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ABSTRACT

Cell-cell interactions are the fundamental building
blocks of tissue organization and multicellular life.
We developed Neighbor-seq, a method to identify
and annotate the architecture of direct cell–cell inter-
actions and relevant ligand–receptor signaling from
the undissociated cell fractions in massively parallel
single cell sequencing data. Neighbor-seq accurately
identifies microanatomical features of diverse tissue
types such as the small intestinal epithelium, termi-
nal respiratory tract, and splenic white pulp. It also
captures the differing topologies of cancer-immune-
stromal cell communications in pancreatic and skin
tumors, which are consistent with the patterns ob-
served in spatial transcriptomic data. Neighbor-seq
is fast and scalable. It draws inferences from routine
single-cell data and does not require prior knowledge
about sample cell-types or multiplets. Neighbor-seq
provides a framework to study the organ-level cellu-
lar interactome in health and disease, bridging the
gap between single-cell and spatial transcriptomics.

GRAPHICAL ABSTRACT

INTRODUCTION

The spatial context of cells in a tissue and their result-
ing cell–cell communications influence numerous processes,

including cellular differentiation, organ development and
homeostasis, and immune interactions in disease (1). Few
high-throughput methods exist that can resolve direct cellu-
lar communications in vivo at single-cell resolution. Single-
cell RNA sequencing (scRNA-seq) can identify cell-types
and states in heterogeneous tissues, but the tissue structure
is largely destroyed in the process (2). Microscopy-based
methods such as RNAscope and FISH can interrogate only
preselected genes at high spatial resolution. Spatial tran-
scriptomics allows profiling of microscopic regions, but still
samples 10–100 cells per region (3,4). Sequencing of par-
tially dissociated tissues and subsequent multiplet decon-
volution permits inference of physical cell interactions, but
this requires specialized experimental modifications (5–8).
A general method that can infer direct cell–cell interactions
and concurrent transcriptomic changes in vivo at single cell
resolution would provide unprecedented insight into the
building blocks of tissue architecture in healthy and dis-
eased tissues.

Cell aggregates (multiplets) naturally arise in scRNA-seq
experiments when two or more cells are captured in the
same reaction droplet, and they typically represent at least
several percent of all capture events (9,10). Such multiplets
occur primarily due to incomplete tissue dissociation (6),
or occasionally by random co-encapsulation. We developed
Neighbor-seq, a method to infer physical cell–cell commu-
nications by identifying, annotating, and analyzing cell mul-
tiplets from the undissociated cell fractions in scRNA-seq
data using computational approaches (see Methods, Fig-
ure 1A). Neighbor-seq provides a framework to study the
cellular interactome in health and disease using standard
scRNA-seq data.

MATERIALS AND METHODS

Neighbor-seq algorithm

Neighbor-seq is a method to infer physical cell–cell com-
munications by identifying, annotating and analyzing cell
multiplets from the undissociated cell fractions in scRNA-
seq data using machine learning approaches. The Neighbor-
seq algorithm consists of the following components, each
further described below: (i) barcode clustering and marker
gene identification, (ii) Random Forest classifier training to
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Figure 1. Benchmarking cell neighbor detection and annotation. (A) A schematic representation of the Neighbor-seq workflow. (B) Uniform manifold
approximation and projection (UMAP) of barcode RNA sequencing data singlets and multiplets of known composition from three cancer cell lines,
colored by cell-type identities and shaped by the number of cells per barcode. (C) Neighbor-seq barcode composition annotation performance of cell-
line barcodes in (B), plotted by known barcode type. AUC = area under the receiver operator curve. (D) Benchmarking Neighbor-seq doublet detection
against nine other methods using 16 datasets of diverse tissue types with experimentally annotated doublets (see Supplementary Table S1). Among these
methods, only Neighbor-seq is explicitly optimized to infer doublet composition. Comparison of singlet vs. doublet classification area under the receiver
operator curve (AUROC) distributions are shown. Boxplots show median (line), 25th and 75th percentiles (box) and 1.5× IQR (whiskers). Points represent
outliers. (E) Comparison of the number of co-expressed ligand–receptor pairs in enriched (statistically significant) doublet types, not enriched doublets,
and random synthetic doublets from the benchmarking studies in (D). Descriptions of the boxplots are as in (D). (Wilcoxon tests, ****P < 0.0001. See
also Supplementary Figure S1B, C). (F) Neighbor-seq example receiver operator curve for classifying artificial multiplet types in the cline-ch study, one
of the benchmark studies used in (D). AUC, area under the curve. (G) Robustness of cell neighbor type annotation. Comparison of the distribution of
coefficients of variation for neighbor type counts from the cline-ch benchmark dataset across n = 10 runs of Neighbor-seq and scDblFinder (Wilcoxon
test, boxplots as in (D)).

identify multiplets and their cell type compositions, (iii) cal-
culating enrichment scores for cell–cell interactions and (iv)
construction of cell–cell interactome network and analysis
of cell-neighbor transcriptomes, including ligand–receptor
interactions (Supplementary Figure S4).

Input and cell type identification. The input for Neighbor-
seq is a cell by gene counts matrix, and optionally, cell-type

cluster labels. If cell-type labels are not provided, Neighbor-
seq utilizes a wrapper function to run Seurat (11) functions
that TP10K normalize and scale the scRNA-seq data, find
a default of 5000 variable genes, perform principle compo-
nent analysis with n = 50 components, and identify cell type
clusters. Cell-type marker genes are then identified using the
FindAllMarkers function using a default of 200 cells sub-
sampled for each cluster, an average log fold change thresh-



PAGE 3 OF 14 Nucleic Acids Research, 2022, Vol. 50, No. 14 e82

old cutoff of 1, and minimum fraction of cells expressing a
gene of 0.2 for computational efficiency. If cell-type labels
are known a priori, only normalization and marker finding
functions are run.

Random forest classifier training. Next, all homotypic and
heterotypic combinations for a default of two cell-types are
enumerated (e.g. AA, AB, etc.). Cells forming a doublet
or multiplet are hereon referred to as ‘neighbors’, and the
‘neighbor-type’ indicates the identities of the 2+ cells on
a single barcode. For each neighbor-type, artificial multi-
plets are created by randomly sampling cells from the con-
stituent cell types and the prepared input gene by cell ma-
trix and summing their gene counts. A random forest is then
trained using a balanced set of singlets and artificial multi-
plets to predict the cell type composition of the barcodes
from the assembled dataset. Although the majority of bar-
codes are expected to contain single cells, a balanced train-
ing set is used to increase random forest prediction accu-
racy. As such, a default of 100 artificial multiplets is cre-
ated for each neighbor-type, and these are pooled with a
default of 100 singlets from each originally identified cell-
type to create the training set. A random forest trained,
and hold-out artificial multiplets data are used to assess
random forest performance. The multiROC R package is
used to compute receiver operator curves. The process is
iterated multiple times to retrain and generate an ensem-
ble annotation result. The trained random forest is then
used to predict the barcode composition of all barcodes in
the original dataset. Two random forest implementations
are incorporated in Neighbor-seq: the randomForest (12)
R package, run with a default of 500 trees, and a faster im-
plementation via the xgboost (13) R package, configured
with the following parameters: objective = multi:softprob,
eval metric = mlogloss, nround = 1, max depth = 20,
num parallel tree = 200, subsample = 0.632, colsam-
ple bytree = sqrt(number cells)/total number of cells, and
colsample bynode = sqrt(number of cells)/total number
of cell. The faster implementation is preferred with large
datasets and is set as the default in Neighbor-seq. Both im-
plementations generated consistent results on benchmark
analyses (Supplementary Figure S5b).

Determining significantly enriched cell–cell interactions.
Neighbor-seq calculates an enrichment score for each cell-
type interaction and compares it to the distribution of en-
richment scores expected by chance. The interaction enrich-
ment score reflects the proportion of counts of a neighbor
type relative to the product of the total number of edges de-
tected from each constituent cell and all other cell types. For
neighbor type C1Cn composed of cell types C1 . . . Cn, the
enrichment score is specifically defined as:

EnrichmentScoreC1Cn = counts (C1Cn)
∏i=n

i=1 total EdgesCi

The observed enrichment score for a neighbor type is
compared to that expected by chance. The null hypothe-
sis assumes that multiplet formation is random and thus
the distribution of neighbor-types follows the underlying
singlet population counts. As such, for each sample in a

dataset, given n predicted singlets and m predicted multi-
plets consisting of x constituent cells, Neighbor-seq simu-
lates the synthetic creation of m multiplets drawing without
replacement from n + x cells. The resulting neighbor-types
are tallied and their enrichment scores are computed. This
simulation is repeated for a default of 100 times; for each
neighbor type, lower tailed Wilcoxon testing quantifies the
probability that the simulated enrichment scores have a cen-
tral tendency greater than the observed enrichment score.
All probabilities are adjusted using the Holm correction.

Construction of a cell–cell interactome network and tran-
scriptomic analysis. The primary outputs of Neighbor-seq
are: (i) the artificial multiplet training and test sets, (ii) the
trained random forest, (iii) the barcode classification prob-
abilities for all barcode classes and (iv) the neighbor enrich-
ment analysis. The latter reports the counts of each mul-
tiplet class detected in a sample as well as its enrichment
score and corresponding P-value. When an ensemble result
is generated by retraining the algorithm over multiple itera-
tions, Neighbor-seq additionally reports the mean counts
for each multiplet class and a combined P-value using
Fisher’s method. Using the cell neighbor type enrichment
data, we use igraph (14) to plot a network, and it is possible
to calculate network statistics such as degree and centrality.
We use ligand–receptor data from Ramilowski et al. (15) or
Shao et al. (16) to identify highly expressed ligand–receptor
pairs in cell neighbors. Differentially expressed genes and
other transcriptomic features in neighbor-types can be as-
sessed using Seurat (11).

Benchmarking, robustness and reproducibility

We used a number of different metrics for benchmarking
Neighbor-seq.

Comparative assessment with other doublet finding methods.
We obtained scRNA-seq data for the benchmark annotated
doublet datasets from Xi et al. (10) (see Supplementary Ta-
ble S1 for dataset details) and compared Neighbor-seq’s
ability to identify singlets versus doublets against the fol-
lowing nine published methods: doubletCells (17), Scrublet
(9), DoubletDetection (https://github.com/JonathanShor/
DoubletDetection), cxds (18),bcds (18), hybrid (18), solo
(19), DoubletFinder (20) and scDblFinder (https://github.
com/plger/scDblFinder). These methods are optimized to
distinguish singlets and filter out doublets in scRNA-seq
data, and only scDblFinder has the ability to propose dou-
blet composition. These methods generally rely on simulat-
ing artificial doublets, projecting data into a lower dimen-
sional space, and using a machine or deep learning clas-
sifier to annotate barcodes. In contrast, Neighbor-seq uti-
lizes cell-type specific clustering and marker gene sets to
train a classifier directly on the gene counts of all pos-
sible expected barcode compositions, and it explicitly as-
signs multiplet class probabilities for each barcode rather
than annotating the broader label of singlet or doublet.
To evaluate Neighbor-seq, we ran Neighbor-seq using the
default parameters on each benchmark dataset. To com-
pute the probability of each barcode being either a singlet
or doublet, we summed the Neighbor-seq probabilities for

https://github.com/JonathanShor/DoubletDetection
https://github.com/plger/scDblFinder
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all doublet classes. Classification performance (area under
the receiver operator curves) for the nine benchmark dou-
blet finding methods tested on these datasets were obtained
from Xi et al. (10), who ran these methods using their de-
fault settings. Area under the receiver operator curves for
the Neighbor-seq singlet versus doublet classification were
calculated as above with multiROC and compared with all
other methods.

To compare the stability of doublet population predic-
tions across multiple runs from Neighbor-seq and scD-
blFinder, we ran each algorithm 10 times on the cline-
ch benchmark dataset obtained from Xi et al. (10) For
each doublet class, the coefficient of variation of its counts
(mean/standard deviation) was computed, and the distri-
butions of coefficients of variations were compared using
Wilcoxon testing.

Ensemble prediction. To increase reproducibility of results,
artificial multiplet construction and/or random forest train-
ing can be run for multiple iterations and an ensemble re-
sults can be computed. For each neighboring cell-type pair,
the mean observed counts and Fisher’s combined adjusted
P-value are reported. We observed a high degree of re-
producibility across multiple iterations and with a range
of random seeds. These multiplet type counts and P-value
thresholds for determining significant interactions were set
to counts >10 and P-value <0.05 for most analyses in this
study, but they can be adjusted and interpreted in light of
data quality and known biology.

Evaluation of ligand–receptor co-expression in cell neighbors.
Ligand-receptor data was obtained from Ramilowski et al.
(15) or Shao et al. (16). We compared three classes of bar-
codes: (i) multiplet-classes with statistically significant en-
richment, (ii) multiplet-classes without statistical enrich-
ment and (iii) randomly synthesized multiplets from the
same datasets. Multiplet class statistical enrichment was
determined as described above. Random multiplets of de-
gree 2 were created by aggregating the read counts of ran-
domly sampled cells. We determined the number of matched
ligand–receptor pairs as follows. Using TP10K normal-
ized scRNA data, we called a gene ‘expressed’ in a bar-
code if its normalized count was greater than the 25th per-
centile of expression across all barcodes. For each barcode
in a dataset, we counted the number of expressed ligands
whose receptor was also expressed. We compared the dis-
tributions of the number of co-expressed ligand–receptor
pairs across the three barcode classes (enriched multiplet
types, non-enriched multiplet types, random multiplets) us-
ing Wilcoxon testing.

Identifying cell–cell interactions in the small intestine

We obtained scRNA-seq data and metadata, including cell-
type annotations, from Haber et al. (21) UMAP plots
were drawn using Seurat (11). Neighbor-seq was run for
n = 10 iterations using default parameters. Cell-cell inter-
actions were considered significant for those interactions
with mean counts >10 and combined P-value <0.05. The
validation analysis in known intestinal singlets multiplets
was done using data from Andrews et al. (6), who also

provided metadata and cell-type annotations. Neighbor-seq
was run with default parameters as above on the small in-
testine scRNA-seq data. The resulting classifier was used
to predict interactions in the accompanying small intes-
tine partially dissociated clumps. Interactions were kept
for those with counts >10 and adjusted P-value <0.05.
Quantitative comparison of cell–cell networks from dif-
ferent studies was done by converting the networks into
adjacency matrices and computing the inner product cor-
relation. A permutation-based test was used to calculate
the statistical significance of the inner product correlation.
For a pair of matrices, random symmetric adjacency ma-
trices are generated with the same number of nodes and
edges as the test matrix, and a distribution of inner prod-
uct correlations is computed. The center of this distribu-
tion is compared to the actual inner product correlation
between the two test matrices using a one-sided Wilcoxon
test.

Identifying cell–cell interactions in the lung

We obtained scRNA-seq data and metadata, including cell-
type annotations, from Travaglini et al. (22) To reduce
computational complexity, cell-type annotations were col-
lapsed into the following parent classes: alveolar, basal,
ciliated, club, endothelial, fibroblast, goblet, immune, mu-
cous, smooth muscle. UMAP plots were drawn using Seu-
rat (11). Neighbor-seq was run for n = 10 iterations us-
ing default parameters. Cell-cell interactions were consid-
ered significant for those interactions with mean counts >10
and combined P-value <0.05. The validation analysis in
known lung singlets and multiplets was done using data
from Andrews et al. (6), who also provided metadata and
cell-type annotations. Neighbor-seq was run with default
parameters as above on the lung scRNA-seq data. The
resulting classifier was used to predict interactions in the
accompanying lung partially dissociated clumps. Interac-
tions were kept for those with counts >10 and adjusted P-
value <0.05. Quantitative comparison of cell–cell networks
from different studies was done with the permutation-based
inner correlation test as described for the small intestine
analysis.

Identifying cell–cell interactions in the spleen

We obtained scRNA-seq data and metadata, including cell-
type annotations, from Madissoon et al. (23) To reduce
computational complexity, cell-type annotations were col-
lapsed into the following parent classes: CD34 progeni-
tor, CD4 T-cells, CD8 T-cells, Cycling T-cells, dendritic
cells, follicular B cells, germinal center B cells, innate lym-
phoid cells, macrophage, mantle B cells, monocytes, natu-
ral killer cells, plasma B cells and platelets. UMAP plots
were drawn using Seurat (11). Neighbor-seq was run for
n = 10 iterations using default parameters. This study
contained data from 19 human samples. Cell-cell inter-
actions were considered significant for those interactions
found in >1 sample and with mean counts >5 and com-
bined P-value <0.05. The validation analysis was done us-
ing spleen data from Tabula Muris (24), who also provided
metadata and cell-type annotations. Cell-type annotations
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were appended with their cluster label, resulting in multi-
ple B-cell, T-cell and myeloid clusters. Neighbor-seq was
run with default parameters as above. Cell–cell interactions
were considered significant for those interactions with mean
counts >5 and combined P-value <0.05.

Identifying cell–cell interactions in pancreatic cancer

We obtained scRNA-seq data and metadata, including cell-
type annotations, from Peng et al. (25) UMAP plots were
drawn using Seurat (11). Neighbor-seq was run for n = 10
iterations using default parameters. Cell–cell interactions
were considered significant for those interactions with mean
counts >10 and combined P-value <0.05. Ligand-receptor
analysis was done as described above. Betweenness central-
ity was calculated using igraph (14). Hierarchical cluster-
ing of betweenness centralities scaled by cell-type was done
using the pheatmap R package (https://CRAN.R-project.
org/package = pheatmap). Spatial transcriptomic data for
PDAC tumors was obtained from Moncada et al. (26) Cell-
type scores for each spatial barcode were calculated as fol-
lows. We used the FindAllMarkers function from Seurat
(11) to find differentially expressed genes for the PDAC cell-
types in Peng et al. (25). Only highly cell-type specific genes
were found by using these parameters: logfc.threshold = 2,
min.diff.pct = 0.5, min.pct = 0.5. Spatial barcodes were
TP10K normalized, and cell-type scores were calculated
as the average expression of each cell-type gene signature.
Scores Spearman correlations were computed using the
cor.test function in R. Quantitative comparison of cell–cell
networks from different studies was done by converting the
networks into adjacency matrices and computing the inner
product correlation. The Spearman correlation matrix of
the transcriptomic data was used as the adjacency matrix,
only keeping those edges with values r > 0.2 and P < 0.05.
A permutation-based test was used to calculate the statisti-
cal significance of the inner product correlation as described
above.

Identifying cell–cell interactions in skin cancer

We obtained scRNA-seq data and metadata, including cell-
type annotations, from Ji et al. (27). To reduce computa-
tional complexity, immune cell-types annotations were col-
lapsed into parent lymphoid and myeloid classes. UMAP
plots were drawn using Seurat (11). Neighbor-seq was run
for n = 10 iterations using default parameters. Cell-cell
interactions were considered significant for those interac-
tions with mean counts >10 and combined P-value <0.05.
Ligand-receptor analysis was done as described above. Cell-
type scores for each spatial barcode was calculated as fol-
lows. We used the FindAllMarkers function from Seu-
rat (11) to find differentially expressed genes for the cell-
types in Ji et al. Only highly cell-type specific genes were
found by using these parameters: logfc.threshold = 0.5,
min.diff.pct = 0.52. Marker genes were only kept if they
were differentially expressed in <5 cell types. Spatial bar-
codes were TP10K normalized, and cell-type scores were
calculated as the average expression of each cell-type gene
signature. Scores Pearson correlations were computed using
the cor.test function in R.

RESULTS

Neighbor-seq identifies physical cell interactions by using a
machine learning classifier that annotates the cellular com-
position of each scRNA-seq barcode. Briefly, scRNA-seq
data is filtered to remove low quality cells, the remaining
barcodes are clustered based on their gene expression, and
cluster marker genes are identified using a standard ap-
proach (11). A vast majority of the barcodes typically rep-
resent genuine single cells, with a minority being doublets
or multiplets. Next, a training set of artificial multiplets is
constructed representing all possible multiplet types by ran-
domly sampling cells from each cell cluster and aggregating
their raw read counts. The artificial multiplets can be ho-
motypic (same cell-type) or heterotypic (different cell-type)
and can be of order 2 (e.g. AA, AB, BB, etc.) or higher
(e.g. AAA, ABA, etc.). A Random Forest cell-type classi-
fier is trained based on the expression of marker gene sets
from n (default: 100) randomly sampled barcodes from each
artificial multiplet type, as well as n barcodes from each
original cell type cluster, which are predominantly singlets.
Neighbor-seq then applies the classifier to annotate each
barcode in the original dataset and identifies those classi-
fied as multiplets. An ensemble annotation result is gen-
erated by iterating the algorithm. Neighbor-seq computes
the enrichment and corresponding statistical significance
of the observed frequencies of multiplet types compared
to that expected based on the prevalence of the original
cell-types in the dataset. Accordingly, Neighbor-seq con-
structs a network representing significant cell-type inter-
actions and enables transcriptomic analysis of interacting
cells.

Benchmarking and validation with known multiplets

We evaluated Neighbor-seq’s ability to identify physically
interacting cells via (i) annotation of multiplets with known
composition, (ii) detection of known doublets in diverse tis-
sues and (iii) identification of known cellular architectures
in solid tissues. First, we tested Neighbor-seq’s ability to an-
notate barcode composition in a controlled setting. We ob-
tained scRNA-seq data (6) for three cancer cell lines that
had been sorted as either singlets or multiplets of known
composition (Figure 1B); we trained Neighbor-seq on the
singlet data and used it to annotate singlet and multiplet
barcode compositions, which contained between 1 and 4
cells in nonsymmetrical combinations. Neighbor-seq classi-
fied all droplets with high accuracy (AUC: singlets: 1, dou-
blets: 0.99, triplets: 0.94, quadruplets: 0.82; Figure 1C), in-
dicating that it can reliably infer barcode composition.

Next, we benchmarked Neighbor-seq against nine other
published doublet-finding methods using 16 datasets of di-
verse tissue types in which doublets were experimentally an-
notated (10) (Supplementary Table S1). Neighbor-seq per-
formed better or equally well to all published methods in
identifying doublets (Wilcoxon P > 0.8, Figure 1D), but
with the unique advantages of (i) determining multiplet cell-
types, (ii) identifying significantly enriched cell-type inter-
actions, (iii) requiring no parameter tuning and (iv) making
no assumptions about the underlying doublet frequencies,
which ranged from 2.5% to 37% in the benchmark datasets

https://CRAN.R-project.org/package%20=%20pheatmap
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(Supplementary Figure S1A) and may not be known a pri-
ori in a real dataset. Moreover, Neighbor-seq is also the only
method that can annotate higher order multiplets and can
transfer knowledge across datasets.

We further hypothesized that since doublets contain
neighboring cells, they would have increased co-expression
of ligand–receptor pairs. Indeed, enriched doublets-types
co-expressed significantly more ligand–receptor pairs than
non-enriched doublets, and significantly more pairs than
randomly synthesized doublets (both Wilcoxon P < 2.2e–
16, Figure 1E, Supplementary Figure S1B, see Materials
and Methods for details). This was true in aggregate us-
ing two different ligand–receptor databases (15,16) and for
each benchmark study individually (Supplementary Figure
S1B).

Neighbor-seq performed exceptionally well at classifying
singlets and all artificial doublet types (average AUC = 0.99,
Figure 1F) and performed significantly better than expected
by chance when cell-type labels were randomized (cline ch
data; average AUC = 0.501, Wilcoxon P < 2.2e–16, Supple-
mentary Figure S1C, D). Neighbor-seq classification accu-
racies across all benchmark datasets were similarly high (all
AUC > 0.92, Supplementary Figure S1E). While Neighbor-
seq is the only method designed to infer doublet-types,
scDblFinder also proposes doublet compositions, but when
comparing the stability of doublet-type counts across mul-
tiple runs on the same dataset, Neighbor-seq results were
significantly more stable (Wilcoxon P < 2.2e–16, Figure
1G). These results indicate that Neighbor-seq successfully
and identifies doublets across a range of tissue types and re-
producibly annotates their cellular composition. Taken to-
gether, these attributes make Neighbor-seq first in the class
of innovative computational methods that can help recon-
struct physical cell interaction networks from single-cell se-
quencing data.

Identifying cell–cell interactions in the small intestine

We examined whether Neighbor-seq could identify known
interaction architectures in multiple tissue types with vary-
ing levels of cell-type diversity and organization. First, we
tested Neighbor-seq on a scRNA-seq survey of the small
intestinal epithelium containing 11 666 cells from n = 2
mice (21). The small intestine consists of alternating units
of villi and crypts. Paneth cells in the crypt protect the re-
siding stem cells, which differentiate and migrate upwards
through various progenitor stages until becoming mature
enterocytes, while goblet cells are scattered throughout vil-
lus (28) (Figure 2A). We identified the major cell types (Fig-
ure 2B) and used Neighbor-seq to recover their cellular ad-
jacencies. Neighbor-seq correctly detected Paneth-stem in-
teractions, a progression from stem to mature enterocytes,
and multiple goblet cell interactions in the villus (Figure
2C, see Materials and Methods for details). We confirmed
this microanatomy by training Neighbor-seq on a separate
study of 5279 small intestinal singlets and used it to iden-
tify interactions in a dataset of 3671 intestinal multiplets
(6) (Figure 2D). This validation analysis revealed a simi-
lar interaction network as obtained only from scRNA-seq
data (Figure 2E). Differences between the schematic illus-
tration and the two networks are primarily due to differ-

ent cell types annotated in the two datasets and different
optimized network layouts; nonetheless, both networks re-
capitulate a progression from the Paneth-stem crypt to the
mature enterocytes at the top of the villus whilst passing
through transition and progenitor cells. Furthermore, both
networks supported known ligand–receptor signaling (28),
such as LGR, LRP, BMP and NOTCH-mediated interac-
tions between Paneth and stem cells. The directionality of
this signaling could be inferred by inspecting the stem and
Paneth cell singlets data, in which stem cells had signifi-
cantly higher expression of the aforementioned genes com-
pared to Paneth cells (Wilcoxon testing, P < 2e–16 for all
four genes). To quantitatively compare the networks ob-
tained from the two studies, we harmonized the cell labels
based on cell ontology and represented them as adjacency
matrices (Figure 2F). The two matrices were significantly
more correlated than expected by chance (inner product
correlation = 0.53, Wilcoxon permutation test, P = 4e–17,
see Materials and Methods), indicating that Neighbor-seq
identified similar cell networks from independent studies of
the same tissue types.

Identifying cell–cell interactions in the lung

Second, we tested Neighbor-seq’s ability to identify mi-
croanatomical structures in the lung, which contains in-
teractions between cells of multiple lineages. The termi-
nal bronchioles contain ciliated epithelium and club cells,
smooth muscle, mucous secreting cells, and basal stem cells;
gas exchange occurs in the alveoli, which contain alveolar
pneumocytes and macrophages and are lined by vessels, fi-
broblasts, and smooth muscle (22) (Figure 3A). We ana-
lyzed a human lung cell atlas containing 65 662 cells from
n = 5 human donors (22), identified the cell-types (Figure
3B) and recovered an interaction network (Figure 3C, see
Materials and Methods for details). Neighbor-seq correctly
separated the bronchiolar and alveolar compartments and
identified the gas exchange membrane between alveolar and
endothelial cells. We confirmed detection of these cell–cell
interactions in a dataset of lung singlets and multiplets (6)
(Figure 3D). Training Neighbor-seq on the singlet data and
deconvoluting interactions from the known multiplets again
revealed bronchiolar and alveolar compartments as well as
several immune cell interactions (Figure 3E). Neighbor-seq
networks also corroborated known signaling pathways in
lung development (29), such as by expression of NOTCH,
FGF, and EGF ligands in basal- cell neighbors. Represent-
ing the networks derived from the two studies as adjacency
matrices with harmonized cell-ontology labeling further in-
dicated significant similarity in the cell–cell connections
identified (Figure 3F, inner product correlation = 0.73,
Wilcoxon permutation test, P = 5e–17, see Materials and
Methods).

Identifying cell–cell interactions in the spleen

Third, we used Neighbor-seq to predict interactions in the
splenic white pulp, a structure not held by tight junctions
but whose organization is chemokine driven (30). The white
pulp is surrounded by myeloid cells and consists of sepa-
rate B- and T-cell zones, with B-cell follicles further sepa-
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Figure 2. Detecting known microanatomical features of the small intestinal epithelium. (A) Illustration of the main cell types in the small intestinal crypt
and villus. (B) Uniform manifold approximation and projection (UMAP) of 11 665 small intestinal cells (21) from the duodenum, jejunum, and ileum
(n = 2 mice) colored by cell type. TA, transit amplifying; EP, enterocyte progenitor. (C) Network diagram of significant cell type interactions from (B)
identified by Neighbor-seq. Neighbor-seq is run for n = 10 iterations, and interactions are shown for edges with a mean count >10 and enrichment score
combined adjusted P-value <0.05 (see Materials and Methods). Edge thickness represents interaction P-value and edge color represents counts. Green
color scale represents anatomical progression from crypt to villus. (D) UMAP of 5279 cells from the small intestine (6) (n = 1 mouse) colored by cell
type. Neighbor-seq is trained on these cells and used to predict the interaction network in a dataset of partially dissociated intestinal clumps. (E) Network
diagram of significant cell type interactions identified by Neighbor-seq from 3671 small intestinal clumps. Methods, edge color and thickness, and colors
scale are the same as in (C). (F) Adjacency matrix representation of the networks from (C) and (E). Cell labels were harmonized based on cell ontologies.
Red color indicates the presence of a connection, white indicates no connection.
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Figure 3. Detecting known microanatomical features of the terminal respiratory tract. (A) Illustration of the main cell types in the terminal bronchioles
and alveolus. AT1, alveolar type 1 cell, AT2, alveolar type 2 cell (B) Uniform manifold approximation and projection (UMAP) 65,662 cells (22) from the
terminal respiratory tract (n = 5 human samples) colored by cell type. (C) Network diagram of significant cell type interactions from (B) identified by
Neighbor-seq, colored by known microanatomical compartment. Data is shown for n = 10 iterations, mean counts >10, combined P-value < 0.05. (D)
UMAP of 6084 mouse lung cells (6) (n = 3 mice) colored by cell type. Neighbor-seq is trained on these cells and used to predict the interaction network in
a dataset of partially dissociated lung clumps. (E) Network diagram of significant cell type interactions identified by Neighbor-seq from 4729 lung clumps.
Methods, edge color and thickness, and colors scale are the same as in (C). (F) Adjacency matrix representation of the networks from (C) and (E). Cell
labels were harmonized based on cell ontologies. Red color indicates the presence of a connection, white indicates no connection.

rating into germinal centers and mantle zones and T-cells
interacting with antigen presenting myeloid cells (30) (Fig-
ure 4A). We used Neighbor-seq to analyze a dataset of hu-
man spleen containing 94,050 immune cells from n = 19
human samples (23) (Figure 4B, see Materials and Meth-
ods for details). Neighbor-seq correctly identified the B and
T-cell zones; germinal centers did not interact with non-B-
cells, and myeloid cells interacted with both B and T lym-

phocytes (Figure 4C). We confirmed these structures by
analyzing splenic tissue from the Tabula Muris (24) con-
taining 9552 cells of lymphoid and myeloid origin (Figure
4D). Neighbor-seq again identified B and T-cell zones with
myeloid interactions (Figure 4E). Collectively, these analy-
ses confirmed that Neighbor-seq can correctly identify di-
rect cell–cell interactions and microanatomies in vivo in di-
verse tissue types.
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Figure 4. Detecting known microanatomical features of the splenic white pulp. (A) Illustration of the main cell types in the splenic white pulp. (B) Uniform
manifold approximation and projection (UMAP) of 94 050 splenic white pulp immune cells (23) (n = 19 human samples) colored by cell type. DC, dendritic
cell; GC, germinal center; ILC, innate lymphoid cell; NK, natural killer cell. (C) Network diagram of significant cell type interactions from (B) identified
by Neighbor-seq, colored by known cell type lineage. Data is shown for n = 10 iterations, mean counts >5, combined P-value < 0.05. (D) UMAP of
9552 murine immune cells from Tabula Muris (24) colored by cell type. (E) Network diagram of significant cell type interactions from (D) identified by
Neighbor-seq, colored by known cell compartment. Methods, edge color and thickness, and colors scale are the same as in (C).

Identifying cell–cell interactions in pancreatic cancer

We next used Neighbor-seq to analyze inter-cellular interac-
tions in pancreatic ductal adenocarcinoma (PDAC). We ob-
tained scRNA-seq data for 24 tumors and 11 control sam-
ples (25); these tissues had normal to poorly differentiated
histopathology, were from anatomic locations throughout
the pancreas (Supplementary Table S2), and in total con-
tained 57 530 cells from a mixture of normal and malignant
epithelial cells and immune, stromal and endothelial cells
(Figure 5A). Neighbor-seq detected 17 580 doublets (31%
of barcodes), of which 1373 were heterotypic doublets (2.3%
of all barcodes)––this fraction of heterotypic cell neighbors
was typical for all datasets analyzed.

Out of 45 possible heterotypic cell-type pairs, Neighbor-
seq identified 19 enriched interactions (Figure 5B). Normal
pancreatic epithelium (ductal, endocrine, acinar cells) inter-
acted with each other and with endothelial cells, whereas tu-
mor cells had stronger connections with ductal cells and fi-
broblasts and immune cells interacted with most cell-types.
These interactions were detected across multiple samples,

the most common being B cell-myeloid, ductal-tumor and
tumor-T cell interactions (Figure 5B, Supplementary Fig-
ure S2A, Table S3). Again, enriched cell neighbors co-
expressed significantly more matched ligand–receptor pairs
than non-enriched doublet-types or random synthetic dou-
blets (Wilcoxon P < 2.2e–16, Figure 5C). The detected
neighboring cell communications were also consistent with
existing literature. For example, BTK-dependent B-cell in-
teractions with FCγ R+ myeloid cells were recently impli-
cated in PDAC progression (31), and we observed signifi-
cantly greater BTK (Wilcoxon, P = 6.3e–40) and FCGR1A
expression (Wilcoxon, P = 6.8e–59) in B cell-myeloid dou-
blets compared to all other doublet-types. This highlights
how Neighbor-seq can be used to identify interaction-
specific transcriptional changes with functional relevance.

The topology of cell–cell interactions varied across sam-
ples, which could be due to intra- or inter-tumor hetero-
geneity in cell interactions or differential presence/absence
of doublet-types in a sample. We computed the between-
ness centrality of cell-types in each sample, and clustering
of these centrality scores revealed three classes of tissue mi-
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Figure 5. Identification of cell type interactions in pancreatic cancer. (A) Uniform manifold approximation and projection (UMAP) of 57 530 primary
human cells (25) from n = 24 pancreatic ductal adenocarcinomas and n = 11 control pancreatic tissues colored by cell type. (B) Network diagram of
significant cell type interactions from (A) identified by Neighbor-seq, colored by known cell compartment. Edge thickness represents interaction P-value
and edge color represents counts. Neighbor-seq is run for n = 10 iterations, and interactions are shown for edges with a mean count >10 and enrichment
score combined adjusted P-value <0.05 (see Materials and Methods). (C) Comparison of the number of co-expressed ligand–receptor pairs in enriched
(statistically significant) doublet types, not enriched doublets, and random synthetic doublets from (A). Boxplots show median (line), 25th and 75th
percentiles (box) and 1.5× IQR (whiskers). Points represent outliers. Wilcoxon tests, ****P < 0.0001. (D) Heatmap and hierarchical clustering of cell type
betweenness centrality in interaction networks for each sample. Rows represent cell types and columns represent samples; T#, tumor sample; N#, normal
sample; ME#, microenvironment. (E) Spatial transcriptomic maps of two pancreatic tumors (26,32) with n = 428 (top) and n = 224 (bottom) barcodes,
colored by cell-type abundance scores. Correlation of abundance score of multiple cell type pairs, identified in Figure 3B, were significant (tumor and ductal
cells: A: r = 0.19, P = 2e–2; B: r = 0.44, P = 4e–10; tumor cells and fibroblasts: A: r = 0.30, P = 8e–9; ductal and acinar cells: A: r = 0.16, P = 2e–2;
ductal and endocrine cells: A: r = 0.29, P = 5e–8; ductal and endothelial cells A: r = 0.41, P = 1e–17; Spearman correlation). See Supplementary Figure
S3 for additional instances.
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croenvironments (ME, Figure 5D). ME1 contained mostly
normal ductal epithelial connections, ME2 was dominated
by tumor cell connections and ME3 by immune cell edges
(Figure 5D). These ME classes had significantly differ-
ent histopathological characteristics (Fisher’s exact test;
pathology: P = 5e–4; stage: P = 5e–4; lymph node inva-
sion: P = 3e–3). These analyses indicate that Neighbor-seq
can uncover direct cellular interactions and tumor microen-
vironment characteristics with functional or clinical rele-
vance.

Next, we analyzed spatial transcriptomic data for pancre-
atic ductal adenocarcinoma (PDAC) samples from a pub-
lished study (26) where there were 243–996 spatially anno-
tated barcodes per sample, each capturing the aggregated
transcriptomic makeup of ∼20–70 cells in tumor and adja-
cent normal tissue microenvironments. We observed organi-
zational contexts similar to what we identified from scRNA-
seq data alone. We used marker genes to calculate cell-type
scores for each spatial barcode (see Materials and Methods;
PDAC-A: n = 428, PDAC-B: n = 224 spatial barcodes) and
visualized the distribution of cell-types in the tissues (Figure
5E). Tumor cells co-localized with ductal cells (Spearman
correlation; A: r = 0.19, P = 2e–2; B: r = 0.44, P = 4e–
10) and fibroblasts (Spearman correlation; A: r = 0.30,
P = 8e–9). Ductal cells co-localized with acinar cells (Spear-
man correlation; A: r = 0.16, P = 2e–2), endocrine cells
(Spearman correlation; A: r = 0.29, P = 5e–8), and en-
dothelial cells (Spearman correlation; A: r = 0.41, P = 1e–
17). B and T cells were scattered throughout the tissue, but
myeloid cells did not significantly co-localize with tumor
cells. We observed similar patterns when visualizing spatial
transcriptomic data for n = 7 other PDAC tumors (Sup-
plementary Figure S3A). These findings are broadly consis-
tent with the architecture of cell-networks we deduced from
scRNA-seq data of a different cohort of PDAC tumors
(Figure 5C), suggesting that despite intra- and inter-tumor
heterogeneity, the topology of cell–cell interactions may be
similar. We represented the cell–cell networks derived from
scRNA-seq and the spatial transcriptomic data as cell ad-
jacency matrices (Supplementary Figure S2B, see Materials
and Methods). Inner product correlation further indicated
that the cell adjacencies identified from the two studies were
significantly more similar than expected by chance (r = 0.33,
P = 2e–11). This validation across two different technology
platforms reinforces Neighbor-seq’s ability to infer cellu-
lar connectomes from scRNA-seq data and bridge between
single-cell and spatial transcriptomics, which has a resolu-
tion of 101–102 cells.

Identifying cell–cell interactions in skin cancer

Lastly, we used Neighbor-seq to analyze physical cell inter-
actions in cutaneous squamous cell carcinoma (SCC). We
obtained scRNA-seq data for 10 tumors, of which four tu-
mors also had spatial transcriptomic data (27). These tis-
sues had moderate or well differentiated histology, were
from various primary sites on the body, and the dataset in
total contained 48 164 single-cell transcriptomes from 16
cell subtypes of epithelial, stromal, and immune origin (Fig-
ure 6A). Neighbor-seq detected 15 626 doublets (32% of all

barcodes), of which 5346 were heterotypic doublets (11%
of all barcodes). Of 105 possible heterotypic cell-type pairs,
Neighbor-seq identified 38 significant pairwise interactions
(Figure 6B). Tumor cell populations were on the edge of
the cell interaction network and showed significant inter-
actions mostly with normal epithelium. Unlike in pancre-
atic cancer (Figure 5B), immune cells were located periph-
erally in the network and interacted mostly with normal
epithelium. We did not observe direct connections between
lymphoid cells and any tumor subpopulation (Figure 6B),
which might suggest potential immune evasion.

These general patterns identified from the inferred cell-
interaction network agreed with observations made from
spatial transcriptomic sequencing data of the same tumors
profiled at 8179 spots. Using the single-cell data, we iden-
tified cell-type marker genes and used these to calculate
cell-type scores for each spatial sequencing spot in four pa-
tients (see Methods). Coloring the spatial maps by com-
posite tumor, normal epithelium and stroma, or immune
scores revealed spatial contexts similar to those we identi-
fied with Neighbor-seq from the single-cell data alone (Fig-
ure 6C). Most prominently in patient P2, tumor popula-
tions occupied a separate region of the spatial map with
minimal immune presence, while the adjacent regions were
rich in normal epithelium, stromal, and immune genetic ac-
tivity. We next compared the specific cell-type pair asso-
ciations identified by Neighbor-seq (Figure 6B) with the
cell-type score correlations in the matched spatial data.
For all patients, cell-types with enriched neighbor interac-
tions in scRNA-seq were significantly more correlated with
each other across spatial spots than were cell-type pairs
that did not have enriched doublets in scRNA-seq (P2:
P = 2.3e–7, P5: P = 3.8e–4, P9: P = 3.4e–6, P10: P = 4.2e–
10; Wilcoxon; Figure 6D). Lastly, we confirmed that the
enriched cell neighbors in scRNA-seq exhibited increased
pairwise crosstalk by assessing the number of co-expressed
ligand–receptor pairs (see Materials and Methods). Con-
sistent with our previous analyses, enriched doublets ex-
pressed significantly more ligand–receptor pairs than non-
enriched doublets or randomly synthesized doublets (both
Wilcoxon P < 2.2e–16, Figure 6E). Taken together, these
results indicate that Neighbor-seq accurately identifies and
annotates multiplets that contain interacting cells across a
range of normal and diseased tissues, and these interactions
are consistent with spatial contexts identified from both the
same and different samples.

DISCUSSION

In summary, Neighbor-seq infers direct cell–cell interac-
tions by identifying undissociated cell multiplets in stan-
dard scRNA-seq data and classifying them according to
their constituent cell-types, ultimately building the cellu-
lar interactome in diverse normal and diseased tissues. It
shows high accuracy and reproducibility, and the results are
in agreement with prior knowledge about tissue microenvi-
ronments in well-studied tissues and with spatial transcrip-
tomic data. Neighbor-seq complements emerging methods
(5–8) that are optimized for deconvoluting the transcrip-
tomics of single cells and cell clumps. It, however, recon-
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structs tissue-scale cell interaction networks using undisso-
ciated multiplets from standard scRNA-seq alone, thereby
eliminating the need for specialized sample preparation
and boosting scalability. Neighbor-seq provides a frame-
work to study the topology of cell–cell interactome leading
to the organization of tissue microenvironment, bridging
the gap in resolution between single-cell and spatial tran-
scriptomics. Neighbor-seq is available at https://github.com/
sjdlabgroup/Neighborseq.
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The Neighbor-seq resource and user-friendly documenta-
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