main biological functions associated with the sample clusters.
One of the main findings was the downregulation of protein cluster 2 in sample cluster
4 and their upregulation in sample clusters 5 and 6. The closer data analysis revealed
that most of the proteins are related to the cellular matrix function, such as desmoglein-1,
desmocolllin-2, and dystonin, specifically in the desmosome and the hemidesmosome
assembly. The decrease in proteins related to desmosome are linked to tumor progression
in several types of cancers [32,33].

Furthermore, for example, desmoglein-1 was proposed as a new therapy candidate
due to its participation in the invadopodia formation, promoting tumor invasion and metas-
tasis development [34]. Divergent results have been found concerning the desmocolllin-2
role in metastasis. Evidence suggests that the reduction in the expression of this pro-
tein promotes cellular migration and tumor invasion [35–37], while other studies affirm
that the upregulation of desmoglein 2 promotes vasculogenic mimicry and metastatic
spread in melanoma [38]. On the other hand, the decline of proteins associated with the
hemidesmosome components was also related to metastasis progression and poor clinical
outcomes [39], and it correlates with our results since we have seen the downregulation of
these proteins in sample cluster 4 with poor disease-free survival.

Protein clusters 1, 4, 5, 6, 7 and 10 stand out by the dramatic decrease in the sample
cluster 6, the better prognosis group. Alterations in mitochondrial translation and RNA
metabolism are the most enriched pathways. Detailed examination of the biological
significance of these protein changes displays the alteration of the mitochondrial ribosomal
complex (e.g., MRP-S7, MRP-L12, MRP-L15) and RNA regulation (e.g., integrator complex).
Furthermore, mitoribosomal proteins (MRP) are reported as key drivers in regulating
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apoptotic signaling beyond their classical protein translation role [40]. Interestingly, the
abnormal protein expression of MRP has been described in several tumors, and currently,
they are proposed as novel targets for disease diagnosis and treatment [41]. In the same way,
the alteration of the MRP-S7 gene expression is strongly correlated to the metastatic process
in the osteosarcoma [42], while MRP-L12 was proposed as a potential predictive biomarker
for glioblastoma [43]. In addition, MRP-S15 was suggested as one of the predictor markers
of tumor recurrence and treatment failure in breast cancer patients [44]. In parallel, the
detriment in the abundance of the important components of transcription machinery
previously linked to cancer malignancy, such as the subunits of the integrator complex [45].

Figure 3. The protein expression patterns in the sample clusters. (A) The heatmap of the six detected sample clusters with
the clinicopathologic data and the protein expression pattern (top 1000 most variable proteins, ANOVA FDR < 1.05 × 10−4).
(B) The main biological functions linked to the sample clusters. DFS—disease free survival, PFS—progression-free survival
and OS—overall survival. Clinical stage based on AJCC8. SSM—superficial spreading melanoma, LMM—lentigo maligna
melanoma, NM—nodular melanoma, ALM—acrolentiginous melanoma.

On the contrary, protein clusters 3, 8, and 11 are highly increased in sample cluster
6. These protein groups are mainly involved in the RNA metabolism in response to DNA
damage, especially in the increase in proteins related to TP53/P53 response (e.g., probable
ATP-dependent RNA helicase DDX5, heterogeneous nuclear ribonucleoprotein K, 40S
ribosomal protein S3). For example, it was demonstrated that 40S ribosomal protein S3
protects p53 against MDM2 ubiquitination and proteasome degradation [46]. In addition,
we noticed the increment of proteins linked to phagocytosis and membrane remodeling,
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such as merlin, reported as a tumor suppressor reducing the migration and proliferation of
metastatic melanoma [47]; this finding is in agreement with the clinical characteristics of
sample cluster 6 with better disease-free survival.

Similarly, we also discovered an increase in proteins within the complement system,
and coagulation cascade (e.g., complement C3, fibrinogen), which are part of the tumor
microenvironment, playing crucial functions in promoting tumorigenesis and a scaffold
for the binding of tumor cell growth [48–50].

3.3. Imbalance of Immune-Related Proteins as Molecular Fingerprint of the Sample Clusters with
Varying Survival Outcomes

The bioinformatics analysis of the proteomic profiles captures two different sample
clusters with distinct overall survival (i.e., cluster 1 and cluster 5). The comparison between
cluster 1 vs. cluster 5 detected the downregulation of 316 protein groups (Figure 4A), mainly
linked to the immune system (e.g., CD33, ARGI1, NKAP). In this case, the imbalances of
these immune-related proteins were associated with poor clinical outcomes. For instance,
the alteration in the abundance of proteins such as CD33, a transmembrane receptor
expressed by myeloid lineage, was correlated with poor therapy responsiveness and
disease progression [51,52]. On the other hand, the increase in ARGI1 in the tumors usually
correlates with metastases and worse clinical prognosis [53]. Moreover, the expression of
NKAP is negatively correlated with the levels of Notch target genes, which are essential
for T-cell development [54]. Moreover, the NKAP acts as an oncogene and is connected
with a poor outcome in cancer patients. It was demonstrated that NKAP knockdown
suppresses the proliferation of HCT116 and HT-29 cells, inducing apoptosis [55,56]. On the
other hand, 74 protein groups were found upregulated. Similarly, we detected the increase
in proteins related to the immune system with anti-tumorigenic effects, such as GTPase
IMAP family member 5 (GIMA5), described as a promoter of CD4+ T-cell survival and
homeostasis [57,58]. GIMA5 also suppresses the proliferation of lung cancer cell lines [59].
In addition, we observed the increment of proteins such as mitogen-activated protein
kinase 2 (MAP4K2), usually expressed in B cells of the germinal center and macrophages,
which activates the c-Jun N-terminal kinases [60]. Similarly, we detected the different
expression of PIK3CA between the sample clusters. This protein participates in several
signal transduction pathways, such as the regulation of the T-cells, and cell signaling, but
especially those that impact cell proliferation, survival, and apoptosis in tumors [61,62].

3.4. Protein Translation and Immune System Stand out in the Proteome Profile of the Sample
Clusters with Different Progression-Free Survival

The comparison of sample clusters (Figure 4B) with different progression-free sur-
vival (cluster 3 vs. cluster 5) shows a decrease within 333 protein groups. The translation
pathway was found highly enriched, together with the differential expression of several
immune-related proteins. As mentioned above, some of the ribosomal proteins that we
identified as differentially expressed between sample clusters in this study also have an
alternative function to protein translation, such as MRP-L12 (previously described) as well
as RPS12 that triggers metastasis development through the activation of the Akt/mTOR/c-
Myc signaling pathway in cervical cancer cell lines [63]. Moreover, we can also highlight
the decrease in key immune-regulating proteins, such as l-amino-acid oxidase (OXLA),
a critical immune regulator inhibiting the proliferation of the peripheral blood mononu-
clear cells and CD8+ T-cells. The immune response is thereby suppressed in the tumor
microenvironment, contributing to tumor cell invasion [64]. In parallel, we also detected
the increase in 108 protein groups, mainly related to the growth signaling cascade such
as the SHC-transforming protein 1, previously reported as an important factor in the
metastatic progression of breast cancer [65]. Moreover, we detected proteins such as E3
ubiquitin-protein ligase (RNF114) and mitogen-activated protein kinase kinase kinase 7
(MAP3K7) involved in mechanisms related to tumor necrosis factor receptor-associated
factor 6 (TRAF6), a well-established protein that plays a critical role in melanoma metasta-
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sis [66]. RNF114 regulates the ubiquitination of TRAF6 [67], while TRAF6 mediates the
signal transduction of MAP3K7 in the activation of the nuclear factor-kappa B [68].

Figure 4. The main up- and downregulated proteins in the sample clusters. (A) Volcano plot of sample cluster comparison
(between sample cluster 5 and sample cluster 1) with diverse overall survival. (B) Volcano plot of sample cluster comparison
(between sample cluster 5 and sample cluster 3) with different progression-free survival. (C) Examples of the differential
expression of the proteins between sample cluster 6, 4 and 2 with different disease-free survival.

3.5. Proteome Mapping Detects Gradual Proteomic Changes in Sample Clusters Exhibiting
Different Disease-Free Survival

To evaluate the proteins that could potentially impact the disease-free survival of our
sample cohort, we contrasted the protein changes across three sample clusters with good
(Cluster 6) median (Cluster 2) and inferior (Cluster 4) clinical endpoints. Despite sample
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heterogeneity, data analysis shows a significant alteration of 90 protein groups, of which 49
and 7 proteins tend to increase and decrease across these sample clusters, respectively.

Figure 4C displays an example of the main differential expressed proteins between
the sample clusters in our analysis. Proteins with a tendency to increase are mainly related
to RNA processing, such as ribosomal proteins. Similarly, we also detected a key marker
such as TRAF6, as well as relevant proteins for the cell cycle control and apoptosis such as
cyclin-dependent kinase 2 (CDK2), crucial for the proliferation of melanoma cells [69,70],
and armadillo repeat-containing protein 10 (ARMC10) linked to cell proliferation and the
inhibition of p53 [71,72]. A gradual decrease in apoptosis-inducing factor 1 (AIF1), a well-
known proapoptotic factor, was found to be aligned with early metastasis [73], in addition
to peptidyl-prolyl cis-trans isomerase F, an essential component of the mitochondrial
permeability transition pore [74].

3.6. Proteomic Differences with Regard to Tumor Type and Clinical Stage

In the metastatic cohort, the primary melanoma and their corresponding metastasis
samples from eight patients (paired dataset) were compared based on the differences of
their proteomic expression profile (via paired t-tests); additionally, differences in primaries
and metastases from the whole cohort (full dataset) were examined by independent t-tests.
Pre-ranked Gene Set Enrichment Analysis (pGSEA) outlined a strong agreement between
the two results (Figure S2B), indicating that primary vs metastasis differences found in
paired samples is globally true for the primary vs metastasis differences in the full dataset
as well. The B-cell receptor signaling pathway, endoplasmic reticulum calcium ion home-
ostasis pathway and the chromatin organization pathway were significantly activated
(pGSEA p-value < 0.05) in metastatic tumors according to both the paired and full dataset,
whereas keratinization pathways, epithelial and epidermal cell differentiation pathways,
the epidermis development pathway, collagen fibril organization, the extracellular ma-
trix organization pathway, the myeloid leukocyte mediated immunity pathway and the
neutrophil degranulation pathway were strongly activated (pGSEA p-value < 0.05) in
primary tumors.

In connection with the clinical stages, we have also identified proteins showing up-and
downregulation from AJCC8 stage II to stage IV while accounting for tumor type (pri-
mary/metastasis differences). A total of 147 proteins were significantly upregulated, and
152 proteins were downregulated in the higher clinical stage (Figure S2C). Pathway analysis
through pGSEA showed a concordant upregulation of proteins in the formation of humoral
immune response, the regulation of immune effector process, the regulation of humoral im-
mune response, and the regulation of complement activation such as CD46, TRAF6 as well
as MCM9 protein in DNA repair mechanisms. The downregulation of the PELO protein
in epithelial cell differentiation and the PSMD3 protein in the negative regulation of the
canonical WNT signaling pathway (Figure S2C or 2D) was also detected. It is known that
CD46 contributes to complement activation and humoral immune response [75], and the
overexpression of this protein correlates to the suppression of IFNγ and TNFα production
on γδ T-cells and it can further contribute to the formation of a pro-tumor environment,
indicating progression through clinical stages. [76–79] The elevated expression of TRAF6
protein during the progressed melanoma course is parallel with our previous results where
this protein was upregulated in sample clusters with enrichment for short survival. The
MCM9 is involved in the DNA repair mechanisms, and it was recently shown that MCM9
protein is highly expressed in metastatic melanomas compared to primary melanomas in
the TCGA cohort (TCGA [80]) and is also related to the T stage (histopathologic stage) of
the tumor [81].

A downregulated tendency of the PELO protein in the epithelial cell differentiation
pathway was seen. This protein has a role in cell cycle control and an unfavorable prog-
nostic marker in breast cancer [82]. The downregulation of PSMD3 protein in the negative
regulation of the canonical WNT signaling pathway was also seen from the mild to the
severe stages. Interestingly, in other studies, the downregulation of PSMD3 was associated
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with longer survival in glioblastoma multiforme [83] and in melanoma metastasis [84],
which is the opposite tendency to what we have seen in our results in the clinical stages.

3.7. Histopathologic Relations to the Clustered Sample Cohort

Although the examined high/very-high-risk metastatic setting is generally supposed
to indicate a worse prognosis, the proteomic assays could differentiate into clusters based on
survival and therapy-response variables among these mainly aggressive cases. Interestingly,
neither of the standardized histopathologic parameters (pT, regression, ulceration, etc.) has
proven significant differences among the clustered groups, which indicates an independent
prognostic value of the deep proteomic assay, as shown in Figure 5.

Figure 5. Histopathologic characteristics of the samples in sample cluster 1, 2 and 4. The image represents the spectrum of
the morphology of the examined samples, as Cluster 1 involves vertical growth or de novo nodular melanomas displaying
an anaplastic, fusiform or epithelioid phenotype (inserts). Additionally, a few metastases were also included exhibiting
the same dedifferentiated morphology. In Cluster 2, similar phenotypes were noted, with a pronounced intratumoral
melanin pigmentation. Cluster 4 entailed the majority of the lymph node metastases. OM (optimal magnitude) 112×; HE
(hematoxylin-eosin) staining; inserts indicate magnified areas with scale bar 50 µm (Table S2).

3.8. Proteins and Pathways Predicting Therapy Response
3.8.1. Proteins and Pathways Indicating Worse Outcome in the Immunotherapy-Treated
Subgroup

Subgroups of patients were selected based on their primary treatment (immunother-
apy, targeted therapy). Twenty-four samples from 22 patients were involved in the im-
munotherapy subgroup and 20 samples from 15 patients were used in the targeted therapy
subgroup. The samples involved in the pilot study were naive to any treatment arms, whilst
we are able to observe the protein expression profile prior to any given therapy. Aiming
to identify proteins that are possible predictors for the length of progression-free survival
(i.e., worse or better response), multiple Cox regression models were established for the
progression-free survival, using the protein expression data. The model was stratified
based on sample type, i.e., primary or metastasis. The analysis resulted in 401 proteins in
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the immunotherapy subgroup and 260 proteins within the target therapy subgroup, which
were found to significantly correlate with survival (Multiple Cox regression p-value < 0.05),
respectively. The significant proteins are visualized within the heatmap, as shown in
Figure 6A,B.

The functional analysis of the proteins (Gene Ontology terms, KEGG pathways,
Reactome, Wikipathways) (Figure S4) revealed distinct activated pathways for patients with
short/long PFS. For the subgroup with shorter PFS after immunotherapy, the significantly
upregulated proteins were related to cellular and metabolic processes (Figure S4), also
including the VEGFA-VEGFR2 pathway (Figure 6 (2D)) (KEGG pathway database: FDR <
0.05). The VEGFA and its corresponding pathways activate the endothelial cell growth and
vasculogenesis that contributes to the metastatic potential of the tumor [1]. The presence of
the VEGFA also suggests a prognostic signature for locoregional lymphatic metastasis [1].
In a study, the PD-1/PD-L1 and VEGFA/VEGFC expressions were compared in lymph
node metastases to investigate their respective expressions. The study revealed that despite
PD-1 expression being correlated with a higher survival rate, VEGFA was connected to
the worse prognosis. However, the immunotherapy linkage was not investigated in this
case [85]. Our data indicate that an activation of the VEGFA-VEGFR2 pathway can not
only be associated with the aggressive behavior of the tumor, but also with the lack of
efficient response to immunotherapy. Currently, there are VEGFA blockers used in anti-
cancer therapies. In lung cancer, the application of the anti-angiogenic drugs is a potential
choice [86]. The humanized anti-VEGF monoclonal antibody (bevacizumab, Avastin) is the
first-line treatment in metastatic colorectal cancer and has already been approved by the
FDA [87]. These results raise questions about the role of the VEGFA blockers in the case of
melanoma.

In connection with the VEGFA-VEGFR2 pathway, the nitric oxide synthase 3 (NOS3)
was also worth noting, since the NO production of this enzyme promotes the VEGF
pathway induced angiogenesis [88], tumor proliferation and progression [89]. In line with
the previous findings, the downregulation of NOS3 expression (Cox regression test p <
0.05) was found in patients with longer progression-free survival with immunotherapy
treatment (Figure 6 (2D)).

A similar tendency could be seen regarding RNA splicing. Proteins involved in RNA
splicing mechanisms were upregulated in those patients that received immunotherapy,
with a lack of tumor response to treatment (i.e., started to progress after a few months).
Among proteins with an important role in the alternative splicing processes, we can
highlight the significantly upregulated SNRPB2, SNRNP70 and SNRPA1 proteins [90]
(GO Biological Process, FDR < 0.05) (Figure S4) (Figure 6 2D). Studies have confirmed
that the abnormal expression of the splicing proteins can lead to inappropriate splicing
mechanisms, causing tumor progression [91]. Denga et al. also suggested that these
disordered splicing mechanisms could promote the loss of cell surface antigens, which
are crucial in melanoma and immune cell fusion that might contribute to immunotherapy
resistance [91]. In the clinical field, the anti-spliceosome therapies are currently debated in
their application of spliceosome machinery targeting [92]. There are several investigations
on small molecules which inhibit the steps of the splicing mechanisms, but the usefulness
and clinical safety of these approaches are still under investigation [92,93]. Our results can
support the importance of studies that identify anti-spliceosome drugs and can provide
insight into the protein mechanisms related to immunotherapy resistance.
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Figure 6. The heatmap of the treatment subgroups and the highlighted pathways. (1) Protein
and pathway expression pattern in the therapy response subgroups. (A) Heatmap of the up- and
downregulated proteins in patients with better and worse response in the immunotherapy subgroup.
(B) Heatmap of the up- and downregulated proteins in patients with better and worse response in the
targeted therapy subgroup. (2) Protein–protein interaction network of the up- and downregulated
proteins in each treatment subgroup. (C) Proteins upregulated in patients with better outcome in
the immunotherapy subgroup. The yellow color shows the extracellular matrix components, and
red indicates the components from the immune system. (D) Proteins upregulated in patients with
worse response in the immunotherapy subgroup. Proteins from the RNA processing are highlighted
in green, whereas the purple color shows the members of the VEGFA-VEGFR2 pathway. (E) Proteins
upregulated in patients with worse outcomes in the targeted therapy subgroup. The pathway analysis
highlighted the key role of proteins involved in metabolic pathways. (F) Proteins upregulated in
patients with better outcome in the targeted therapy subgroup. Multiple elements of RNA processing
can be detected. The list of proteins involved in the aforementioned pathways is given in the
Supplementary Document S1.
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3.8.2. Proteins and Pathways Indicating Better Outcome in the
Immunotherapy-Treated Subgroup

We also identified proteins that are potential predictors of improved response to im-
munotherapy (Figure 6 (2C)). In this subgroup of proteins, the stroma-induced signatures
and the components of the immune system were significantly overrepresented. In the
subgroup with better response to immunotherapy, the significantly upregulated proteins
and pathways were enriched in functions such as neutrophil degranulation, complement
cascade, B-cell differentiation, neutrophil-mediated immunity, extracellular (EC) organiza-
tion, ECM–receptor interaction, (for example, ARGN protein), cell adhesion (for instance,
ICAM2 protein), integrin cell surface interactions and the PI3K-Akt pathway, the com-
ponents of which are related to cell adhesion (represented by proteins such as COL4A2
and COL6A2) (KEGG pathways, GO biological processes, FDR < 0.05) (Figure 6 (2C)). In
our study, those proteins that were incorporated in the neutrophil degranulation, such
as proteinase 3 (PRTN3) [94,95], showed an upregulated pattern aligned with the slow
and late development of the progressive behavior of the tumor with a better outcome.
In agreement with our results, Babačić et al. revealed that during anti-PD-1-R therapy,
increased neutrophil degranulation was detected in the plasma and consequently the neu-
trophil to lymphocyte ratio was correlated to the longer overall survival in this in-depth
plasma proteomics study [96]. Besides the immune response, the function of the EC orga-
nization in the tumor microenvironment is not negligible. There are several studies that
highlight the coupled functions of ECM and the immune system against melanoma. For
instance, in a recent study, Fejza et al. presented that the ECM proteins are found to be
associated with the efficacy of the PD-1 treatments [97]. Interestingly, in our study, the EC
proteins were upregulated, mostly in cell adhesion components, in the late progressive
phase of the tumor development and linked to the longer survival rate as well as the
response to immunotherapy. Furthermore, the ECM serves as a basis of the pre-metastatic
niche, which is a new and unidentified target regarding the anti-cancer therapies. A recent
study summarized those mechanisms that can be crucial in preventing the development
of “the metastatic soils” leading to arrest of the tumor invasion [98]. For instance, the
prevention of EC vesicles such CXCR2 and CXCR4 inhibitors, vascular stabilization and
the immunomodulation can lead to the demolition of the complicated mechanisms in the
stroma signature [98]. Further investigation is needed to strengthen the role of both the
ECM’s and the microenvironment’s role in tumor management.

3.8.3. Proteins and Pathways Altering the Patient Outcome in the Targeted
Therapy Subgroup

The responsiveness to the targeted therapy can arise from abundant mechanisms,
such as the upregulation of survival pathways, reactivation of MAPK or the presence
of a dedifferentiated/MITFlow cell state [99]. In our functional analysis of proteins that
indicate worse prognosis by their overexpression, the metabolic pathways were signifi-
cantly enriched (KEGG pathways, GO biological processes: FDR < 0.05) (Figure 6 (2E)).
Specifically, the MAPK signaling pathway elements (such as PAK4 and MAP2K2 proteins),
mTOR pathway members (such as PTEN and DEPTOR proteins), heat shock response
proteins and cyclin-dependent kinase 5 were enriched to the same extent in the metabolic
pathways and implicated in the resistance mechanisms in the targeted therapy subgroup
in our pilot study. The reactivation of the MAPK pathway is reported in up to 60% of
melanoma [99–102], intrinsically linked to our results, in which the proteins concerning
the MAPK pathway showed upregulation in the early progressors in the targeted therapy
subgroup. Proteins pertaining to the PTEN and mTOR signaling pathways, also implicated
worse outcomes during the administration of targeted therapy. These findings correspond
to several studies, demonstrating that the activation of mTOR accelerates the prolifera-
tion and survival mechanisms of the melanoma cell, thus leading to resistance to BRAF
inhibitors [99,103,104]. Genetic alterations of PTEN can be found in 30% of melanomas and
also are associated with the BRAF V600E mutations [99,105–107]. As a consequence of these
genetic changes, the upregulation of the PI3K-PTEN-Akt might promote the resistance
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mechanisms to targeted therapies in some cases [108]. Intriguingly, in our patient cohort,
the PTEN expression pattern was also the strongest in three patients whose tumor pro-
gressed in five months alongside targeted therapy. Clinicopathologic similarities were also
observed in these three cases. The Breslow level of these primary melanomas were more
than 4 mm with histopathologic classification of pT4 (AJCC8). All of these were nodular
melanomas with a short progression-free survival. The behavior of these three melanomas
can be described as aggressive in parallel with the fast progression rate throughout the
therapy. These mechanisms may contribute to the complicated resistance mechanisms
in melanoma during treatments and to ascertaining the hidden effect of the metabolic
pathways. To verify these results, further investigations including a larger patient cohort
are needed.

In the functional analysis of predictive proteins providing better response to targeted
therapy, we found significantly up- and downregulated pathways such as mRNA process-
ing, RNA degradation, metabolism of RNA and proteins referring to spliceosomes (KEGG
pathways, GO biological processes, FDR < 0.05) (Figure 6 2F). Intriguingly, the RNA splic-
ing mechanisms were also observed in the analysis of the immunotherapy subgroup, but
there, activation of these processes was linked to worse prognosis. Our data thus suggests
the ambivalent role the RNA mechanisms potentially might have: (i) acting as predictors
of better response in patients receiving targeted therapy; (ii) predictors of worse response
in patients receiving immunotherapy. However, it is noteworthy that the proteins involved
in RNA mechanisms in the targeted therapy subgroup are not identical to the ones within
the immunotherapy subgroup. Moreover, we have seen a downregulation of proteins in
cell adhesion and ECM organization in early progressed tumors, an observation also made
in the immunotherapy subgroups. Thus, our results indicate that the overexpression of
the proteins in EC mechanisms can be associated with good prognosis and may predict a
better therapy response. These data may raise questions about the real role of the stroma in
the melanoma response during the application of certain treatments.

We acknowledge that our metastatic cohort study has some limitations, such as the
heterogeneity of the samples due to the different histotypes with varying histopathologic
characterization and clinical parameters. Furthermore, tumor content of the samples
involved in the therapy subgroups are ranging from a few percent up to 90%, which means
that significant mechanisms incorporating therapy response can be related to pathways
in stroma cells. The upregulation of EC components in some samples gives us hints
about the effect of tumor content differences on the proteomic profiles. On the other
hand, our findings can form the basis of further investigations highlighting the role of the
tumor–stroma interactions on the progression of the melanoma.

4. Conclusions

As melanoma malignum constitutes a highly heterogeneous tumor morphology, diag-
nosing and high precision accuracy are major challenges.

Beyond the well-known predictive proteins such as mutant BRAF kinase and plasma
lactate dehydrogenase (LDH), which are used on a daily basis worldwide, additional
protein biomarkers are necessary to unravel resistance mechanisms and predicting the
efficacy of the treatments.

The proteomic analysis of 90 FFPE melanoma samples revealed the discovery of
predictive protein candidates related to the progression-free survival as well as the therapy
responsiveness. The histopathologic analysis, clinical parameters of the patient cohort and
the expression pattern of the proteins were outlined. We found that certain mechanisms
and protein expressions in melanoma aligned with disease progression. For instance, in
sample clusters with enrichment for shorter survival, TRAF6, ARMC10, CDK4, ITGA5,
CAMK4 and WIPI proteins were highly expressed, and AIF1 and PPIF proteins were
lowly expressed. The outlined proteins can be further investigated for their involvement in
melanoma progression. The expression pattern of the keratinization pathways was different
in the comparison of primary and metastasis samples. Furthermore, the upregulation of
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CD46, MCM9, and TRAF1 proteins and the downregulation of proteins such as PELO and
PSMD3 was identified in connection with clinical stages (from AJCC8 stage II. to IV.).

On the basis of the therapy subgroups investigated, a new role of well recognized path-
ways and proteins in melanoma development was recognized in the therapy response. In
our findings, the VEGFA-VEGFR2 pathway (such as NOS3 protein) and RNA splicing mech-
anism were related to a worse prognosis, and neutrophil degranulation mechanisms and
extracellular matrix interactions were connected to better survival during immunotherapy
treatments. Furthermore, the upregulation of the MAPK and mTOR signaling components
(such as PTEN protein) was associated with short survival, and the significant activation
of the RNA mechanisms and stroma signature were connected to better outcome under
targeted therapy. These results elucidate new clinical avenues in the underlying molecular
mechanisms during the evolution of therapy resistance. Our findings also manifested the
essential role regarding the immune system, VEGF inhibitors, spliceosome inhibitors and
stroma targets in melanoma treatment. In the coming years, the emphasis will be on dis-
covering and developing predictive biomarkers with hidden and unpredictive melanoma
mechanisms during ongoing patient treatments, because this is a strategy to strengthen
the immunotherapy response, thereby lowering the impact of developing novel disease
mechanisms leading to tumor progression.

Taken together, a broad spectrum of mechanisms involved in tumor progression and
therapy response were demonstrated within our study, verifying the complexity of the
potentially predictive protein biomarkers in melanoma.
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Abbreviations

AIF1 apoptosis-inducing factor 1

Akt
protein kinase B (collective name of the serine/threonine-specific protein
kinases (Akt1,2,3)

ARGI1 arginase-1
ARGN isoform 6 of Agrin
ARMC10 armadillo repeat-containing protein 10
BRAF B-raf proto-oncogene, serine/threonine kinase
CAMK4 calcium/calmodulin dependent protein kinase IV
CD33 myeloid cell surface antigen CD33 (cluster of differentiation 33)
CD46 cluster of differentiation 46
CDK2 cyclin-dependent kinase 2
CHD8 Chromodomain-helicase-DNA-binding protein 8
CKIT KIT proto-oncogene, receptor tyrosine kinase
c-Myc MYC proto-oncogene, bHLH transcription factor
COL4A2 collagen type IV alpha 2 chain
COL6A2 collagen type VI alpha 2 chain
CR2 complement C3d receptor 2
CSF1R Colony stimulating factor 1 receptor
CXCR2 C-X-C motif chemokine receptor 2
CXCR4 C-X-C motif chemokine receptor 4
DEPTOR DEP domain containing mTOR interacting protein
ERK extracellular signal regulated kinases, classical MAP kinases
FCERG fusion protein erythroblast transformation specific related gene
FDR False Discovery Rate
GIMA5 GTPase IMAP family member 5
HCT-116 human colorectal carcinoma cell line
HT-29 human colon cancer cell line
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ICAM2 intercellular adhesion molecule 2
IFNγ interferon-gamma
IL-16 interleukin-16
IRE genes iron-responsive element genes
ITGA5 Integrin Subunit Alpha 5
MAPK mitogen-activated protein kinase pathway
MAP2K2 mitogen-activated protein kinase kinase 2
MAP3K7 mitogen-activated protein kinase kinase kinase 7
M4K2 mitogen-activated protein kinase kinase kinase kinase 2

MCM9
minichromosome maintenance 9 homologous recombination repair
factor

MDM2
mouse double minute 2 homolog, E3 ubiquitin-protein ligase,
proto-oncogene

MITF melanocyte inducing transcription factor
mTOR mammalian target of rapamycin
NF1 neurofibrin 1
NKAP NFkB activating protein
OXLA l-amino-acid oxidase
PAK4 P21 (RAC1) activated kinase 4
PELO pelota mRNA surveillance and ribosome rescue factor
PI3K phosphoinositide 3-kinase
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PIK3CB phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta
PPIF peptidyl-prolyl cis-trans isomerase F
PRTN3 Proteinase 3
PSMD3 proteasome 26S subunit, non-ATPase 3
PTEN phosphatase and tensin homolog
PTN1 Protein Tyrosine Phosphatase Non-Receptor Type 1
RNF114 E3 ubiquitin-protein ligase
RPS12 ribosomal protein S12
SNRNP70 small nuclear ribonucleoprotein U1 subunit 70
SNRPA1 small nuclear ribonucleoprotein polypeptide A’
SNRPB2 small nuclear ribonucleoprotein polypeptide B2
TP53 tumor protein p53
TRAF6 tumor necrosis factor receptor-associated factor 6

VEGFA
VEGFR pathway–vascular endothelial growth factor A—vascular
endothelial growth factor R pathway

WIPI1 WD repeat domain, phosphoinositide interacting 1
WNT signaling
pathway

wingless-related integration site signal pathway

WT wild type
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