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Abstract
Background:This article represents a newmethod of classifying the heart sound status using the loudness features from the heart
sound.

Materials andmethods: The method includes the following 3 main steps. First, the heart sound, which is usually found noisy, is
heavily filtered by a 6th-order Chebyshev-I filter. The heart sound is then segmented using the event synchronousmethod to separate
the sounds into the first heart sound, the systole and the second heart sound, the diastole. In the second step, the heart sound
features namely maximum loudness index and minimum loudness index are obtained from the spectrogram of the sound by taking
the row means. As a third step, the heart sound is classified using the Gaussian mixture model approach to categorize the sounds.

Results: This method has been tested on a very large database of heart sounds consisting of over 3000 heart sounds recordings
with a success rate of 97.77%.

Conclusion: Only 2 features are used in this method namely, minimum loudness index and maximum loudness index.
Classification of sounds using these 2 features yields high accuracy even under noisy conditions and is comparable to any state-of-
the-art technique.

Abbreviations: ANN = Artificial Neural Network, ECG = electrocardiogram, EM = Expectation Maximization, GMM = Gaussian
mixture model, GTSVM= growing time support vector machine, HMM= hidden Markov model, kNN = K nearest neighbour, LSSVM
= least square support vector machine, PCA= principal component analysis, PCG= phonocardiogram, TQWT= Tunable QWavelet
Transform.
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Introduction

Heart diseases that include valve disorders are one of the main
leading causes of death. Heart sounds result from electromechani-
cal activity of heart during each heartbeat.1 Heart valves produce
time varying low-frequency transient signals in case of normal
heart sounds. Pathological cardiac soundsormurmurs2 result from
the turbulence in blood flow through stenosis or regurgitation
through the cardiac valves. The automatic classification of
pathology in heart sounds has been described in the literature
for over 50 years, but accurate diagnosis remains a significant
challenge. Gerbarg et al3 were the first to publish on the automatic
classification of pathology in heart sounds (specifically to aid the
identification of children with rheumatic heart disease) and used a
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threshold-based method. The methods for heart sound classifica-
tion are grouped into 4 categories: (1) artificial neural network
(ANN)-based classification; (2) support vector machine-based
classification; (3) hidden Markov model (HMM)-based classifica-
tion; and (4) clustering-based classification. The current prominent
works in this field are summarized in Table 1. The important notes
about the evaluation of the method, such as whether the data were
split into training and test sets, are also reported. For relative
brevity, only the notable studies with sizeable datasets are
summarized in detail below. Uguz4 used ANN with the features
from a discrete wavelet transform and a fuzzy logic approach to
perform 3-class classification: normal, pulmonary stenosis, and
mitral stenosis. With a 50–50 train–test split of the dataset of 120
subjects, they reported 100% sensitivity, 95.24% specificity, and
98.33% average accuracy for the 3 classes. Uguz5 also used time–
frequency as an input to an ANN. A total of 120 heart sound
recordings, split 50–50 into train–test, was used. They reported
90.48% sensitivity, 97.44% specificity, and 95%accuracy for a 3-
class classification problem (normal, pulmonary, and mitral
stenosis heart valve diseases). Ari et al6 used a least square
support vector machines (LSSVM) method for classification of
normal and pathological heart sounds based on the wavelet
features. The performance of the proposed method was evaluated
on 64 recordings comprising of normal and abnormal cases. The
LSSVMwas trained and tested ona50–50 split (32patients in each
set) and the authors have reported an 86.72% accuracy on their
test dataset. Zheng et al7 decomposed heart sounds using wavelet
packets and then extracted fraction of the energy and sample
entropy as features for the support vector machines (SVM) input.
They tested on40normal and 67 abnormal patients and reported a
97.17% accuracy, 93.48% sensitivity, and 98.55% specificity.
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Table 1

Comparative results of previous classification methods

Author Database
Recording
length

Classification
method Features Se, % Sp, % Acc, % Notes

Uguz4 40 normal, 40 pulmonary,
and 40 mitral stenosis

— ANN Wavelet; large number of
features (>2)

100 95.24 98.33 50–50 train–test split; no
cross-validation; small
database; no dimension
reduction

Uguz5 40 normal, 40 pulmonary,
and 40 mitral stenosis

— ANN Time–frequency; large number
of features (>2)

90.48 97.44 95 50–50 train–test splits; no
cross-validation; small
database; no dimension
reduction

Ari et al6 64 patients (normal
and pathological)

Each 8
cycles

SVM Wavelet; no of features=100 — — 86.72 50–50 train–test splits; no
cross-validation; medium
accuracy; no dimension
reduction

Zheng et al7 40 normal and 67 pathological — SVM Wavelet; no of features=250 93.48 98.55 97.17 Cross-validation; no effective
splitting of dataset

Patidar et al8 Total 4628 heart cycles, 626 normal
and 4002 pathological

— SVM Wavelet; no of features=180 98.8 99.3 98.9 80% training; 20% test; no
cross-validation

Gharehbaghi et al9 30 normal, 26 innocent,
and 30 AS

Each 10
seconds

SVM Frequency; no of features=25 86.4 89.3 — 50–50 train–test split; no
cross-validation

Saracoglu10 40 normal, 40 pulmonary,
and 40 mitral stenosis

— HMM DFT and PCA 95 98.8 97.5 50–50 train–test split

Quiceno-Manrique
et al11

16 normal and 6 pathological — kNN Time–frequency; no of
features not specified

— — 98 Cross-validation

Avendano-Valencia
et al12

26 normal and 19 pathological — kNN Time–frequency; no of
features not specified

99.56 98.45 99.0 Cross-validation

Karar et al13 3 sets for normal healthy heart
and 19 sets represent
3 cases of heart abnormalities 4,
10, and 5 datasets
for AS, AI, and VSD, respectively

— SVM Maximum Lyapunov
exponents

Normal: 100
VSD: 80
AS: 100
AI: 100

Normal: 100
VSD: 100
AS: 100
AI: 91.67

Normal: 100
VSD: 95.45
AS: 100
AI: 95.45

Small database; no train–test
split specified; cross-
validation

Shervegar and Bhat18 3000 sounds both normal
and pathological

3–50 GMM Loudness index; no of
features=2

97.76 97.76 97.77 Large database; 50–50
training and test split

AI= aortic insufficiency, ANN=Artificial Neural Network, AS= aortic stenosis, DFT=discrete fourier transform, GMM=Gaussian mixture model, HMM=hidden Markov model, kNN=K nearest neighbour,
PCA=principal component analysis, SVM= support vector machines, VSD= ventricular septal defect.
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Patidar et al used the tunable-Q wavelet transform as an input to
LSSVMwith varying kernel functions. They used a dataset of 4628
cycles from 163 patient heart sound recordings (and an unknown
number of patients) and reported a 98.8% sensitivity and 99.3%
specificity, but without stratifying patients (having mutually
exclusive patients in testing and training sets), and therefore
overfitting to their data. Gharehbaghi et al9 used frequency band
power over varying length frames during systole as input features.
They used a growing-time SVM to classify pathological and
innocent murmurs. When using a 50–50 train–test split (from a
total of 30 patients with aortic stenosis (AS), 26 with innocent
murmurs, and 30 normals), they showed 86.4% sensitivity and
89.3% specificity. Saracoglu10 applied an HMM in an unconven-
tional manner. They fitted an HMM to the frequency spectrum
extracted from entire heart cycles. The exact classification
procedure of using the HMMs is unclear, but it is thought that
they trained4HMMs,and then evaluated theposterior probability
of the features given each model to classify the recordings. They
optimized the HMM parameters and principal component
analysis-based feature selection on a training set and reported
95% sensitivity, 98.8% specificity, and 97.5% accuracy on a test
dataset of60 recordings.Quiceno-Manrique et al11useda simpleK
nearest neighbour (kNN) classifier with features from various
time–frequency representations. They applied them on a subset of
16 normal and 6 pathological patients. They reported 98%
accuracy for discriminating between normal and pathologic beats.
However, the kNNclassifier parameterswere optimizedon the test
set, indicating a likelihood of over-training. Avendano-Valencia
et al12 also used time–frequency features and kNN classification
approach for identifying normal and murmur patients. In order to
extract the relevant time–frequency features, 2 specific approaches
for dimensionality reduction were presented in their method
namely feature extraction by linear decomposition, and tiling
2

partition of the time–frequency plane. The experiments were
carried out using 26 normal and 19 abnormal recordings and they
reported an average accuracy of 99.0%when using 11-fold cross-
validation with grid-based dimensionality reduction. Karar et al13

segmented the heart sound using the time domain properties of the
heart sound signal. Then, the segmented cycle was preprocessed
with the discrete wavelet transform and then largest Lyapunov
exponents were calculated to generate the dynamical features of
heart sound time series. Finally, a rule-based classification tree was
fed by these Lyapunov exponents to give the final decision of the
heart health status. The developed method was tested successfully
on22datasets ofnormalheart soundsandmurmurs (they include3
sets for normal healthy heart and 19 sets represented 3 cases of
heart abnormalities, which divided into 4, 10, and 5 datasets for
AS, aortic insufficiency, and ventricular septal defect, respectively)
with success rate of 95.5%. Nabih-Ali et al14 in their review paper
made a mention about the approaches taken by different authors
using various techniques for effective de-noising, segmentation,
and classification of heart sounds and their advantages and
disadvantages.
In our work, heart sounds have been classified by using the

loudness index features obtained using spectrogram. The
maximum and minimum values of the loudness index have been
used for classification. With just only 2 features we obtained a
high degree of classification with an accuracy of 97.77% even
under noisy conditions.
Materials and methods

A very large dataset of heart sounds available from the Physionet
database is used in this study.15 The heart sound is subjected to
the following preprocessing steps such as de-noising and
normalization.
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Heart sound de-noising

Heart sound obtained using diagnostic tools are usually contami-
natedwithnoise fromvarious sources.These soundshinder the early
detection of mild heart sounds in the phonocardiogram. So filtering
of noise to remove such artifacts becomes essential. This should be
done at the cost of preserving all diagnostic information required for
analysis of the phonocardiogram, but removing all unwanted
entities called noise. The heart sound is taken from the Physionet
database15 is contaminated with various types of noises. The heart
sound selected is heavilyfiltered to remove themaximumnoise from
the sound. A 6th-order Chebyshev low-pass filter with cut-off
frequency of 140Hz is used for this purpose. The noises are in high
frequencies while the diagnostic information is in low frequencies.
Filtering removes the high-frequency noise. The filtered heart sound
is then put through the second phase of analysis namely
segmentation. The filtered heart sound is adjusted to the required
sound amplitude levels by normalizing. The normalizing is done by
dividing eachheart sound sampleby themaximumvalueof theheart
sound sample in each heart sound.
Segmentation of heart sounds

After de-noising and normalization of heart sound the phono-
cardiogram is segmented by events synchronous method. Some
previous studies have used the electrocardiogram recordings to
segment the heart sounds.1 However, these signals are not
available all the time along with the PCG collections data.
Spectrum analysis has been used to separate the original heart
sound signals into individual cycles, such that these signals are
down sampled by a factor of 4 that gives the highest power of the
first and second heart sounds (S1 and S2) in each cycle using
Daubechies 4 and 5 wavelet coefficients (DUB4 and 5),
respectively.16 Segmentation based on cycle frequency and
dynamic clustering in time–frequency domains has also been
observed.17 We have addressed the procedure for segmentation
of heart sound using the event synchronous method.18 This
method is much simpler compared with other methods
mentioned in the literature and is computationally more efficient
and cheaper. Figure 1 shows the segmented heart sound for an
Figure 1. Segmented heart sound (blue) and s
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abnormal heart sound taken from the Physionet database. The
boundaries and the heart sounds are clearly distinguishable. A
brief step-by-step procedure utilized is explained here: (1)
Spectrogram, is obtained from the cardiac sound signal, at
roughly 3 ms window. (2) For a better interpretation of heart
sound murmur pitch and loudness the spectrogram is converted
into bark scale and then smoothened using a hanning window.19

(3) The sensation of loudness is derived from the spectrogram by
summing the amplitudes of all frequency bands of the sound:

LdBðtÞ ¼
PN

k¼1 EkðtÞ
N

ð1Þ

where Ek represents the magnitude of the kth frequency band
present in the spectrogram. There is a total of N such bands. (4)
Event detection function is found by differentiating the loudness
index function to obtain peaks that correspond to the onset and
offset transients. (5) Systole and diastole are recognized by their
durations with systole being shorter than the diastole. (6) A single
cardiac cycle is obtained from the segmentation of all sounds.
Feature extraction

Extraction of loudness features. It is known from auscultation
and also from the literature that there exists silence period in the
normal heart sounds namely systole and diastole where the
intensity of the sound is minimal. In patients suffering from valve
disorders such as stenosis and regurgitation certain high pitch
sounds are also audible. These sounds have less loudness (grade 1
to grade 4 sounds) compared with the first and second heart
sounds. For grade 5 and grade 6 abnormal sounds, the loudness is
muchmore than the first and second heart sounds.More energy is
concentrated in the systoles and diastoles of abnormal sounds
than the normal ones. Clearly loudness index is a measure than
can be possibly used to identify and distinguish heart sounds with
various indices. To determine the features for classification we
repeat the steps mentioned in the previous stage, namely 1 to 3.
Maximum and minimum values of the heart sound loudness
index are found and are used as the 2 features for the
egmentation boundaries (S1 red, S2 green).

http://www.portobiomedicaljournal.com


Figure 2. Normal heart sound and the loudness curve.
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classification of these sounds. Maximum loudness indices are
high for abnormal sounds while the minimum loudness indices
are low for normal sounds. Figure 2 shows a single normal
cardiac cycle with loudness function. Figure 3 shows a single
abnormal cardiac cycle with loudness function. Sharp peaks
corresponding to murmurs are visible in the abnormal sounds.

Classification of heart sounds using Gaussian mixture
model

The literature survey revealsmany classificationmethodologies used
for heart sound classification as listed in Table 1. Euclidean distance
(or in general, Minkowski distance) is the most commonly used
distance metric. The drawback of this Euclidean metric is that the
largest scaled feature gets dominated. Solution to this problem could
be normalization of the continuous features to a common range of
variance. Another drawback of Euclidean metric is that linear
correlation between features can distort the distance metric.
Euclidean distance always gives hyper-spheroid clusters. Mahala-
nobis distance, used inGaussianmixturemodel (GMM), is expected
Figure 3. Abnormal heart so
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to overcome all the above limitations where it provides hyper-
ellipsoidal clusters. The database consisting of 2 sound types is
assumed to be generated by the 2Gaussian processes (of course each
Gaussian could have been generated bymany biochemical processes
inside the heart having arbitrary stochastic distribution). Therefore,
the entropy of the resultant distribution tries to become highest.
Hence, the resultant distribution is Gaussian, which is having the
maximum entropy among any other possible stochastic distribu-
tions. The probability distribution function (pdf) is given by Eq. (2).

PðxnjgÞ ¼ 1

ð2pÞd=2jSj1=2
exp� 1

2
ðx� xÞTS�1ðx� xÞ ð2Þ

where d is the dimensionality. ML estimators of m and are
computed by

x ¼ 1
N

ðSnxnÞ ð3Þ
ð4Þ
und with loudness curve.
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The objective function is formed given by Eq. (2), by summing
the class conditional density over all the classes for a feature in the
feature vector; and again taking the product for all the features,
assuming the features are linearly independent. Such likelihood-
based objective function for optimization is maximized by EM20

algorithm. It is a nonlinear optimization method. It optimizes the
log likelihood over the entire feature space, including both
observed data and hidden information embedded in the data. The
EM algorithm consists of Expectation step (E-step) and
Maximization step (M-step). In E-step, the posterior density
based on conditional density using Bayes rule21 is computed. In
the M-step, the initial model is replaced with a new model which
is a better one to represent the features such that the log likelihood
is more than that of the previous iteration. The iterations are
repeated until the new estimate will give same model and there
will not be any improvement in the model. The algorithm is
briefly described here:
Input: A set of N feature vectors E ¼ x1; x2; . . . ; xNmodel

structure L ¼ mk;Sk;ak; k ¼ 1; . . . ;K, where m’s and ’s are
parameters for the Gaussian models and a’s are prior parameters
subject to ak ≥ 0; 8k andSkak ¼ 1.
Output: Trained model parameters L that maximizes the data

likelihood

PðEjLÞ ¼ PnSkakpðxnjlkÞ ð5Þ

And, a partition of data vectors given by the cluster identity
vector Y = {y1, . . . , yN}, yn ∊ {1, . . . , K}.
Steps:
1.
2.
w

(Initialization) Initialize the model parameters L.
(E-step) The posterior probability of model k, given a data

vector xn and current model parameters L, is estimated as

Pðkjxn;LÞ ¼ akpðxkjlkÞ
SjajpðxnjlkÞ

ð6Þ

here the pdf p(ejl) is given in Eq. (2)
(M-step) TheML re-estimation of model parametersL is given
3.

by

m
ðnewÞ
k ¼ SnPðkjxn;LÞxn

SnPðkjxn;LÞ ð7Þ
S
ðnewÞ
k ¼ SnPðkjxnLÞðxn � xnÞðxn � xnÞT

SnPðkjxn;LÞ ð8Þ

a
ðnewÞ
k ¼ 1

N
SnPðkjxn;LÞ ð9Þ

(Stop) If P(EjL) converges; otherwise go back to Step 2; for
4.
Figure 4. EM plot of all observations (green: normal sounds, yellow: abnormal
sounds).
each data vector xn, set

yn ¼ argkmaxðakpðxnjlkÞÞ ð10Þ

Results

The heart sounds are selected from the Physionet database and
are subjected to preprocessing steps namely filtering by using a
6th-order type 1 Chebyshev filter. The heart sounds are heavily
filtered to remove maximum noise from the heart sounds (as
discussed in the “Heart sound de-noising” section). The filtered
heart sounds are then segmented using the event synchronous
method to extract a single cardiac cycle of each heart sound (as
5

discussed in the “Segmentation of heart sounds” section) and
shown in Figure 1. The loudness features are extracted from the
spectrogram of a single cardiac cycle (as discussed in “Feature
extraction” section) of the normal heart sound as shown in
Figure 2. The same is repeated for abnormal sounds as shown in
Figure 3. The heart sounds are then classified for pathology using
GMM-based classifier. The classification results in 2 clusters of
abnormal and normal heart sounds as shown in Figure 4.

Discussion

Database used

Heart sounds present in the Physionet heart sound database1

were taken from several people around the world, collected at
either a clinical or nonclinical environment, from pathological
patients. The Challenge training set consists of 5 databases (A
through E) containing a total of over 3000 heart sound
recordings. The duration of heart sound varies from 5seconds
to just over 120seconds. The heart sound recordings were
obtained from different locations on the body. Four locations
used for acquisition are aortic area, pulmonic area, tricuspid area,
andmitral area. Abnormal heart sounds were taken from patients
with a confirmed cardiac diagnosis. The patients suffered from a
variety of illnesses such as heart valve defects and coronary artery
disease. Heart valve defects cover mitral valve prolapse, mitral
regurgitation, AS, and valvular surgery. Pathological patients
included both children and adults. Each subject/patient has
contributed between 1 and 6 heart sound recordings. All
recordings have a sampling rate of 2000Hz and are in.wav
format.
Classification of heart sounds

The heart sounds are selected from the Physionet database and
preprocessed by passing the sounds through a 6th-order type 1
Chebyshev filter to remove the redundant noise. The heart sounds
are normalized in the range [�1,1]. The normalized heart sounds
are processed using the event synchronous segmentation
procedure. This results in cycles of heartbeat of approximately
3 seconds duration. Two datasets are formed consisting of
abnormal and normal heart sounds apiece, using the sounds in

http://www.portobiomedicaljournal.com


Figure 5. Log-likelihood variations versus iterations.

Table 2

Scoring of all sounds

Sounds TP TN FP FN Se, % Sp, % Acc, %

Normal 107 112 0 5 95.53 100 97.77
Abnormal 112 107 5 0 100 95.53 97.77
Total 219 219 5 5 97.76 97.76 97.77
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the Physionet database. In each of the datasets, 2 groupings are
done one for training set and the other for test set; 50% of the
dataset sounds make up the training set while the remaining 50%
sounds make up the test set. The sounds are then clustered using
the GMM classifier. Figure 5 shows the log-likelihood function
plot for the sounds. The function is a negative function and it
increases steadily and then stabilizes to a constant value for a
total of 101 iterations. Figure 6 shows the scatter plot of all
sounds. Two features were used the minimum loudness along x-
axis andmaximum loudness along y-axis. Figure 6 shows the EM
plot of all sounds. The points in yellow are the abnormal sounds
with higher loudness values while the sounds in green are the
normal sounds with lower loudness values. The centroids are also
shown and the ellipse represents the points closer to the centroid.
A total of 112 sounds of each type: abnormal and normal were
used for training purpose. Similarly, 112 sounds of each type
were used for testing purpose as well. Out of 112 sounds, 5
sounds in normal dataset misclassified as abnormal sounds due to
the presence of noise that remained even after filtering. This is
shown in Table 2. Both normal sounds and abnormal sounds
Figure 6. Scatter plot of all observations (yellow circles).
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gave a similar accuracy of 97.77%. So the overall accuracy was
100%. The sensitivity of normal sounds was 95.33%, while the
abnormal sounds gave 100%. The specificity of normal sounds
was 100%, while the abnormal sounds gave 95.33%. This gave
an overall sensitivity and specificity of 97.76%. The scoring is
calculated to training set A. We generalize the same for the
remaining sets B, C, D, E, and F.

Conclusion

In this article, GMM-based classifier is presented for heart sound
classification after preprocessing and segmenting the heart sound.
The classification scheme is based on the maximum and
minimum loudness indices extracted from the spectrogram of
the heart sound. GMM overcomes the limitations of Euclidean
metric even though the dataset has different range of variations.
The model scales down the data to zero mean and unit variance.
This study highlights that classification of heart sound using
GMM classifier is comparable to a state-of-the-art classifier with
high accuracy of 97.77%. The accuracy exceeds the performance
of other classifiers mentioned in the literature, considering the
large dataset used in this work.
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