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Simple Summary: In order to improve fertilization and pregnancy rates within artificial insemination
or in vitro fertilization techniques in horses, producers may choose to select the best sperm within an
ejaculate. In this paper, we review conventional and novel methods of sperm selection.

Abstract: As the use of assisted reproductive technologies (ART) and in vitro embryo production
(IVP) expand in the equine industry, it has become necessary to further our understanding of available
semen selection techniques. This segment of our two-section review will focus on the selection of
spermatozoa based on quality and sex for equine intracytoplasmic sperm injection (ICSI), as well
as current and future developments in sperm sorting technologies. Ultimately, novel methods of
semen selection will be assessed based on their efficacy in other species and their relevance and
future application towards ARTs in the horse.

Keywords: stallion; fertility; sperm; assisted reproductive techniques

1. Introduction

The use of assisted reproductive techniques (ARTs) is expanding the field of equine
reproduction, providing valuable opportunities to produce foals from animals which
are unable to breed, conceive, or carry a pregnancy to term, due to either sub-fertility
or logistical management issues. Techniques such as artificial insemination (AI) and
embryo transfer (ET) are practiced with consistent success, and have already become an
indispensable part of equine reproduction [1]. Newer techniques, such as transvaginal
oocyte aspiration (TVA) and in vitro embryo production (IVP), are also being implemented
worldwide, allowing veterinarians and farm managers to maximize the reproductive
performance of horses [1–4]. Combining IVP with the use of sexed semen, the use of frozen-
thawed sperm, observation of early embryo development, utilization of pre-implantation
genetic testing, and cryopreservation of produced embryos further expands the potential
of IVP in horses, despite some of these methods being in their infancy [5–10].

Most of the efforts for optimizing IVP outcomes are focused on oocyte maturation
protocols, such as monitoring oocytes for meiotic progression [11,12], microtubule and
spindle assembly [13,14], chromosomal abnormalities [15–17], nuclear maturation [18,19],
and cumulus cell expansion [20,21]. Oocyte competence is critical in cases of subfertility, in
part because the number of available oocytes at any given time is significantly less than the
number of available sperm cells [11,22]. However, sperm quality should not be overlooked
as an indicator of fertilization and development potential, as there are wide ranges of
sperm quality within an ejaculate that may influence ideal embryo production [23].

In horses, IVP is currently limited to a technique called intracytoplasmic sperm
injection (ICSI) due to the failure of conventional in vitro fertilization (IVF) to produce
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foals [24]. One of the main advantages of ICSI is the low number of spermatozoa required
per procedure; ultimately only a single male gamete needs to be selected for each oocyte.
Therefore, ICSI has become the primary technique for producing embryos from men
with low sperm count or viability [25]. Likewise, semen availability is one of the main
reasons to perform ICSI in horses, allowing for the production of greater numbers of
offspring from a reduced number of spermatozoa [26]. In general, frozen-thawed semen
from stallions usually contains a limited number of viable spermatozoa and an overall
worsened post-thaw quality [27]. However, frozen semen is ideal for ICSI because it can
be stored and shipped easily, has a decreased dependency on proximity and frequent
collection of stallions, requires only a fraction of a frozen ejaculate to be thawed to obtain
sufficient numbers of spermatozoa for fertilization, and allows for the use of a variety
of stallion genetics, regardless of whether or not the stallion is healthy or deceased [28].
Additionally, it has been demonstrated that using frozen-thawed sperm for ICSI results in
similar fertilization and embryo development rates to fresh semen, with some individual
variation [6]. Other studies have shown that freeze-dried or air-dried sperm adequately
maintain chromosome integrity and are also capable of producing live offspring after
ICSI [29–34]. However, little is known about the potential effects of drying on overall
sperm competence and embryo development and it is not a standard practice. Therefore,
frozen-thawed sperm is the current ideal choice for equine ICSI.

Despite the numerous benefits of ICSI, is important to note that the manual selection of
a sperm for ICSI bypasses the natural selection of viable spermatozoa that would naturally
occur in the female reproductive tract, and to a lesser extent during conventional in vitro
fertilization (IVF) procedures [35]. Consequently, the absence of natural sperm selection
may represent a barrier to optimal fertilization and development [35,36]. In particular with
ICSI, it is possible to select a visually normal spermatozoa possessing damaged DNA or
internal structure, which could lead to abnormal embryo development or miscarriage as
observed in humans [37,38]. Therefore, the use of artificial selection techniques to select
for the most competent spermatozoa in a sample is a critical step in the optimization of
ICSI outcomes.

Sperm selection has become an integral part of ARTs for both humans and animals [39,40].
Spermatozoa from domestic mammals, as well as humans are generally evaluated and
selected based on factors associated with their fertilization potential, which is then used
to define sperm quality [41–43]. Various techniques to select the fraction of “high quality”
viable spermatozoa in a sample rely on motility, morphology, DNA integrity, surface charge,
and biochemical markers as indicators of potential fertility [44] and will be covered later in
this review. However, there is increasing evidence that common selection parameters are
insufficient indicators of fertility [41,45]. Conventional sperm selection techniques have
been shown to be effective for the positive selection of motile and morphologically normal
spermatozoa from a sample, yet they do not directly select for other important factors
associated with fertilization and development, such as DNA fragmentation, membrane
integrity, and spermatozoal ultrastructure [39,46–48]. Although conventional selection
methods for the enrichment of motile, morphologically normal spermatozoa within a
population has been correlated with improved DNA integrity and consequently improved
fertilization, blastocyst, and pregnancy rates, there is still room for improving the margin
of error within sperm selection techniques [49,50].

This section (Section II) of our review will focus on the ultimate selection of spermato-
zoa through advanced ARTs. Methods of sperm selection for ICSI based on both quality
parameters and sex-chromosome will be presented and assessed based on their efficacy
in horses. Ultimately, novel sperm selection methods used in non-equine species will be
discussed in regard to their future application towards ARTs in the horse.

2. Sorting Semen: Significance and Method

In vivo, it is believed that sperm are naturally “selected” as they navigate through
the female reproductive tract, resulting in only the most competent spermatozoa reaching
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the oviduct and ultimately fertilizing an ovum [35,36]. However, these natural sorting
procedures are bypassed during IVP, which could contribute to the suboptimal outcome of
these techniques. According to a meta-analysis carried out in humans, IVP is only about
one-fifth as efficient as natural reproduction due to damage from cryopreservation and
overall worsened gamete competence [51]. Inefficiencies of IVP have been documented in
many species, beginning with the ability of in vitro culture conditions to disturb fertility
and developmental competence [24,52–55]. In addition, many have reported specific
issues with fertilization and development events. For example, in cattle, fertilization rates
after ICSI are extremely low potentially due to a failure in pronuclear formation without
supplemental activation or due to physical disruption from the ICSI procedure [56–59].
In porcine IVF there is a high rate of polyspermia due to a reduced ability of in vitro-
matured oocytes to invoke their mechanism of zona blocking against polyspermia [60,61].
In horses, only two cases of IVF have been reported; this lack of success in conventional
IVF is most commonly attributed to the inability of the sperm to penetrate the thick zona
of the oocyte due to incomplete capacitation [24,62]. Thus, ICSI is the only practical
method of IVP in horses [5]. Despite the concentrated efforts in refining equine ICSI,
blastocyst and pregnancy rates leave room for improvement [1]. Within a single study,
reported blastocyst rates varied from 10–70%, dependent on the source of oocytes (pre-
ovulatory oocyte vs. immature), oocyte maturation protocols, and culture conditions [1,63].
Therefore, blastocyst, pregnancy, and foaling rates are subject to significant improvement
and standardization across the equine industry.

Although it is possible to produce healthy embryos and offspring from low quality
sperm samples, it is preferable to process and select morphologically and functionally
superior sperm to maximize the chances of successful fertilization and embryo devel-
opment [40,64]. It is also noteworthy that there is limited information regarding the
relationship between “good quality” sperm parameters and fertility [40]. Conventional
sperm selection techniques generally rely on assessment of motility and morphology,
which are factors that are positively correlated with fertilization and pregnancy rates for
IVP [65–68]. However, spermatozoa with good motility and morphology will not always
exhibit optimal viability, and may instead have poor DNA integrity, apoptotic factors, and
disturbed mitochondrial integrity [48,69]. Additionally, centrifugation steps required for
specific processing methods are capable of generating injurious levels of reactive oxygen
species (ROS) and ultrastructural damage in mammalian sperm [39,69–71]. Thus, advance-
ments in selection methods are likely to reduce sperm injury and to improve fertilization
and pregnancy outcomes.

Many sperm selection methods have been developed in order to maximize the chances
of selecting highly viable spermatozoa with variable success (Figure 1, Table 1) [40]. Com-
monly accepted and practiced methods of sperm selection include swim up (SU) and
density gradient centrifugation (DGC) [39,40,47]. SU and DGC are widely used due to their
simplicity and cost efficiency, and are known to select for improved motility, morphology,
and nuclear maturity in a semen sample [39,47].

2.1. Density Gradient Centrifugation

DGC works by overlaying a single or double density colloid gradient (known as a
continuous or discontinuous gradient, respectively) with a semen sample of mixed quality
within a centrifuge tube [39,72,73]. The entire tube is then spun at a moderate g-force
(300–600× g) for 15–30 min in order to induce passage through the gradient and separa-
tion of the high and low quality spermatozoa [39]. In a double density gradient, the less
dense, upper layer will filter out larger macromolecules, leukocytes, or other unwanted
cellular debris [74]. Mature spermatozoa should be able to easily pass through the upper
gradient, and upon reaching the second, denser colloid layer, the morphologically normal
spermatozoa will possess a greater density and will be able to orient head-downwards,
allowing them to swim downwards through the colloidal silicon gradient and form a
pellet with the aid of centrifugation forces [39,74,75]. Percoll® DGC is the most common
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gradient in most animal industries but is prohibited in human sperm preparation due
to potential inflammatory, ultrastructural, and endotoxic effects of the PVP-coated silica
particle, which is associated with cytoplasmic fragmentation and worsened embryo de-
velopment [76–80]. In equine reproduction, the use of Equipure™ has become a common
substitute for Percoll® in various laboratories. Results from Equipure™ centrifugations
have yielded enriched motility, morphology, and pregnancy rates as compared to other
centrifugation methods [81–83]. It has been shown that Equipure™ not only selects for
progressively motile spermatozoa, but also enriches the population of viable sperm with
good mitochondrial membrane integrity from frozen-thawed samples [84]. The resulting
pellet after either Percoll® or Equipure™ centrifugation has been generally known to enrich
the population of motile, morphologically normal spermatozoa with an intact genome in
both men and stallions [81,83,85,86]. Alternatively, some report DNA damage to actually
increase as a result of centrifugation in horse or human [75,86]. Results likely vary due
to individual, handling, or protocol variations. Increased DNA damage can lead to poor
embryo quality, blastocyst rates, implantation rates, and pregnancy to term rates after IVP,
and thus it is critical to understand the potential for inducing damage with centrifugation
protocols [87,88].
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Figure 1. Conventional and novel methods of sperm selection. Selection techniques used to select superior quality sperm
include (a) Swim Up (SU), (b) Density Gradient Centrifugation (DGC), (c) Density Gradient-Swim Up (DG-SU), (d) Glass
Wool Filtration (GWF), (e) Microfluidics sorting (MF), (f) Fluorescence Activated Cell Sorting (FACS), (g) Magnetic Activated
Cell Sorting (MACS), and (h) Zeta Potential Selection.

2.2. Swim Up

In contrast to DGC, the SU procedure does not require a centrifugation step, and relies
on the inherent progressive motility of sperm to swim upwards through a medium over a
period of 30 to 60 min, with the top fraction ultimately being selected [39,48]. SU has been
shown to select highly motile, morphologically normal, DNA-intact populations from hu-
man sperm samples, while also removing extraneous cell or protein debris [39,40,48,89,90].
Unfortunately, the recovery rates of SU are low, meaning SU is only a viable assay for
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highly concentrated samples or for procedures such as ICSI that do not require a significant
number of spermatozoa in the final selected fraction [39,91].

Table 1. Sperm selection techniques select for a variety of sperm parameters and are capable of reducing percentages of
negative factors within a sample, although some methods may have detrimental effects.

Method Selects Based On: Benefits: Detriments

Density Gradient Centrifugation
Morphology
Cell density

Motility

Enriches for: Morphology; Motility;
Viability; Mitochondrial membrane integrity;

Pregnancy rates; DNA integrity
Removes cell and protein debris

Toxicity of Percoll®

Centrifugation causes DNA damage

Swim Up Progressive motility
Enriches for: Motility; Morphology;

DNA integrity
Removes cell and protein debris

Low recovery rate

Density Gradient-Swim Up
Morphology
Cell density

Motility

Enriches for: Motility; Morphology;
DNA integrity

Removes pathogens

Toxicity of Percoll®

Centrifugation causes DNA damage

Glass Wool Filtration In vivo fertility
Motility

Enriches for: Motility; Morphology;
Chromatin Condensation; Membrane,

Integrity; Cleavage rates; Blastocyst rates;
Pregnancy rates

High Recovery Rate

Possible damage to sperm head and
acrosome ultrastructure

Glass wool contamination of
final product

Fluorescent Activated Cell Sorting

Variable physiological markers
(membrane integrity, apoptotic

markers, mitochondrial
membrane potential,

sex chromosome)

Enriches for: Pregnancy rates; Live birth rates
Removes unwanted cells

May cause oxidative and DNA damage
Mechanical Stress
Time consuming

High operating expenses
Inability to select for numerous factors

Microfluidic Sorting
Motility

Rheotactic, Chemotactic, and
Thermotactic behavior

Enriches for: Motility; Viability;
DNA integrity

Reduced ROS generaton
Removes extracellular debris
Can be combined with IVF

May impose stress
May reduce viability in some species

Magnetic Activated Cell Sorting

Variable physiological markers
(removes sperm with apoptotic

markers, acrosome
reacted sperm)

Enriches for: Motility; Viability; Morphology;
Survival, motility, and mitochondrial

integrity after cryopreservation; Sperm
binding rates; Fertilization rates; Embryo

development rates

May possess cytotoxic effects

Zeta Potential Selection Greater net negative
membrane charges

Enriches for: Maturity; Morphology; DNA
integrity; Protamine content; Fertilization

rates; Pregnancy rates

Not shown to increase motility
and viability

2.3. Combination Density Gradient-Swim Up

DGC and SU have also been used in combination (DGC-SU) by pelleting the sperm
using DGC and then allowing sperm to swim upwards through an overlying media. DGC-
SU has been shown to enrich for motility and morphology better than SU alone, to decrease
the percentage of ultrastructural abnormalities in the selected sample, as well as select for
the population with overall better DNA integrity as compared to DGC alone [92,93]. This
method has also been shown to be an effective way of removing pathogens, such as equine
arteritis virus or bovine viral diarrhea virus, from contaminated semen while also selecting
for undamaged spermatozoa [94,95]. Therefore, this method could have significant benefits
for other equine diseases transmissible through an ejaculate.

2.4. Glass Wool Filtration

Glass Wool Filtration (GWF) is another technique that has been used in both human
and animal reproduction [71]. This method is intended to mimic the ability of the female
reproductive tract to effectively filter out dead sperm, leukocytes, and infectious materials,
by allowing spermatozoa to swim through and be filtered by a dense arrangement of glass
wool fibers within a column [71,96]. In humans, spermatozoa separated with GWF yield a
sample enriched for motility, morphologically normal spermatozoa, and good chromatin
condensation, as well as having a high recovery rate and good cleavage and blastocyst
rates [97,98]. GWF was also shown to produce a sufficient number of cells, with better
recovery than SU, for insemination with frozen-thawed spermatozoa [99]. In an experiment
with bovine sperm comparing DGC and GWF, GWF was capable of enriching motility,
membrane integrity, and GWF-selected sperm used for IVF resulted in higher cleavage and
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blastocyst rates than control samples [100]. In horses, the pregnancy rate from deep-horn
inseminations with sperm separated by GWF was elevated above the rate when using an
absolute number of sperm, and similar to that of insemination with Percoll® separated
sperm, showing that GWF is a valuable technique for many species [101]. It is noteworthy
that some reports claim that traditional GWF can damage the sperm head and acrosome
ultrastructure [102], and glass wool fibers could appear in the filtered product, which poses
a problem for artificial insemination procedures [103].

All of the techniques described thus far work on the basis of selecting highly motile,
morphologically normal, and intact spermatozoa, and are moderately successful in doing so.
However, the ability of these techniques to improve motility and morphology parameters
does not always correlate to the selection of spermatozoa with the best DNA integrity and
overall fertilization potential [48]. In response, other techniques have been developed in
order to select sperm based on viability and biophysical markers.

2.5. Fluorescent Activated Cell Sorting

Flow cytometry has been utilized in order to characterize various quality parameters
within an ejaculate, including membrane integrity, ROS generation, capacitation, acrosome
reaction, mitochondrial status, apoptotic markers, and DNA integrity [104]. Although
general characterization of a cell population by flow cytometry requires the use of a fixative,
fluorescence activated cell sorting (FACS), has been adapted in order to recover live cells.
FACS utilizes a variety of fluorescence stains and dyes which are biologically compatible
or conjugated to bind to sperm based on specific sorting parameters and primarily works
by allowing for the removal of damaged cells from a sample (negative selection). The cell’s
affinity for the stain or dye allows for it to emit a readable fluorescent or non-fluorescent
signal (more complex probes can be sorted based on the degree of fluorescence) when the
cell is excited by a laser and the probe is activated. Subsequently, the droplet is charged
and sorted into an appropriate subpopulation by deflection plates [71]. The use of a stain or
dye targeting indicators of poor sperm quality results in the negative selection of the high-
quality population which can then be used for a variety of in vitro procedures. Live sperm
have been flow-sorted based on membrane permeability and apoptotic markers [105–107],
mitochondrial membrane potential [108], and even sex chromosomes [109].

One of the early stages of apoptosis involves a change in the membrane where phos-
pholipid phosphatidylserine is transferred to the sperm’s outer membrane and displaces
phosphatidylcholine [110,111]. A method to enrich the population of non-apoptotic sper-
matozoa in a sample is to tag and remove apoptotic spermatozoa from the population by
FACS with fluorescently labeled Annexin-V; the antigen of phosphatidylserine [105,106].
Sperm negatively selected via Annexin-V FACS have been shown to possess intact chro-
matin [107]. Additionally, in a human clinical trial, spermatozoa from the population that
did not bind Annexin-V during FACS were used for ICSI resulted in improved pregnancy
and live birth rates, as well as reduced miscarriage rates over embryos generated with
sperm selected from SU [112].

Sex selection using flow cytometry is perhaps the most common application of FACS to
sperm selection and has been successful in separating sperm from many species including
humans, cattle, horses, pigs, sheep, goats, dogs, cats, deer, elk, and water buffalo, as
reviewed by [113]. In horses, sexed semen has been used to produce live foals, sexed
with over 90% accuracy [114–117]. More information on sex selection can be found below
(Sexing Semen).

Despite the advantages of FACS sorting, it has been shown that FACS in equine sperm
induces significant oxidative and DNA damage to spermatozoa [118]. In addition, FACS
can cause significant mechanical stress due to the high-pressure throughput, and laser and
dye exposure may reduce mitochondrial activity and motility, as demonstrated with bovine
sperm [119,120]. It can thus be extrapolated that mechanical and functional stress may be
induced regardless of specific dyes, laser wavelengths, or flow pressures. Additionally,
flow cytometers are costly to maintain and operate, and selection can be time consuming
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due to the individual characterization of each cell; therefore, flow cytometry is not always
an ideal method of selection [115,116,121].

2.6. Microfluidic Sorting

Another technique for high quality sperm selection is the microfluidic (MF) sorting
method, which can select highly motile sperm based upon rheo-, chemo-, and thermotactic
behaviors of viable spermatozoa, while also removing extraneous cellular debris, in an
attempt to mimic aspects of in vivo sperm selection [122–125]. Various MF devices exist,
including those that rely on the ability of the highly motile subpopulation to swim through
a porous membrane [126–128] or combinations of channels and collection chambers to be
selected [125,129–134]. MF sorting with human and bovine sperm has shown to select for
sperm with overall enriched motility, viability, and DNA integrity, as well as reduced ROS
generation, when compared to centrifugation methods [126,127,132].

In porcine IVF, polyspermia is a large contributor to developmental incompetence
in early embryos; thus, a microfluidic-IVF combination device known as a Microfluidic
Sperm Sorter (MFSS) has been developed to combine the sperm selection and IVF pro-
cesses [130]. In a study by Sano et al., (2010), MFSS-generated embryos showed reduced
cases of polyspermia and improved developmental competence as compared to embryos
generated by traditional IVF [130]. This method has also been used in cattle IVF to improve
developmental competence and blastocyst rates [131]. Other variations among microfluidic
devices include the use of hydrostatic pressures to facilitate rheotactic behaviors [133] or
highly viscous medias [134] to more closely mimic in vivo fertilization.

In a recent study with horse sperm, microfluidic devices containing a porous mem-
brane that allows only motile spermatozoa to swim through resulted in a selected popula-
tion enriched for sperm with normal morphology, and improved motility, viability, and
DNA integrity parameters [128]. This study also showed that MF yielded similar results to
DGC and was superior to results from SU, but no clinical outcomes were investigated [128].
Yet, despite the widely reported benefits of MF sorting, it has also been demonstrated that
some microfluidics may impose stress upon boar, but not bull, spermatozoa and negatively
impact viability [135]. As boar spermatozoa are often used as a model for human sperma-
tozoa, this phenomenon, as well as potential injuries to spermatozoa from other species,
requires further investigation.

2.7. Magnetic Activated Cell Sorting

Another relatively new technique for selection of viable spermatozoa is the use of
magnetic nanoparticles (MNP) to select for various parameters of quality, otherwise known
as Magnetic Activated Cell Sorting (MACS) [136,137]. Nanoparticles, defined as being
less than 100 nm in diameter, can be coated with a variety of magnetic compounds and
subsequently conjugated to a variety of biomarkers for physicochemical properties of the
sperm [138,139]. Applications of the iron oxide (Fe3O4) MNP are diverse, and consequently
this is a common choice of magnetic conjugate [138,140]. Magnetized biologically relevant
conjugates can be incubated with spermatozoa and then passed through a magnetic field
for sorting [136,137]. Previously, MACS has been used for high quality sperm selection
with samples from humans, pigs, cows, and donkeys by selecting for characteristics of
apoptotic and prematurely acrosome reacted sperm, which results in improved fertilization
and embryo development [136,137,139,141–143].

Specifically, Annexin-V conjugated MNP have been used to eliminate human sperma-
tozoa in the early stages of apoptosis from a population using a paramagnetic microbead
conjugated to Annexin-V in order to bind to phosphatidylserine and negatively select for
an intact population [137,143]. In early studies, several groups were able to successfully
reduce the percentage of apoptotic sperm within their sample without any observable
negative effects [137,144]. Later studies further found that Annexin-V MACS prior to cry-
opreservation resulted in significant improvements in survival, motility, and mitochondrial
integrity after thawing as compared to an untreated control [142,143]. Paasch et al. (2003)
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compared binding between known infertile patients and donors and found that infertile
patients had much higher binding rates to the Annexin-V MNP with strong specificity for
apoptotic cells. In another human clinical trial, Annexin-V MACS and DGC selection com-
bined was the most optimal method of selecting sperm with improved motility, viability,
and morphology, and a reduction in early apoptotic markers, over that of DGC alone or
MACS alone [145].

In animals, MACS has been used in pigs to remove both apoptotic and acrosome
reacted spermatozoa via MNP conjugated with Annexin-V and Lectin, respectively [139].
MACS selection resulted in an enriched motile population, and no negative effects have
been observed when negatively selected sperm were used for AI, which negates concerns
over potential toxicities of nanoparticles in sows [139,146]. In donkeys, peanut agglutinin
(PNA)-lectin conjugated nanoparticles have been used to remove acrosome damaged
spermatozoa, while simultaneously improving progressive motility, and in some cases
membrane viability [141]. Additionally, MACS has been proposed as an alternative to
flow cytometry sex sorting and has been successfully used to enrich the population of X
spermatozoa with 90% accuracy [147]. MACS sex-sorted semen also demonstrated good
viability and motility without premature capacitation or DNA damage [147]. MACS has
not been widely used in the equine breeding industry but may be suitable for stallions
with subfertility.

2.8. Zeta Potential Selection

Another novel sperm selection technique is the zeta potential sorting method. In
humans, a greater net negative zeta potential, has also been reported in mature, mor-
phologically normal, DNA intact sperm, thus making zeta potential a potential marker
of sperm quality, or fertilization potential as well as playing a functional role in in vivo
selection [148–156]. As described in Section I of this review, zeta potential is the electro-
static potential at the slipping plane of the cell and is an estimation of the surface charge
of the cell [152,157]. Due to the nature of zeta potential measurements being dependent
on fluid dynamics, there is no defined optimal measurement for this parameter. There-
fore, zeta potential measures must be performed under identical conditions in order to
be compared. For example, a sample with a greater net negative charge is theorized to
be better quality than a sample with a more positive zeta potential under identical condi-
tions. Thus, membrane charge is both a revealing and complex trait to accurately measure
and interpret.

Regardless of complexity, several selection methods have been developed in order to
separate sperm based on membrane surface charge [151,154,156]. An existing zeta potential-
based selection method involves inducing a positive charge on a glass centrifuge tube using
friction and allowing the more negatively charged spermatozoa to bind. This method has
been used in human IVF to successfully select sperm with overall improved DNA integrity,
morphology, and protamine content compared to unprocessed semen [153,155]. In turn, this
resulted in improved fertilization and pregnancy rates [150,153,154,156]. In another study,
selection of human spermatozoa based on morphology, motility, and viability resulted in a
significantly increased net negative charge of the sample; for example, morphologically
normal semen possessed an average zeta potential of −7.79 mV whereas morphologically
abnormal semen read an average −5.37 mV [149]. An alternative method of zeta quality
selection utilizes electrophoresis to drive the movement and isolation of high-quality
spermatozoa that also possess a greater net negative charge. Subsequently, this method
is able to improve measures of morphology, and select against spermatozoa with DNA
damage, although motility and viability parameters did not change significantly from the
original sample [150]. The selection of high-quality equine semen based on zeta potential
has yet to be reported, and could have pronounced effects on outcomes of equine IVP.
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3. Sexing Semen

Selection of spermatozoa based on the presence of an X or Y chromosome is of
significant interest for many species [116]. Although not used in human applications, sex
selection is especially important in equine and agricultural industries where female or male
phenotypes may be better suited for sporting or production outcomes, as well as appealing
to owner preferences. In horses specifically, female or male phenotypes are desirable in
different forms of recreation [116]. For example, females are used almost exclusively in
Polo sports and are also the preferred sex to be used as cutting horses and in Quarter
horse racing [117]. However, males are more desirable as reining horses, and are preferred
for Thoroughbred racing, dressage, and show jumping, as well as fetching higher prices
at Thoroughbred auctions [116,158–160]. In addition, the ability to determine fetal sex
may aid in making key breeding management decisions, as well as make it easier to sell
pregnancies with known fetal sex for a higher price [116]. Due to the strong preferences of
many industries for one sex or the other, it is of key interest to be able to pre-determine
sex, primarily starting with sexed semen. However, in order to select for one sex or the
other, clinicians must rely on the physiological differences between X and Y chromosome
bearing spermatozoa.

Although X and Y spermatozoa are essentially equivalent in regard to functionality,
there are notable differences. Most notably, the human X spermatozoa contains approxi-
mately 2.8% more genetic material than the Y spermatozoa, and differences for livestock
species range 3–4.2% [161]. This principle has become the foundation for sex sorting with
flow cytometry.

Currently, flow cytometry is the only vetted method for separation of X and Y
chromosome-bearing spermatozoa. Sex sorting with flow cytometry utilizes the Hoescht
33342 fluorescence stain (which preferentially binds to adenine-thymine (AT) rich regions
along the minor groove of DNA) to categorize individual sperm based on differences in sex
chromosome mass (as reviewed by [113,117,121]). Sperm are individually run through the
flow cytometer, and their respective droplet is charged according to relative fluorescence
and separated [115]. Sex selection using flow cytometry has been successful in separating
X- and Y-bearing sperm from a variety of species (as reviewed by [113]. In horses, sexing
technologies have been used to produce live foals, sexed with over 90% accuracy [114–117].

Although various technical advancements have been made with flow sorting, the
method is inefficient in producing doses adequate for AI and can cause damage to the sperm
including reduced motility, generation of reactive oxygen species, acrosomal and mem-
brane damage, and reduced longevity of the sperm (as reviewed by [115,117,119,121,162]).
This results in pregnancy rates as low as 10–50% [114,158,163,164]. Injury to the sperm
cells may be due to a number of the following: staining, high pressure flow, charging,
deflection, and specific handling methods. These effects are worsened in frozen-thawed
samples, making flow sorting undesirable for procedures such as ICSI, where frozen-
thawed samples are primarily used [113,115,116,119,165,166]. Additionally, flow cytometry
is expensive and time consuming, making it unappealing or inaccessible to many commer-
cial operations [115,116,121]. In stallions the unique head shape of spermatozoa, makes
distinguishability of X and Y-sperm difficult, and significant variation between individuals
has prevented the optimization of the method [117,119,167]. Therefore, the development
of an alternative sexing method that reduces sperm injury and is more affordable and
practical for the equine industry and individual consumers would be beneficial.

Interestingly, some studies with human sperm have revealed that the zeta potential
quality selection method has a selection bias for X-chromosome sperm [157], although
others have observed no sex-bias in electrophoretic selection [168]. This implies that using
this technique in horses might lead to a bias towards XX embryos, which could be beneficial
in industries such as polo in which females are more desirable. Specifically, in a comparison
between DGC and a combined DGC/zeta potential selection method prior to human ICSI,
the DGC/zeta potential selected group resulted in 63.6% of XX babies delivered, whereas
the DGC-only group only resulted in 38.5% of XX babies [157].
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An altered sex ratio during electrophoretic sorting aligns with observations of a
membrane charge differential between X- and Y-chromosome bearing spermatozoa; with
X-chromosome bearing human sperm exhibiting approximately a −20 mV charge and Y-
chromosome bearing human sperm exhibiting a charge of −16 mV [152,157]. Thus, several
methods utilizing zeta potential as a basis for sex-sorting semen have been developed and
are reviewed in this section.

Zeta potential sex-selection techniques include electrophoretic separation, in which
fluid flow mediates sperm to swim perpendicular to an electric field. This method has been
able to separate spermatozoa with a population containing almost 80% X-chromosome
bearing spermatozoa [169]. Using free-flow electrophoresis, X and Y spermatozoa from
humans, mice, and bulls have been successfully separated based on this external charge
differential [170–172]. However, due to the increased net negative charge in X chromosome-
bearing sperm, there have been observed biases towards the selection of X chromosome-
bearing sperm due to their increased electrophoretic mobility [169,170]. A later study
called the method of sex-chromosome identification via electrophoresis into question, and
reported no differences in sex ratio when using electrophoretic separation [168]. No data
regarding differences in zeta potential between X and Y chromosome-bearing sperm in
horses has been reported.

Another recent study in donkeys observed that X chromosome bearing sperm could
be successfully isolated with 90 ± 5% accuracy based on the membrane zeta potential
differential between sexes and a subsequent specificity when conjugated directly to MNP
under precise conditions [147]. This study utilized a modified MACS technique in which
MNP were adhered to the surfaces of Y-spermatozoa using specific environmental con-
ditions and negatively selected for X-spermatozoa [147]. Collectively, this suggests that
sperm sex chromosome-dependent membrane potential, despite the poor understanding
of its mechanisms, is a conserved trait across species and can be used for sex selection with
equine sperm.

Regardless of the apparent conservation of sex chromosome-dependent sperm charges
across species, it is unfortunate that sperm membrane charges are subject to change under
a variety of physiological processes and environmental conditions. Sperm membrane
composition and charge are known to change and increase, respectively, during capacitation
and acrosome reaction [148,173]. It is not uncommon to see premature capacitation, or
capacitation-like changes, in cryopreserved semen, and capacitation can be artificially
induced using media components [174]. In addition, the interaction between sperm and
specific fluids and medias may promote alternative membrane changes which can alter
the surface charge [175–177]. Therefore, it is necessary to be consistent and critical when
measuring and interpreting sperm zeta potential measures, particularly when trying to
characterize minute differences between X- and Y-bearing sperm.

4. Conclusions

Although a variety of techniques exist to separate and select for spermatozoa based on
quality and viability, as well as sex chromosome, not all methods have yet been translated
to the equine industry. As the implementation of IVP in horses expands, so does the need
for highly affordable and efficient semen selection techniques. The inconsistent efficacy
of traditional sperm selection methods, such as SU and DGC, presents a barrier to the
optimization of IVP. The introduction of techniques, such as MF, that are used clinically
in other species may consequently improve IVP in the horse. There is also a need to
assess the efficacy of newly developed sperm selection methods, such as viability sorting
with MNP, zeta potential quality sorting, and zeta potential sex sorting, in the stallion to
determine their potential for use in clinical settings. Ultimately, the rapid expansion of
novel semen selection techniques provides many opportunities for improved fertilization,
embryo development, and pregnancy rates within the equine breeding industry over the
following decade.
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