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Abstract

Understanding the interaction between the valves and walls of the heart is important in assessing 

and subsequently treating heart dysfunction. This study presents an integrated model of the mitral 

valve (MV) coupled to the left ventricle (LV), with the geometry derived from in vivo clinical 

magnetic resonance images. Numerical simulations using this coupled MV-LV model are 

developed using an immersed boundary/finite element method. The model incorporates detailed 

valvular features, left ventricular contraction, nonlinear soft tissue mechanics, and fluid-mediated 

interactions between the MV and LV wall. We use the model to simulate cardiac function from 

diastole to systole. Numerically predicted LV pump function agrees well with in vivo data of the 

imaged healthy volunteer, including the peak aortic flow rate, the systolic ejection duration, and 

the LV ejection fraction. In vivo MV dynamics are qualitatively captured. We further demonstrate 

that the diastolic filling pressure increases significantly with impaired myocardial active relaxation 

to maintain a normal cardiac output. This is consistent with clinical observations. The coupled 

model has the potential to advance our fundamental knowledge of mechanisms underlying MV-LV 

interaction, and help in risk stratification and optimisation of therapies for heart diseases.
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1. Introduction

The mitral valve (MV) has a complex structure that includes two distinct asymmetric 

leaflets, a mitral annulus, and chordae tendineae that connect the leaflets to papillary 

muscles that attach to the wall of the left ventricle (LV). MV dysfunction remains a major 
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medical problem because of its close link to cardiac dysfunction leading to morbidity and 

premature mortality [1].

Computational modelling for understanding MV mechanics promises more effective MV 

repairs and replacement [2–5]. Biomechanical MV models have been developed for several 

decades, starting from the simplified two-dimensional approximation to three-dimensional 

models, and to multi-physics/-scale models [6–12]. Most previous studies were based on 

structural and quasi-static analysis applicable to a closed valve [13]; however, MV function 

during the cardiac cycle cannot be fully assessed without modelling the ventricular dynamics 

and the fluid-structure interaction (FSI) between the MV, ventricles, and the blood flow 

[13,14].

Because of the complex interactions between the MV, the sub-mitral apparatus, the heart 

walls, and the associated blood flow, very few modelling studies have been carried out that 

integrate the MV and ventricles in a single model [15–17]. Kunzelman, Einstein, and co-

workers first simulated normal and pathological mitral function [18–20] with FSI using LS-

DYNA (Livermore Software Technology Corporation, Livermore, CA, USA) by putting a 

MV into a straight tube. Using a similar modelling approach, Lau et al. [21] compared MV 

dynamics with and without FSI, and they found that valvular closure configuration is 

different when using the FSI MV model. Similar findings were reported by Toma et al. [22]. 

Over the last few years, there have also been a number of FSI valvular models using 

immersed boundary (IB) method to study the flow across the MV [23–25]. In a series of 

studies, Toma et al. [22,26,27] developed an FSI MV model based on in vitro MV 

experimental system to study the function of the chordal structure, and good agreement was 

found between the computational model and in vitro experimental measurements. However, 

none of the aforementioned MV models accounted for the MV interaction with the LV 

dynamics. Indeed, Lau et al. [21] found that even with a fixed U-shaped ventricle, the flow 

pattern was substantially different from that estimated using a tubular geometry. Despite the 

advancements in computational modelling of individual MV [12,13] and LV models [28–

30], it remains challenging to develop an integrated MV–LV model that includes the strong 

coupling between the valvular deformation and the blood flow. Reasons for this include 

limited data for model construction, difficult choices of boundary conditions, and large 

computational resources required by these simulations.

Wenk et al. [15] reported a purely structural MV-LV model using LS-DYNA that included 

the LV, MV, and chordae tendineae. This model was later extended to study MV stress 

distributions using a saddle-shaped and asymmetric mitral annuloplasty ring [16]. A more 

complete whole-heart model was recently developed using a human cardiac function 

simulator in the Dassault Systèmes Living Heart project [17], which included four 

ventricular chambers, cardiac valves, electrophysiology, and detailed myofibre and collagen 

architecture. Using the same simulator, effects of different mitral annulus ring were studied 

by Rausch et al. [31], However, this simulator does not account for detailed FSI.

The earliest valve-heart coupling model that includes FSI is credited to Peskin and 

McQueen’s pioneering work in the 1970s [32–34] using the classical IB approach [35]. 

Using this same method, Yin et al. [36] investigated fluid vortices associated with the LV 
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motion as a prescribed moving boundary. Recently, Chan-dran and Kim [37] reported a 

prototype FSI MV dynamics in a simplified LV chamber model during diastolic filling using 

an immersed interface-like approach. One of the key limitations of these coupled models is 

the simplified representation of the biomechanics of the LV wall. To date, there has been no 

work reported a coupled MV-LV model which has full FSI and based on realistic geometry 

and experimentally-based models of soft tissue mechanics.

This study reports an integrated MV-LV FSI model derived from in vivo images of a healthy 

volunteer. Although some simplifications are made, this is the first three-dimensional FSI 

MV-LV model that includes MV dynamics, LV contraction, and experimentally constrained 

descriptions of nonlinear soft tissue mechanics. This work is built on our previous models of 

the MV [24,25] and LV [29,38]. The model is implemented using a hybrid immersed 

boundary method with finite element elasticity (IB/FE) [39].

2. Methodology

2.1. MV-LV model construction

A cardiac magnetic resonance (CMR) study was performed on a healthy volunteer (male, 

age 28). The study was approved by the local NHS Research Ethics Committee, and written 

informed consent was obtained before the CMR scan. Twelve imaging planes along the LV 

outflow tract (LVOT) view were imaged to cover the whole MV region shown in Fig. 1(a). 

LV geometry and function were imaged with conventional short-axis and long-axis cine 

images. The parameters for the LVOT MV cine images were: slice thickness: 3 mm with 0 

gap; in-plane pixel size: 0.7 × 0.7 mm2; field of view: 302 × 400mm2; frame rate: 25 per 

cardiac cycle. Short-axis cine images covered the LV region from the basal plane to the 

apex, with slice thickness: 7 mm with 3 mm gap; in-plane pixel size: 1.3 × 1.3 mm2; frame 

rate: 25 per cardiac cycle.

The MV geometry was reconstructed from LVOT MV cine images at early-diastole, just 

after the MV opens. The leaflet boundaries were manually delineated from MR images, as 

shown in Fig. 1(a), in which the heads of papillary muscle and the annulus ring were 

identified as shown in Fig. 1(b). The MV geometry and its sub-valvular apparatus were 

reconstructed using SolidWorks (Dassault Systèmes SolidWorks Corporation, Waltham, 

MA, USA). Because it is difficult to see the chordal structural in the CMR, we modelled the 

chordae structure using sixteen evenly distributed chordae tendineae running through the 

leaflet free edges to the annulus ring, as shown in Fig. 1(c), following prior studies [24,25]. 

In a similar approach to the MV reconstruction, the LV geometry was reconstructed from the 

same volunteer at early-diastole by using both the short-axis and long-axis cine images 

[29,40]. Fig. 1(d) shows the inflow and outflow tracts in one MR image. The LV wall was 

assembled from the short-/long-axis MR images (Fig. 1(e)) to form the three dimensional 

reconstruction (Fig. 1(f)). The LV model was divided into four regions: the LV wall, the 

valvular region, and the inflow and the outflow tracts, as shown in Fig. 1(g).

The MV model was mounted into the inflow tract of the LV model according to the relative 

positions derived from the MR images in Fig. 1(g). The left atrium was not reconstructed but 

modelled as a tubular structure, and the gap between the MV annulus ring and the LV model 
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was filled using a housing disc structure. A three-element Windkessel model was attached to 

the outflow tract of the LV model to provide physiological pressure boundary conditions 

when the LV is in systolic ejection [40]. The chordae were not directly attached to the LV 

wall since the papillary muscles were not modelled, as in our previous study [25]. The 

myocardium has a highly layered myofibre architecture, which is usually described using a 

fibre-sheet-normal (f, s, n) system. A rule-based method was used to construct the myofibre 

orientation within the LV wall. The myofibre angle was assumed to rotate from −60° to 60° 

from endocardium to epicardium, represented by the red arrows in Fig. 1(h). In a similar 

way, the collagen fibres in the MV leaflets were assumed to be circumferentially distributed, 

parallel along the annulus ring, represented by the yellow arrows in Fig. 1(h).

2.2. IB/FE framework

The coupled MV-LV model employs an Eulerian description for the blood, which is 

modelled as a viscous incompressible fluid, along with a Lagrangian description for the 

structure. The fixed physical coordinates are x = (x1,x2,x3) ∈ Ω, and the Lagrangian 

reference coordinate system is X = (X1,X2,X3) ∈ U. The exterior unit normal along ∂U is 

N(X). Let χ(X, t) denote the physical position of any material point X at time t, so that χ (U, 

t) = Ωs (t) is the physical region occupied by the immersed structure. The IB/FE formulation 

of the FSI system reads

ρ ∂u
∂t (x, t) + u(x, t) ⋅ ∇u(x, t) = − ∇ p(x, t) + μ∇2u(x, t) + fs(x, t), (1)

∇ ⋅ u(x, t) = 0, (2)

fs(x, t) = ∫
U

∇ ⋅ ℙs(X, t) δ(x − χ(X, t)) dX − ∫
∂U

ℙs(X, t)N(X) δ(x − χ(X, t)) dA(X), (3)

∂χ
∂t (X, t) = ∫

Ω
u(x, t)δ(x − χ(X, t)) dx, (4)

where ρ is the fluid density, μ is the fluid viscosity, u is the Eulerian velocity, p is the 

Eulerian pressure, and fs is the Eulerian elastic force density, which is determined from the 

deformed immersed structure and its active contraction. Note the IB formulation employs a 

common momentum equation for both the fluid and the solid, in which the additional solid 

stresses are accounted for by fs in Eq. (1). Interactions between the Lagrangian and Eulerian 

fields are achieved by integral transforms with a Dirac delta function kernel δ(x)[35], in Eqs. 

(3) and (4). Different from the classical IB approach [35], here the elastic force density fs is 

determined from the first Piola-Kirchoff stress tensor ℙs. This allows the solid deformations 
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to be described using a nonlinear hyperelastic constitutive law; see Section 2.3 below. For 

more details of the hybrid IB/FE framework, readers are referred to the paper by Griffith and 

Luo [39].

2.3. Soft tissue mechanics

The total Cauchy stress (σ) in the coupled MV-LV system is

σ(x, t) = σf(x, t) + σs(x, t)  for x ∈ Ωs,
σf(x, t)  otherwise, 

(5)

where σf is the fluid-like stress tensor, defined as

σf(x, t) = − p𝕀 + μ ∇u + (∇u)T . (6)

σs is the solid stress tensor obtained from the nonlinear soft tissue constitutive laws. The first 

Piola-Kirchhoff stress tensor ℙs in Eq. (3) is related to σs through

ℙs = Jσs𝔽−T, (7)

in which 𝔽 = ∂χ/ ∂X is the deformation gradient and J = det(𝔽).

In the MV-LV model, we assume the structure below the LV base is contractile (Fig. 1(g)), 

the regions above the LV basal plane, including the MV and its apparatuses, are passive. 

Namely,

ℙs = ℙp + ℙa  below the basal plane,
ℙp  above the basal plane,

(8)

where ℙa and ℙp are the active and passive Piola-Kirchhoff stress tensors, respectively. The 

MV leaflets are modelled as an incompressible fibre-reinforced material with the strain 

energy function

WMV = C1 I1 − 3 +
av
2bv

exp bv max If
c, 1 − 1 2 − 1 , (9)

in which I1 = trace(ℂ) is the first invariant of the right Cauchy-Green deformation tensor 

ℂ = 𝔽T𝔽 , If
c = f0

c ⋅ ℂf0
c  is the squared stretch along the collagen fibre direction, and f0

c

denotes the collagen fibre orientation in the reference configuration. The max (•) function 

ensures the embedded collagen network only bears loads when stretched, but not in 
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compression. C1, av, and bv are material parameters adopted from a prior study [25] and 

listed in Table 1. The passive stress tensor ℙp in the MV leaflets is then

ℙp =
∂WMV

∂𝔽 − C1𝔽−T + βs log I3 𝔽−T, (10)

where I3 = det(ℂ), and βs is the bulk modulus for ensuring the incompressibility of immersed 

solid, and the pressure-like term C1𝔽−T ensures the elastic stress response is zero when 

𝔽 = 𝕀.

We model the chordae tendineae as a neo-Hookean material,

Wchordae  = C I1 − 3 , (11)

where C is the shear modulus. We further assume C is much larger in systole when the MV 

is closed than in diastole when the valve is opened to account for the effects of papillary 

muscle contraction. Values of C are listed in Table 1. ℙp for the chordae tendineae is 

similarly derived as in Eq. (10).

The passive response of the LV myocardium is described using the Holzapfel-Ogden model 

[41],

Wmyo = a
2bexp b I1 − 3 + ∑

i = f, s

ai
2bi

exp bi max I4i, 1 − 1 2 − 1

+
afs
2bfs

exp bfs I8fs
2 − 1 ,

(12)

in which a, b, af, bf, as, bs, afS, bfs are the material parameters, I4f, I4sand I8fs are the strain 

invariants related to the myofibre orientations. Denoting the myofibre direction in the 

reference state f0 and the sheet direction by s0 we have

I4f = f0 ⋅ ℂf0 , I4s = s0 ⋅ ℂs0 ,  and I8fs = f0 ⋅ ℂs0 . (13)

The myocardial active stress is defined as

ℙa = J T 𝔽 f0 ⊗ f0, (14)

where T is the active tension described by the myofilament model of Niederer et al. [42], 

using a set of ordinary differential equations involving the intracellular calcium transient 

(Ca2+), sarcomere length, and the active tension at the resting sarcomere length (Treq).
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The constitutive parameters in Eqs. (9), (11) and (12), summarised in Table 1, are obtained 

from our previous studies [25,29] which showed that the simulated MV and LV dynamics 

matched the in vivo measurements well. In the active contraction model (Eq. (14)), we 

adopted the same parameters as used by Niederer et al. [42], except that Treq is set to 225 

kPa to match the contractions observed in the imaged volunteer.

2.4. Boundary conditions and model implementation

Because only the myocardium below the LV basal plane contracts, we fix the LV basal plane 

along the circumferential and longitudinal displacements, but allow the radial expansion. 

The myocardium below the LV basal plane is left free to move. The valvular region is 

assumed to be much softer than the LV region. In diastole, a maximum displacement of 6 

mm is allowed in the valvular region using a tethering force. In systole, the valve region is 

gradually pulled back to the original position. The inflow and outflow tracts are fixed. 

Because the MV annulus ring is attached to a housing structure which is fixed, no additional 

boundary conditions are applied to the MV annulus ring. Fluid boundary conditions are 

applied to the top planes of the inflow and outflow tracts. The function of the aortic valve is 

simply modelled as: the aortic valve is either fully opened or fully closed, determined by the 

pressure difference between the values inside the LV chamber and the aorta. After end-

diastole, the LV region will contract simultaneously triggered by a spatially homogeneously 

prescribed intracellular Ca2+ transient [29], as shown in Fig.3. The flow boundary conditions 

in a cardiac cycle are summarised below.

• Diastolic filling: A linearly ramped pressure from 0 to a population-based end-

diastolic pressure (EDP=8 mmHg) is applied to the inflow tract over 0.8 s, which 

is slightly longer than the actual diastolic duration of the imaged volunteer (0.6 

s). In diastole about 80% of diastolic filling volume is due to the “sucking” effect 

of the left ventricle in early-diastole [43]. This negative pressure field inside the 

LV cavity is due to the myocardial relaxation. We model this “sucking” effect 

using an additional pressure loading applied to the endocardial surface, denoted 

as Pendo, which is linearly ramped from 0 to 12 mmHg over 0.4 s, and then 

linearly decreased to zero at end-diastole. The value of Pendo is chosen by 

matching the simulated end-diastolic volume to the measured data from CMR 

images. Blood flow is not allowed to move out of the LV cavity through the 

inflow tract in diastole. Zero flow boundary conditions are applied to the top 

plane of the outflow tract.

• Iso-volumetric contraction: Along the top plane of the inflow tract, the EDP 

loading is maintained, and the flow is controlled by the MV leaflet dynamics. 

Note during the iso-volumetric contraction, regurgitation may occur due to the 

MV closure action and the dysfunction of the MV apparatus. However, a small 

backflow before the MV is fully closed may be deemed normal [44]. Zero flow 

boundary conditions are retained for the outflow tract. The duration of the iso-

volumetric contraction is determined by the myocardial contraction and ends 

when the aortic valve opens. The aortic valve opens when the LV pressure is 

higher than the pressure in the aorta, which is initially set to be the cuff-

measured diastolic pressure in the brachial artery, 85 mmHg.
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• Systolic ejection: When the aortic valve opens, a three-element Windkessl 

model is coupled to the top plane of the outflow tract to provide afterload. The 

volumetric flow rates across the top plane of the outflow tract is calculated from 

the three-dimensional MV-LV model, and fed into the Windkessel model [45], 

which returns an updated pressure for the outflow tract in the next time step. The 

systolic ejection phase ends when the left ventricle cannot pump any flow 

through the outflow tract, and the Windkessel model is detached.

• Iso-volumetric relaxation: Zero flow boundary conditions are applied to both 

the top planes of the outflow and inflow tracts until the total cycle ends at 1.2 s.

The coupled MV-LV model is immersed in a 17 cm × 16 cm × 16 cm fluid box. A basic time 

step size Δt0 = 1.22 × 10−4 s is used in the diastolic and relaxation phases, a reduced time 

step size (0.25 Δt0) is used in the early systole with a duration of 0.1 s, and an even smaller 

time step of 0.125 Δt0 is used in the remainder of the systolic phase. Because explicit time 

stepping is used in the numerical simulations [39], we need to use a time step size small 

enough to avoid numerical instabilities, particularly during the systolic phase to resolve the 

highly dynamic LV deformation.

The MV-LV model is implemented using the open-source IBAMR software framework 

(https://github.com/IBAMR/IBAMR), which provides an adaptive and distributed-memory 

parallel implementation of the IB methods. IBAMR leverages functionality provided by 

other freely available software libraries, including SAMRAI (https://computation.llnl.gov/

casc/SAMRAI), libMesh (https://libmesh.github.io), PETSc (http://www.mcs.anl.gov/petsc), 

and hypre (http://www.llnl.gov/CASC/hypre). All simulations were carried out on a Linux 

workstation at the University of Glasgow with 10 Intel(R) Xeon(R) CPU cores (2.65 GHz) 

and 32 GB RAM. The simulation time for one cardiac cycle is around 240 h (10 days).

3. Results

3.1. Pump function

Fig. 2 shows the computed volumetric flow rates through the MV and the AV from 

beginning of diastole to end-systole. In diastole, the volumetric flow rate through the MV 

linearly increases with increased pressure loading in the endocardial surface, with a 

maximum value of 210mL/s at 0.4 s. Diastolic filling is maintained by the increased pressure 

in the inflow tract, but with decreased flow rates until end of diastole at 0.8 s. The negative 

flow rate in Fig. 2 indicates the flow is entering the LV chamber. After end-diastole, the 

myocardium starts to contract, and the central LV pressure increases until it exceeds the 

aortic pressure (initially set to be 85 mmHg) at 0.857 s. During iso-volumetric contraction, 

the MV closes with a total closure regurgitation flow of 7.2 mL, around 10% of the total 

filling volume, which is comparable to the value reported by Laniado et al. [44]. There is 

only minor regurgitation across the MV during systolic ejection after the iso-volumetric 

contraction phase. Blood is then ejected out of the ventricle through the AV, and the flow 

rate through the AV during systole reaches a peak value of 468 mL/s (Fig. 2) (the CMR 

measured value is 498 mL/s). The total ejection duration is 243 ms (the measured duration is 

300 ms) with a stroke volume of 63.2 mL. The total blood ejected out of the LV chamber, 
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including the regurgitation through the MV, is 72.1 mL. This corresponds to an ejection 

fraction of 51%, and is close to the CMR measured value of 57%.

Fig. 3 shows the profiles of the normalised intracellular Ca2+, LV cavity volume, central LV 

pressure, and the average myocardial active tension from diastole to systole. Until mid-

diastole (0 s to 0.56 s), the central LV pressure is negative, and the associated diastolic filling 

volume is around 65 mL, which is 90% of the total diastolic filling volume. In late-diastole, 

the LV pressure becomes positive. There is a delay between the myocardial active tension 

and the intracellular Ca2+ profile, but the central LV pressure follows the active tension 

closely throughout the cycle as shown in

Fig. 3. The peak systolic LV pressure is 162 mmHg, comparable to the cuff-measured peak 

blood pressure 150 mmHg.

3.2. Intracardiac flow pattern

Fig. 4(a–d) shows the streamlines at early-diastolic filling, late-diastolic filling, when the 

MV is closing (iso-volumetric contraction), and mid-systolic ejection when the left ventricle 

is ejecting, During the diastolic filling (Fig. 4(a)), the blood flows directly through the MV 

into the LV chamber towards the LV apex, in late-diastole in Fig. 4(b), the flow pattern 

becomes highly complex. When iso-volumetric contraction ends, the MV is pushed back 

towards the left atrium. In mid-systole, the blood is pumped out of the LV chamber through 

the aortic valve into the systemic circulation, forming a strong jet as shown in Fig. 4(d).

3.3. MV and myocardial dynamics

Fig. 5 shows the deformed MV leaflets along with the corresponding CMR cine images at 

early-diastole (the reference state), end-diastole, and mid-systole. In general, the in vivo MV 

and LV dynamics from diastole to systole are qualitatively captured well by the coupled MV-

LV model. However, a discrepancy is observed during the diastolic filling, when the MV 

orifice in the model is not opened as widely as in the CMR cine image (Fig. 5(b)). In 

addition, the modelled MV leaflets have small gaps near the commissure areas even in the 

fully closure state. This is partially caused by the finite size of the regularised delta function 

at the interface and uncertainties in MV geometry reconstruction using CMR images.

The LV systolic strain related to end-diastole is shown in Fig. 6(a), which is negative 

throughout most of the region except near the basal plane, where the LV motion is 

artificially constrained in the model. The average myocardial strain along myofibre direction 

is −0.162± 0.05, which lies in the normal range of healthy subjects [46]. Fig. 6(b) is the fibre 

strain in the MV leaflets at end-diastole, the leaflets are mostly slightly stretched during the 

diastolic filling. In systole, because of the much higher pressure in the LV, the leaflets are 

pushed towards the left atrium side as shown in Fig. 6(c). Near the leaflet tip and the 

commissiour areas, the leaflets are highly compressed, while in the trigons near the annulus 

ring, the leaflet is stretched.
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3.4. Effects of Pendo on pump function

From Fig. 3, it is clear that that the applied endocardial pressure (Pendo) creates a negative 

pressure inside the LV chamber, similar to the effects of the myocardial active relaxation. 

We further investigate how Pendo affects the MV-LV dynamics by varying its value from 8 

mmHg to 16 mmHg, and the effects without Pendo but with an increased EDP from 8 mmHg 

to 20 mmHg. We observe that with an increased Pendo, the peak flow rate across the MV 

during the filling phase becomes higher with more ejected volume through the aortic valve. 

We also have a longer ejection duration, shorter iso-volumetric contraction time, and higher 

ejection fraction as a result of increasing Pendo. On the other hand, if we do not apply Pendo, 

a much greater and non-physiological EDP is needed for the required ejection fraction. For 

example, with EDP=8 mmHg, the ejection fraction is only 29%. Only when EDP=20 

mmHg, the pump function is comparable to the case with EDP=8 mmHg and Pendo = 16 

mmHg. These results are summarised in Table 2.

4. Discussion

This study demonstrates the feasibility of integrating a MV model with a LV model from a 

healthy volunteer based on in vivo CMR images. This is the first physiologically based MV-

LV model with fluid-structure interaction that includes nonlinear hyperelastic constitutive 

modelling of the soft tissue. The coupled MV-LV model is used to simulate MV dynamics, 

LV wall deformation, myocardial active contraction, as well as intraventricular flow. The 

modelling results are in reasonable quantitative agreement with in vivo measurements and 

clinical observations, such as the peak aortic flow rate (468mL/s vs. 498mL/s), the ejection 

duration (243 ms vs. 300 ms), peak cuff-measured systolic pressure (162 mmHg vs. 150 

mmHg), and LV ejection fraction (51% vs. 57%). Note that the above comparisons are made 

with computational vs. imaged values.

Diastolic heart failure is usually associated with impaired myocardial relaxation and 

increased filling pressure [47,48]. In this study, we model the effects of myocardial 

relaxation by applying an endocardial surface pressure Pendo. Specifically, we can enhance 

or suppress the myocardial relaxation by adjusting Pendo. Our results in Table 2 show that, 

with an enhanced myocardial relaxation, say, when Pendo ≥ 12 mmHg, there is more filling 

during diastole, compared to the cases when Pendo < 12 mmHg under the same EDP. This in 

turn gives rise to higher ejection fraction and stroke volume. However, if myocardial 

relaxation is suppressed, diastolic filling is less efficient, with subsequently smaller ejection 

fraction and stroke volume. In the extreme case, when the myocardial relaxation is entirely 

absent, chamber volume increases by only 29.5 mL, and ejection fraction decreases to 29%. 

To maintain stroke volume obtained for Pendo=12 mmHg, EDP needs to be as high as 20 

mmHg. Indeed, increased EDP resulted from an impaired myocardial relaxation has been 

reported in a clinical study by Zile et al. [48]. A higher EDP indicates the elevated filling 

pressure throughout the refilling phase. Increased filling pressure can help to maintain a 

normal filling volume and ejection fraction, but runs the risks of ventricular dysfunction in 

the longer term, because pump failure will occur if no other compensation mechanism 

exists.
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During diastole, the MV-LV model seems to yield a smaller orifice compared to the 

corresponding CMR images. In our previous study [25], the MV was mounted in a rigid 

straight tube, the peak diastolic filling pressure is around 10 mmHg, and the peak flow rate 

across the MV is comparable to the measured value (600 mL/s). While in this coupled MV-

LV model, even though with additional Pendo, the peak flow rate (200mL/s) is much less than 

the measured value. One reason is because of the extra resistance from the LV wall, which is 

absent in the MV-tube model [25]. The diastolic phase can be divided into three phases [43]: 

the rapid filling, slow filling, and atrial contraction. During rapid filling, the transvalvular 

flow is resulted from myocardial relaxation (the “sucking” effect), which contributes to 80% 

of the total transvalvular flow volume. During slow filling and atrial contraction, the left 

atrium needs to generate a higher pressure to provide additional filling. In the coupled MV-

LV model, the ramped pressure in the top plane of the inflow tract during late-diastole is 

related to the atrial contraction, and during this time, only 10% of the total transvalvular 

flow occurs. However, the peak flow rate in rapid filling phase is much lower compared to 

the measured value, which suggests that the myocardial relaxation would be much stronger.

In a series of studies based on in vitro μCT experiments, Toma et al. [22,26,27] suggested 

that MV models with simplified chordal structure would not compare well with 

experimental data, and that a subject-specific 3D chordal structure is necessary. This may 

explain some of the discrepancies we observe here. A simplified chordal structure is used in 

this study because we are unable to reconstruct the chordal structure from the CMR data. CT 

imaging may allow the chordae reconstruction but it comes with radiation risk. Patient-

specific chordal structure in the coupled MV-LV model would require further improvements 

of in vivo imaging techniques.

Several other limitations in the model may also contribute to the discrepancies. These 

include the uncertainty of patient-specific parameter identification, the uncertainty in MV 

geometry reconstruction from CMR images, the passive response assumption around the 

annulus ring and the valvular region of the LV model, and the lack of pre-strain effects. 

Studies addressing these issues are already under way. We expect that further improvement 

in personalised modelling and more efficient high performance computing would make the 

modelling more physiologically detailed yet fast enough for applications in risk stratification 

and optimisation of therapies in heart diseases.

5. Conclusion

Interaction between the mitral valve and the ventricular wall plays an essential role in 

cardiac pump function. In this study, we have developed a first fully coupled MV-LV model 

that includes fluid-structure interaction as well as soft tissue mechanics with model 

parameters determined from in vivo image data. The model geometry is derived from in vivo 

magnetic resonance images of a healthy volunteer, and incorporates three-dimensional finite 

element representations of the MV leaflets, sub-valvular apparatus, and the LV geometry. 

Fibre-reinforced hyperelastic constitutive laws are used to describe the passive response of 

the soft tissues, and a myofilament model is used to model the myocardial active 

contraction. Our results show that the developed MV-LV model can simulate MV-LV 

interaction with good agreements, including the peak aortic flow rate, the peak systemic 
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pressure, the systolic ejection duration and the LV ejection fraction, with in vivo 

measurements despite several modelling limitations. We further find that with impaired 

myocardial active relaxation, the diastolic filling pressure needs to increase significantly in 

order to maintain a normal cardiac output, which is consistent with clinical observations in 

patients with impaired myocardial relaxation. This model thereby represents a step towards a 

whole-heart multiphysics modelling with a target for clinical applications.
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Fig. 1. 
The CMR-derived MV-LV model, (a) The MV leaflets were segmented from a stack of MR 

images of a volunteer at early-diastole, (b) positions of the papillary muscle heads and the 

annulus ring, (c) reconstructed MV geometry with chordae, (d) an MR image showing the 

LV and location of the outflow tract (AV) and inflow tract (MV), (e) the LV wall delineation 

from short and long axis MR images, (f) the reconstructed LV model, in which the LV model 

is divided into four part: the LV region bellow the LV base, the valvular region, and the 

inflow and outflow tracts, (g) the coupled MV LV model, and (h) the rule-based fibre 

orientations in the LV and the MV. (For interpretation of the references to colour in the text, 

the reader is referred to the web version of this article.)
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Fig. 2. 
Flow rates across the AV and MV from diastole to systole. Diastolic phase 0 s to 0.8 s; 

systolic phase: 0.8 s and onwards. Positive flow rate indicates the blood flows out of the LV 

chamber.
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Fig. 3. 
Normalised intracellular Ca2+, LV cavity volume, central LV pressure, and average 

myocardial active tension. All curves are normalised to their own maximum values, which 

are: 1 μMol for Ca2+, 145 mL for LV cavity volume, 162 mmHg for central LV pressure, and 

96.3 kPa for average myocardial active tension.
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Fig. 4. 
Streamlines in the MV-LV model at early-diastolic filling (a), late-diastolic filling (b), when 

isovolumetric contraction ends (c), and at the mid-systole. Streamline are coloured by 

velocity magnitude, the LV wall and MV are coloured by the displacement magnitude. Red: 

high; blue: low. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 5. 
Comparisons between the MV and LV structures at (a) reference configuration, (b) end-

diastole, and (c) end-systole, and the corresponding CMR cine images (left). Coloured by 

the displacement magnitude. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 6. 
Distributions of fibre strain in the left ventricle at end-systole (a), in the MV at end-diastole 

(b) and end-systole (c). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.)
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