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Abstract ATP, acting on P2X7 receptors, stimulates changes
in intracellular calcium concentrations, maturation, and
release of interleukin-1β (IL-1β), and following prolonged
agonist exposure, cell death. The functional effects of P2X7

receptor activation facilitate several proinflammatory pro-
cesses associated with arthritis. Within the nervous system,
these proinflammatory processes may also contribute to the
development and maintenance of chronic pain. Emerging
data from genetic knockout studies have indicated specific
roles for P2X7 receptors in inflammatory and neuropathic
pain states. The discovery of multiple distinct chemical series
of potent and highly selective P2X7 receptor antagonists
have enhanced our understanding of P2X7 receptor pharma-
cology and the diverse array of P2X7 receptor signaling
mechanisms. These antagonists have provided mechanistic
insight into the role(s) P2X7 receptors play under patho-
physiological conditions. In this review, we integrate the
recent discoveries of novel P2X7 receptor-selective antago-
nists with a brief update on P2X7 receptor pharmacology and
its therapeutic potential.
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Introduction

P2X7 receptors belong to the family of ATP-sensitive
ionotropic P2X receptors that are composed of seven
homomeric receptor subtypes (P2X1–P2X7) [1]. P2X7 recep-
tors are unique among the P2X receptor family since they
are activated by high concentrations of ATP (>100 μM) [2].
The P2X7 subunit, previously termed the P2Z receptor [3],
was initially cloned from rat [4] and human brain [5], and
from human macrophages [6]. P2X7 receptors are selectively
expressed on cells of hematopoietic lineage including mast
cells, lymphocytes, erythrocytes, fibroblasts, and peripheral
macrophages [4]. Within the CNS, functional P2X7 receptors
are localized on microglia and Schwann cells, as well as on
astrocytes [5, 7]. The existence of functional P2X7 receptors
on peripheral or central neurons remains controversial due to
the poor specificity of both antibodies and ligands targeting
the rat P2X7 receptor [8]. In rat peripheral sensory ganglia
(dorsal root), P2X7 receptors appear to be selectively
localized on glial cells, but not neurons [9].

P2X7 receptor-mediated changes in intracellular potassi-
um concentrations lead to the activation of caspase-1 and
the rapid maturation and release of the proinflammatory
cytokine, interleukin-1β (IL-1β) [10–13]. Increased IL-1β
concentrations, in turn, trigger the induction of procaspase-I
[14], nitric oxide synthase, cycloxygenase-2, and tumor
necrosis factor-α (TNF-α) [15–18]. Activation of caspase-3
has also been linked to P2X7 receptor activation and may
underlie receptor-associated cytolytic mechanisms includ-
ing pore formation [19]. Inhibitors of caspase-1 and
caspase-3 effectively block P2X7 receptor-mediated IL-1β
release and Yo-Pro uptake, respectively [20]. Activation of
P2X7 receptors has also been associated with other
downstream signaling pathways including phospholipase
D (PLD) [21], phospholipase A2 (PLA2), nuclear factor

Purinergic Signalling (2009) 5:63–73
DOI 10.1007/s11302-008-9110-6

W. A. Carroll (*) :D. Donnelly-Roberts :M. F. Jarvis
Abbott Laboratories, Neuroscience Research,
Global Pharmaceutical Research and Development,
R47W, AP10, 100 Abbott Park Road,
Abbott Park, IL 60064–6101, USA
e-mail: william.a.carroll@abbott.com



kappa B (NF-κB) [22, 23], and mitogen-activated protein
kinases (MAPKs) [22, 24–27].

Unlike other members of the P2 receptor superfamily,
homomeric P2X7 receptors are activated by high concen-
trations of ATP (>100 μM) and 2′, 3′-O-(4-benzoylbenzoyl)-
ATP (BzATP) which has significantly greater potency
(EC50= 20 μM) than ATP (EC50>100 μM) [2]. It has been
demonstrated that the human receptor has a lower sensitivity
to agonists than the rat receptor [6]. Originally, functional
P2X7 receptors were thought to exist as homomers; however,
recent evidence has emerged indicating that P2X7 receptors
may form functional heteromeric combinations with P2X4

receptors [28, 29].
There is growing evidence to indicate a pathophysiolog-

ical role for P2X7 receptors in inflammatory responses [13].
For example, detailed analysis of an independently gener-
ated P2X7 receptor knockout (KO) mouse revealed that
P2X7 (-/-) mice show a disruption of ATP-induced
processing of pro-IL-1β in macrophages [12]. Using a
monoclonal antibody-induced model of collagen arthritis,
these investigators also demonstrated that P2X7 (-/-) mice
show a decreased incidence and severity of arthritis in this
model as compared to wild-type control mice [30].
Although published data are lacking, a P2X7 antagonist
from Astra-Zeneca, AZ9056 (structure not disclosed), is
reportedly under clinical development for the treatment of
rheumatoid arthritis and inflammatory bowel disease [31].

A more recent study has demonstrated that P2X7

knockout mice show reduced pain sensitivity following
both complete Freund’s adjuvant-induced inflammation and
partial injury of the sciatic nerve [32]. These data were
consistent with the mechanistic role of P2X7 receptors in
modulating IL-1β release and the ability of IL-1β to alter
pain sensitivity in experimental models. It has been shown,
for example, that increased IL-1 levels are associated with
enhanced nociceptive signaling in a concentration-related
fashion [33, 34]. The P2X7 receptor has also been linked
with release of the excitatory neurotransmitter glutamate,
well-known for its involvement in pain transmission. In
hippocampal slices from P2X7 KO mice, ATP-evoked
release of [3H]glutamate was virtually absent, in contrast
to the robust neurotransmitter release observed with wild-
type controls [35]. Under electrical stimulation, [3H]
glutamate release was also significantly attenuated in the
KO animals, although some level of residual release was
present. These observations are consistent with results
implicating the participation of P2X7 in excitatory amino
acid release from murine astrocytes [36]. The potential role
of P2X7 in modulating glutamate release thus provides an
additional rationale for the reduced nociceptive responses
of the P2X7 KO mice under chronic inflammation or nerve
injury conditions. In view of the participation of P2X7 in
the release of IL-1β and glutamate, the localization of P2X7

receptors on glial cells, and the growing appreciation for
the role of activated glia in promoting the development
and maintenance of pathological pain [37–39], it is tempting
to regard the P2X7 receptor as a central player in this
neuroimmune interface.

Complementing the genetic data above are recent studies
using receptor-selective antagonists indicating a specific
role for P2X7 receptor activation in pain signaling [40–42].
Similar to the nociceptive phenotype of mice lacking P2X7

receptors [32] or lacking both isoforms of IL-1 [43], systemic
administration of P2X7 receptor-selective antagonists (e.g.,
A-740003 (5), A-438079 (6), Fig. 2) produced dose-
dependent antinociceptive effects in models of neuropathic
[40, 41] and inflammatory pain [41]. These data are also
consistent with an independent study of the Astra-Zeneca
adamantane P2X7 antagonist (3), renamed GSK314181A,
that showed dose-dependent antinociception in an inflam-
matory pain model [42]. Collectively, the foregoing results
illustrate the potential role of the P2X7 receptor in
modulating IL-1β, and perhaps glutamate, to reduce noci-
ception in neuropathic pain models.

Medicinal chemistry advances

The landscape of P2X7 medicinal chemistry has evolved
considerably over the last 5 years. The historically known
P2X7 antagonists such as KN-62, PPADS, o-ATP and
Brilliant Blue G (see Fig. 1) have gradually given way to a
plethora of new molecules that encompass a diversity of
structural types (Fig. 2). The cyclic imides (1), adamantane
amides (2 and 3), diarylimidazolines (4), cyanoguanidines
(5), and substituted aryltetrazoles (6) exemplify those that
have been the subject of recent publications [44–46]. Many
other recent advances have only been described in the
patent literature [44] or are the subject of forthcoming
reports (vide infra). All of these new entries in the field
appear to possess better drug-like characteristics in terms of
the “rule of 5” and may offer more opportunity for the
development of viable therapeutic agents.

A common characteristic of many P2X7 antagonists is
that of disparate potency between the human and rat P2X7

receptors. The absence of activity at a rodent P2X7 receptor
is, from a preclinical standpoint, an obvious impediment to
determining the potential therapeutic applications of P2X7

antagonism. KN-62 is a prime example of this phenomenon,
having potent activity at the human receptor but lacking
activity at the rat receptor (rP2X7 pIC50<4; hP2X7 pIC50

~ 6.7) [46]. The more recently disclosed AZ116453743 (1)
[47] similarly shows a significant reduction in potency at
the rat receptor relative to human (rP2X7 pIC50<5; hP2X7

pIC50 ~ 8). As will be described below, however, strides
are being made in identifying structural types that possess
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similar potencies across species. These studies have led to
the novel finding that selective, competitive P2X7 antago-
nists are efficacious in models of neuropathic and inflam-
matory pain as well as inflammatory peritonitis.

Adamantane carboxamides

There has been a significant amount of patent activity
around the adamantane amide pharmacophore [44] in
addition to the early literature report that provided some

initial insight into the structure-activity relationships (SAR)
of this series at the human P2X7 receptor [48]. Very
recently, a second study was published that expanded upon
the previous findings and also revealed some SAR trends
for this series at the rat P2X7 receptor [49]. Reflecting a
common trend in the field of P2X7 ligands, the potency of 2
at rat P2X7 (pIC50=6.1) was found to be approximately
tenfold less than that at the human receptor (pIC50=7.2), as
measured by Ca2+ flux in a FLIPR instrument [50]. On the
other hand, GSK314181A (3) was reported to be potent at
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the rat P2X7 receptor (pIC50=9.0) as measured using a
whole cell patch clamp technique [42] (human data not
reported). In a pattern that will be seen repeated across
different series of P2X7 antagonists, it was observed that
the presence of an ortho substituent on the aromatic ring of
the benzamide portion gives rise to substantially increased
potency. The absence of an ortho substituent such as a
halogen or a methyl group is accompanied by an attendant
drop-off in activity. Compound 2 was among the most
potent compounds reported (P2X7 pA2=8.8). Although
chain extension from methylene to ethylene was tolerated
between the amide and the adamantane, excision of the
methylene resulted in a large decrease in activity. Similarly,
replacement of the amide NHCO group with NMeCO (N-
methylamide) and NHCH2 (aminomethyl) was also not
tolerated. Further investigation of the linker portion between
the phenyl and adamantane revealed that reversing the
connectivity of the amide also provided analogs with potent
P2X7 activity such as 7 (P2X7 pA2=8.3) and 8 (P2X7 pA2=
7.4) shown in Fig. 3. Many of the published adamantane
amide analogs were found to possess poor metabolic stability
and pharmacokinetic characteristics; however, the indazole-
containing compound 8 (P2X7 pA2=7.4) was improved in
this regard, albeit with a corresponding reduction in potency.

Numerous patent applications have disclosed additional
structural variations on the adamantane amides with the
apparent thrust of activities being to improve the solubility
and pharmacokinetic characteristics of this highly lipophilic
class of molecules [44]. The limited data available from
these sources suggest that this pharmacophore is amenable
to incorporation of solubilizing amine-containing function-
ality with retention of robust P2X7 activity. GSK314181A
(3) represents a prime example of this structural type as
evidenced by the presence of the substituted pyrrolidine
appended to the aromatic ring. As mentioned, this molecule
displays potent activity at rat P2X7 receptors and has
additionally been found to possess activity in the rat CFA
model of inflammatory hyperalgesia as assessed using a
weight bearing measurement [42].

Further expanding on the theme of heterocyclic amides such
as the indazole analog 8, both substituted pyridines (A) and
quinolines (B) (Table 1) were reported in two recent patent
applications to possess potent P2X7 activity [51, 52]. Most
interestingly, these heterocycles are amenable to substitution
with a variety of amine and alcohol groups that would be

expected to significantly improve the solubility characteristics
in this series. As can be seen in Table 1, both secondary and
tertiary amines, as well as diamino (piperazine) and alcohol
moieties are tolerated in the pendant chain. From the limited
data, it is not possible to discern any significant differences
between the pyridine- and quinoline-based analogs.

Additional adamantane-derived structural variations that
have appeared in the patent literature are shown in Table 2.
These analogs are based upon a 5,6,7,8-tetrahydropyrido
[3,4-d]pyrimidine unit connected to the adamantane via an
amide (C), aminomethyl (D), or aminoethanol (E) linker
[53, 54]. The connectivity of the amides 18–22 is the same
as for 7 and 8, reversed from compounds 9–17 in Table 1.
The amide may be directly attached to the adamantane as in
21 or connected through a methylene group (18–20, 22).
Although only single concentration data are provided it
is possible to gain a sense of some general SAR trends
with these pyridopyrimidines. In all three variations C-
E, there appears to be a significant degree of tolerance
for structural variation at the R1 position. Arylamides (20,
26, 29), alkylamides (27, 28), arylsulfonamides (19, 25),
alkylsulfonamides (22, 24), and benzylamines (18, 21, 23)
all show activity at less than 0.3 μM. The presence of an
electron-withdrawing group attached to the nitrogen is not
required as evidenced by the activity of the benzylamine
examples. The primary amine example 30 showed
appreciable activity but, interestingly, the analog that is
epimeric at the alanine-derived carbon did not [54].

Aryl carbohydrazides

A series of hydrazide-containing P2X7 antagonists (Fig. 4)
has recently appeared in the literature which bear a
resemblance to some adamantane amide analogs described
above [55]. Starting with the high throughput screening
lead 31 (hP2X7 pIC50=7.3), SAR studies led to the
discovery of the highly potent antagonist A-847227 (32:
hP2X7 pIC50=8.0). Adamantane substitution and variations
thereof provided the most potent analogs in this series but
other groups also gave rise to potent, if somewhat
attenuated, activity. For example, cycloalkyl (33: hP2X7

pIC50=7.7), alkyl (not shown), and aryl spirocyclohexyl
(34: hP2X7 pIC50=7.3) groups all showed potent activity as
P2X7 antagonists. On the left hand aryl group, an ortho
substituent was essential for potency as has been observed
in other series. The absence of an ortho substituent is not
compensated for by substitution elsewhere on the aryl
group. Tying the ortho substituent back in the form of a
quinoline ring (32) retained the P2X7 potency while
significantly improving the physiochemical properties
relative to similar substituted phenyl analogs. The isoquino-
line moiety in this region also showed appreciable potency
(not shown).
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Table 1 Pyridine and quinoline adamantane amides
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Several hydrazide analogs were assayed for the ability to
inhibit IL-1β release in vitro and in a zymosan peritonitis
model in vivo. As observed for other classes of P2X7

antagonists, activity to inhibit Ca2+ flux translated into
comparable potency to inhibit IL-1β release in vitro (A-
847227 (32; IL-1β pIC50=8.3). In addition, these mole-
cules demonstrate significant activity to attenuate IL-1β
release in the zymosan model in mice. For example, A-
847227 (32) was found to reduce IL-1β release by 63%
when dosed at 20 μmol/kg (i.p.). Consistent with the effects
seen with compounds 5 and 6, A-847227 (32) also
displayed antiallodynic activity in the Chung model of
neuropathic pain with an ED50 of 92 μmol/kg (i.p.).

Cyanoguanidines

A novel class of cyanoguanidines, represented by A-
740003 (5), has recently been discovered to possess potent
and selective P2X7 antagonist properties. The relatively
good pharmacokinetic (PK) properties and clean pharma-
cology of A-740003 made it an attractive tool compound
with which to probe the potential therapeutic consequences
of selective P2X7 receptor antagonism. In contrast to some
earlier classes of P2X7 receptor antagonists reported in the
literature, A-740003 was found to possess potent activity at
the rat P2X7 receptor, making it suitable for in vivo efficacy
studies in rats. A-740003, a potent, competitive P2X7

antagonist, was efficacious in models of neuropathic and
inflammatory pain upon i.p. administration in rats. In vitro,
A-740003 potently inhibited Ca2+ flux, Yo-Pro uptake, and
IL-1β release (pIC50=7.0–7.3).

The cyanoguanidine-containing P2X7 antagonist A-
740003 bears a remarkable similarity to compound 35
(Fig. 5), a structure that was previously discovered to
possess activity as an ATP-sensitive potassium channel
(KATP) opener [56, 57]. This is an interesting finding, given
that the KATP channel and P2X7 are each a ligand-gated ion
channel wherein the endogenous ligand is ATP. Another
parallel between compounds 5 and 35 is that they both were
derived from thiourea screening hits, which themselves
were not pursued due to toxicological concerns associated
with this functional group. A number of cyanoguanidine
KATP openers were assayed at P2X7 and generally found to
possess very weak activity (Donnelly-Roberts, unpublished
results), providing some indication that the SAR trends for
KATP and P2X7 within this pharmacophore do not substan-
tially overlap. The human P2X7 pIC50 for the KATP opener
35 was approximately 5.7, considerably weaker than 5. In
general, direct attachment of the aryl group to the amide on
the right hand side (RHS) of the structure was a requirement
for potent activity at KATP, whereas the presence of an
additional 1 carbon spacer conferred more potent P2X7

activity. On the left hand side (LHS), a substituent in the
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ortho position increased activity at P2X7 (Donnelly-
Roberts, unpublished observations) but decreased KATP

activity [62, 63]. Although substitution patterns that were
preferred for KATP tended to erode activity at P2X7, there
were some exceptions. Compound 36, for example, a hybrid
of a preferred LHS for P2X7 and RHS for KATP possesses
potent activity at hP2X7 (pIC50=7.2) but weak activity at
KATP (pIC50 ~ 5) [57].

The preceding discussion concerns observations that
are confined to the aromatic rings on either end of the
molecule. Additional SAR studies around A-740003 led to
a novel modification wherein the central t-butyl-substituted
carbon linker has been replaced with a substituted pi-
perazine unit (Fig. 6) [58]. In the case of 37 and 38, the
piperazine is substituted with a phenyl group in either of
the two available positions. Both of these compounds
retain good potency as P2X7 antagonists (37: hP2X7

pIC50=7.2; 38: hP2X7 pIC50=7.3), seemingly indifferent
to the location of the phenyl substituent. Replacement of
the 3,4-dimethoxyphenyl on the RHS was tolerated with
various heterocycles such as pyridine, isoxazole, and thio-
phene. The carbon chain connecting the piperazine amide
with the aromatic group on the RHS could be varied from
zero to three carbons with little effect on hP2X7 potency. On
the left hand side, the ortho-tolyl group could be replaced
with the 5-quinolinyl present in A-740003 (Fig. 6; com-
pound 39). Although most compounds from this series
showed three- to fivefold greater potency at hP2X7 than
rP2X7, 39 was nearly equipotent at rat (pIC50=7.5) and
human (pIC50=7.2) P2X7.

Aryltetrazoles/aryltriazoles

The growing diversity of small molecule P2X7 antagonists
is exemplified by the recent reports detailing SAR studies
on aryltetrazoles [40] and aryltriazoles [50] represented
respectively by A-438079 (6) (hP2X7 pIC50=6.3; Fig. 2)
and 44 (hP2X7 pIC50=7.1; Fig. 7) (see also Table 3). The
nature of the heterocyclic core in this pharmacophore was
found to be critical for activity as potency decreased in the
following order: tetrazole>triazole>pyrazole>imidazole
[50]. The connectivity of the aryl and benzyl groups to
the core via either nitrogen or carbon appears to be of little
consequence as potency for the N-aryl compounds 41 and
46 is similar to the C-aryl connected counterparts 6 and 43
(Table 3). In the case of the triazole core, three additional
regioisomers were evaluated beyond those shown in Fig. 7,
for which the potencies were comparable to 43 and 46. As will
be described below in greater detail, the aryltetrazoles and
aryltriazoles display the same tendency observed with other
chemotypes in requiring the presence of an ortho-substituted
aromatic group in the molecule for potency to be maintained.

SAR exploration of the RHS of the tetrazole pharmaco-
phore began with an evaluation of preferred substitutions on
the phenyl ring. Although highly potent compounds such as
40 were discovered, the poor physiochemical properties of
these molecules led to an investigation of heterocyclic
attachments that might confer improved properties in this
regard. The 3-pyridyl group was found to be an acceptable
moiety on the RHS, balancing potency with improved
solubility characteristics (e.g., A-438079). With a 3-pyridyl
group in place, it was possible to explore variations on the
LHS of A-438079. On the left hand aromatic ring of the
structure, substitution in both the ortho and meta positions
with either halogen or CF3 groups was a definite requirement
for potency. In the meta position, CF3 proved superior to
chloro in terms of P2X7 potency (42 vs 41). Additional
placement of fluorine or chlorine in the para position was
tolerated although typically no further improvement in
potency was realized. Other arrangements of halogens on
the left side aromatic were substantially less active as were
modifications that replaced the halogens with alkyl or alkoxy
groups. Replacement of the ortho-substituted phenyl with a
5-quinolinyl group, present in A-740003, on the LHS of the
tetrazole resulted in a completely inactive analog [40].
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In the case of the aryltriazoles, even the weak basicity of
the core was sufficient to allow extensive study of the
preferred substitution patterns on the RHS without the
solubility limitations associated with the tetrazole. Thus,
complementary SAR studies were conducted on the left and
right hand sides of the tetrazoles and triazoles, respectively.
A more extensive study on the right hand aromatic of the
triazoles around 43 revealed a fair degree of tolerance for
the interchange of groups in the ortho position. Substitution
of relatively small electron-donating (OCH3) and electron-
withdrawing groups (CF3, CHF2) similarly increased
potency in comparison to the simple phenyl [50]. The best
potencies, however, were achieved with the more weakly
electron-donating methyl (compound 44) (same trend
observed for the tetrazole 40) and methylthio groups (not
shown). Both 2,3 and 2,5 disubstitution was found to retain

the potency of the simple ortho-substituted analogs;
however, the presence of a lone substituent in the meta or
para position markedly decreased potency regardless of the
particular moiety present. Connecting the ortho substituent
to the benzylic position by forming an indane ring provided
the most potent triazole reported (45), with the (R)
enantiomer being several times more potent than the (S)
enantiomer. Interestingly, this same modification on the
tetrazole core did not result in a similar increase in potency
(Donnelly-Roberts, unpublished observations). In both the
tetrazoles and triazoles, increasing the length of the spacer
between the core and the right hand side aromatic group to
two carbons significantly decreased P2X7 potency.

In animal pain models, A-438079 and 44 were found to
inhibit mechanical allodynia in the Chung model of neuro-
pathic pain upon i.p. dosing with ED50s of 76 and 125 μmol/
kg, respectively. Additionally, A-438079 displayed activity
against vincristine-induced neuropathy and was effective in
the formalin model of persistent pain [59]. Up to a dose of
300 μmol/kg (i.p.), A-438079 did not attenuate rotarod
performance. A-438079 has been further shown from in vivo
electrophysiological experiments to inhibit both evoked and
spontaneous firing of different classes of spinal cord neurons
following intravenous administration [59].

A noteworthy extension of the scope of the SAR in this
class of P2X7 antagonist has recently appeared showing the
potential for nitrogen incorporation into the linker between
the core and the RHS aryl group [60] (Fig. 7, compounds
47–57). Although an oxygen linker led to weak activity
(55), amino (54) and aminomethyl (47) linkers were well
tolerated with the latter variation giving rise to a number of
highly potent antagonists, particularly at hP2X7. The
activity seen with the two atom aminomethyl linker is
especially surprising in light of the poor activity reported
with a two carbon linker [40, 50].

Some important similarities and differences are observed
between the SAR trends in the methylene-linked (43–46)
and amino/aminomethyl-linked (47–54, 56–57) analogs.

Table 3 Aryltetrazole and aryltriazole P2X7 antagonists

Compound hP2X7 pIC50 rP2X7 pIC50

Tetrazoles 6 6.9 6.5
40 7.8 7.2
41 7.0 6.6
42 7.9 7.3

Triazoles 43 6.3 6.4
44 7.1 6.7
45 7.7 7.1
46 6.7 6.4

Aminotriazoles 47 7.8 6.7
48 7.3 6.5
49 7.7 7.4
50 8.0 7.6
51 7.6 6.7
52 7.8 6.9
53 7.9 6.9
54 7.8 6.6
55 5.8 5.6
56 7.8 7.9
57 7.5 7.5
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Like 43–46, compounds 50–53 and 54 showed ~tenfold
greater potency relative to their counterparts lacking a
substituent in the ortho position. The requirement of an
ortho substituent was less pronounced, however, where the
right hand aromatic was phenyl as in 47–49. Another
illustration of the differences encountered with the amino-
methyl-linked triazoles can be seen by comparing the 2-
SO2Me and 2-SMe substitutions with their counterparts in
the carbon-linked class. Whereas the 2-SO2Me group lost
potency relative to 2-SMe in the carbon-linked series [50],
it instead shows relatively enhanced potency with the
aminomethyl linker (49 vs 48), particularly at the rat
receptor. Reduced potency with monosubstitution in the
meta or para position is also observed in the aminomethyl-
linked series.

The diversity of substitution at the ortho position has been
greatly expanded in the aminomethyl series, with heterocy-
clic (50–52, 56) and heteroaryloxy (53, 57) groups all ex-
hibiting potent activity. This tolerance for structural variation
was confined to the aminomethyl-linked analogs, however,
as replacement of the ortho-methyl on compound 54 with
ortho-morpholinyl (structure not shown) resulted in a 100-
fold reduction in activity compared with compound 51 [60].

Regarding regioisomers, similar to observations made in
the methylene-linked triazoles, the regioisomeric amino-
triazole 57 possessed essentially the same potency as 53 at
the human P2X7 receptor. Although no data have been
published, it is worth noting that aminopyrazole and amino-
tetrazole variations on this series have appeared in the patent
literature [61, 62].

Reflecting a common theme in the P2X7 field, different
potencies at the rat and human P2X7 receptors were often
noted for both the tetrazoles and triazoles (Table 3).
Generally, these structural types were three- to tenfold
more potent at human P2X7 compared to rat, although a
few analogs possessed essentially equivalent potency across
species such as 56 and 57. Although the SAR trends
summarized above for the tetrazole and triazole analogs are
based upon data measuring the inhibition of Ca2+ flux at the
recombinant human and rat P2X7 receptors, very similar
results were obtained using native THP-1 cells measuring
Yo-Pro uptake [40]. Likewise, the rank order potencies
for inhibition of IL-1β release paralleled those from the
Ca2+ flux experiments, with the caveat that potencies were
somewhat attenuated for cytokine release [40].

Conclusion

The discovery of potent and receptor-selective P2X7

antagonists has significantly expanded the field of P2X
receptor pharmacology. The plethora of emerging new
chemotypes have greatly enhanced our appreciation for the

important structural features that impart P2X7 receptor
activity while also serving to illustrate that this target remains
fertile ground for future exploration. A noteworthy com-
monality that has been observed across the diversity of P2X7

receptor antagonist structural types is the preference or
even requirement for the presence of an ortho-substituted
aromatic group in the molecule. Additionally, substantial
progress has been made toward the discovery of potent
antagonists at both rodent and human P2X7 receptors that
possess improved drug-like properties (e.g., solubility/
pharmacokinetics). In this regard, the P2X7 receptor
appears to be both more drugable, as well as susceptible
to pharmacological modulation in comparison to other P2X
receptors like P2X3 and P2X4 [2].

While it is clear that P2X7 receptors play an important
mechanistic role in chronic ongoing inflammation, multiple
P2 receptor-based mechanisms likely contribute to the
ability of ATP to alter nociceptive sensitivity following
tissue injury [64]. Activation of P2X3, P2X2/3, P2X4, P2X7,
and P2Y (e.g. P2Y2) receptors can modulate pain via direct
(neuronal excitability) and non-direct (neural-glial cell
interactions) mechanisms [63]. The recent report of func-
tional heteromeric P2X4/7 receptors [29] may also help
bring some mechanistic clarity to the similar functional
roles of these receptors in chronic inflammation and pain.
While both P2X4 and P2X7 receptors have been implicated
in glial-based modulatory mechanisms involved in sensory
neurotransmission [9, 65], the discovery of selective P2X4

antagonists are needed to differentiate the respective roles
of these receptors in pain signaling. The identification of
novel P2X7 receptor-selective antagonists has provided new
research tools for both in vitro and in vivo studies of P2X7

receptor pharmacology and led to the generation of new
data that indicate an expanded role for this receptor in pain
signaling associated with nerve injury and inflammation.
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