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Abstract: The development of pharmaceutical nanoformulations has accelerated over the past decade.
However, the nano-sized drug carriers continue to meet substantial regulatory and clinical translation
challenges. In order to address some of these key challenges in early development, we adopted a
quality by design approach to develop robust predictive mathematical models for microemulsion
formulation, manufacturing, and scale-up. The presented approach combined risk management,
design of experiments, multiple linear regression (MLR), and logistic regression to identify a design
space in which microemulsion colloidal properties were dependent solely upon microemulsion
composition, thus facilitating scale-up operations. Developed MLR models predicted microemulsion
diameter, polydispersity index (PDI), and diameter change over 30 days storage, while logistic
regression models predicted the probability of a microemulsion passing quality control testing.
A stable microemulsion formulation was identified and successfully scaled up tenfold to 1L without
impacting droplet diameter, PDI, or stability.

Keywords: quality by design (QbD); modeling; microemulsions

1. Introduction

The publication rate in drug delivery using nanoformulations has dramatically increased
in the past decade, reaching 24,665 publications by 2017 [1]. However, this rapid increase in
publications has coincided with a limited number of clinical trials and approved treatments. Several
explanations have been proposed to justify the lack of clinical translation of nanoformulations for
drug delivery, including a lack of translatability from animal models to humans, an overemphasis
on the advantages of nanoformulations, confirmation bias, and the development of increasingly
complex nanoformulations [1]. These problems are all relevant and need to be addressed in order for
nanoformulations to reach the market. We postulate that quality by design approaches used throughout
the pharmaceutical industry could be adapted to nanoformulation development. Doing so may allow
challenges to be identified and corrected early on, resulting in higher quality nanoformulations during
early developmental stages.

Quality by design (QbD) is defined by the International Council for Harmonization (ICH) Q8(R2)
document as “a systematic approach to development that begins with predefined objectives and
emphasizes product and process understanding and process control, based on sound science and
quality risk management”. A QbD approach includes but is not limited to (1) identification of critical
quality attributes (CQAs), (2) risk analysis, (3) design of experiments (DoE), and (4) identification of
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critical process parameters (CPPs). CQAs are measurable quality attributes that have a significant
impact on final product quality. After CQA identification, risk analyses such as a failure mode, effects,
and criticality analysis (FMECA) are used to strategically rank potential failure modes and narrow
down the list of process parameters to those that are most likely to significantly affect the CQAs [2].
DoE is then developed to study the relationships between the process parameters and the CQAs in
an efficient way. DoE allows for sophisticated studies in which multiple factors are changed at a
time, minimizing the required number of experimental runs and increasing efficiency compared to
traditional one factor at a time approaches [3]. CQAs are measured for each run of the DoE, and
statistical regression approaches (multiple linear regression, logistic regression, etc.) or other modeling
approaches are used to identify the CPPs, the process parameters that have a significant impact on
the CQAs.

QbD approaches can lead to the development of quality nanoformulations while minimizing
risk, time, and resources. QbD has been applied to a wide variety of nano-sized formulations in
recent years, including liposomes, emulsions, particles, micelles, and suspensions [4]. Recent examples
include liposomes co-encapsulating doxorubicin and curcumin [5], topical microemulsion-based
hydrogels containing itraconazole [6], aceclofenac-loaded nanostructured lipid carriers [7], rosuvastatin
calcium solid lipid nanoparticles [8], quercetin-salicylic acid nanomixed micelles [9], and furosemide
nanosuspensions [10]. Presented here, microemulsions are used as a model to demonstrate the
usefulness and application of QbD approaches to nanoformulation development. Microemulsions are
optically transparent emulsions that typically range from 20–100 nm in diameter [11]. Microemulsions
are thermodynamically stable, allowing them to undergo emulsification spontaneously, a process
known as emulsion inversion. During emulsion inversion, the emulsion proceeds through an
intermediate phase of minimal surface tension to invert from a water in oil to an oil in water emulsion,
or vice versa [12]. Emulsification can be directed through modification of the system’s salinity,
pH, or temperature, all of which can modify the hydrophilic/lipophilic balance [13]. Alternatively,
emulsification can occur through composition modification (e.g. modification of water to oil ratio), a
process known as the water titration method [12]. Microemulsion formulation via water titration is
common, and many groups have used design of experiments or QbD to develop microemulsions using
water titration. Many of these reports focus solely on microemulsion composition. However, several
reports have found that the process parameters water addition rate and stir rate impact microemulsion
diameter [14–16]. To increase the chances of successful scale up, it is critical to understand the
impact, if any, of process parameters on microemulsion properties, such as diameter. Therefore, we
propose that a thorough understanding of both composition and process parameters is necessary
for quality microemulsion development. Approaches that study both composition and process are
known as mixture process variable studies. Mixture process variable approaches have been utilized
in the development of microemulsion electrokinetic chromatography methods for the identification
of diclofenac [17] and almotriptan [18] and their impurities. To the best of our knowledge, the
mixture process variable approach for the development of a microemulsion via water titration has not
been reported.

As mentioned previously, the QbD approach utilizes a statistical experimental design. Statistical
regression approaches are used to identify CPPs and describe the relationships between CPPs and
CQAs. A variety of modeling methods have been applied to microemulsions, including multiple
linear regression (MLR) [19], partial least squares [20,21], logistic regression [22], and artificial neural
networks [23–26]. Artificial neural networks are advantageous, in that they can detect nonlinear
relationships between variables and all possible interactions between variables [27]. However, artificial
neural networks cannot explicitly approximate the significance of each input variable on the output [27].
Conversely, MLR assigns a numerical value (regression coefficient) to each input variable and evaluates
the significance of each input variable on the output. We therefore used MLR to evaluate the impact of
microemulsion composition and water titration parameters on day 1 diameter, day 1 polydispersity
index (PDI), and 30-day percent diameter increase. A unique aspect of partial least squares is that
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it can handle more input variables than runs [28], and a unique aspect of logistic regression is that
the output variables are binary. Therefore, logistic regression can be used to model a binary response,
such as whether a microemulsion formulation meets or fails to meet a CQA specification. For this
reason, logistic regression was used to model the probability of microemulsion formulations meeting
CQA specifications.

We postulate that nanoformulation quality and process understanding can be improved through
the utilization of QbD. In the presented work, we applied QbD methodology to a microemulsion as
an example of nanoformulation. The aims of the presented work were (1) to identify stable, robust
microemulsions and (2) to understand the processes that impact microemulsion diameter, PDI, and
stability. To achieve these aims, we identified CQAs that would facilitate identification of stable
microemulsions. We then used FMECA as an example risk analysis approach to identify potential
CPPs. These potential CPPs were used to develop a screening mixture process variable DoE. The
screening DoE enabled us to identify a design space in which microemulsion diameter, PDI, and
stability were dependent solely upon microemulsion composition. We augmented the screening DoE
to further explore this design space using MLR and logistic regression models. Specifically, we used
MLR to predict microemulsion diameter, PDI, and 30-day percent diameter change as a function of
microemulsion composition, and we used logistic regression to evaluate CQAs representative of stress
stability. Extensive quality control (thermal cycling and shelf life studies) enabled the development of
more accurate logistic models. Improved understanding of these processes allowed us to identify stable,
robust microemulsions and successfully scale up a microemulsion formulation tenfold. The marriage
of DoE, multiple linear regression, and logistic regression can be used to collect and analyze process
information in an efficient manner. This work serves as a demonstration of how QbD approaches can
be applied to other classes of nanoformulations.

2. Results

2.1. Identification of Critical Quality Attributes (CQAs)

The aims of the presented work were (1) to identify stable, robust microemulsions and (2) to
understand the processes that impact microemulsion diameter, PDI, and stability. The selected CQAs
reflect this. Microemulsions underwent rigorous evaluation to simulate the stresses experienced
upon sterilization, evaluation in in vitro pharmacological studies, transportation, and storage. These
evaluative quality control tests included: (1) filtration through a 0.22 µm syringe filter; (2) centrifugation
at 1620xg for 30 minutes; (3) thermal cycling test; (4) storage at ambient temperature for 30 days. CQAs
were defined as microemulsion diameter change and PDI in response to each of these quality control
tests and are listed in Table 1.

Table 1. Critical quality attributes (CQAs), specifications, and brief descriptions of how CQAs are
measured. All diameter and PDI measurements were performed with dynamic light scattering.

CQA Specification Brief Test Description

Microemulsion Diameter <50 nm
Measured 24 h after production

Polydispersity Index (PDI) <0.1

Diameter Change After Filtration <10%
0.22 µm mixed cellulose esters membrane

PDI After Filtration <0.1

Diameter Change After Centrifugation <10%
1620× g for 30 min

PDI After Centrifugation <0.1

Diameter Change After Thermal Cycling <10% Moved between 4 ◦C and 50 ◦C every 24 h
for 8 daysPDI After Thermal Cycling <0.1

30-day Diameter Change <10%
Stored at ambient temperature

Day 30 PDI <0.1
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2.2. Selection of Microemulsion Excipients

Microemulsions consisted of oil, surfactant, co-surfactant, two solubilizers (transcutol and
propylene glycol), and water. Microemulsion excipients, all on the Food and Drug Administration
generally regarded as safe list, were selected, such that the final formulation could be adjusted to
incorporate different drugs or multiple drugs, depending upon the disease target. Miglyol 812N was
chosen as the oil, because it solubilizes lipophilic compounds better than many hydrocarbon oils [29].
Kolliphor EL and transcutol were chosen as the surfactant and primary solubilizer, respectively, because
they are the second and third most commonly used excipients in microemulsion formulations [30].
PEG 400 was chosen as the co-surfactant, because multi-drug delivery microemulsion formulations
have been developed with a surfactant/co-surfactant combination of Kolliphor EL and PEG 400 in a
1:1 w/w ratio [31,32]. Finally, propylene glycol was chosen as the second solubilizer, because it is a
commonly used solubilizer [30] that is compatible with transcutol.

2.3. Risk Assessment and Selection of Critical Process Parameters

In practice, quality risk assessment considers each unit operation in the manufacture of a
pharmaceutical product. In the case of emulsification by water titration, there is one primary unit
operation. The water titration method has many variables to consider, including water addition rate,
stir rate, vessel size and geometry, temperature, composition, and batch size. Given material and time
limitations, it is important to select the most valuable factors to study. In the presented work, failure
mode, effects, and criticality analysis (FMECA) was used as a risk assessment tool to strategically rank
methods of failure during microemulsion production and identify potential critical process parameters.
As part of this risk assessment, a risk priority number was assigned to each failure mode. Risk priority
number is calculated as the product of three factors:

RPN = Severity× Frequency of Occurence×Detectability (1)

Severity, frequency of occurrence, and detectability are each represented by a spectrum that
rates each factor from 1 to 5 (low to high risk), as shown in Table 2. Potential failure methods were
defined for each CQA defined in Table 1, and the process parameters that received the highest risk
priority number were identified as potential critical process parameters. FMECA was chosen as the risk
analysis method for this work due to its wide applicability in design and manufacturing, its strength
in assessment of individual failure modes, and its common use in pharmaceutical manufacturing [33].
An abridged version of the risk assessment is shown in Table 3, and the full risk assessment is shown
in the Supplemental Information. FMECA was used in the development of solid self-nanoemulsifying
oily formulations (S-SNEOFs) to identify S-SNEOF lipid, surfactant, and co-solubilizer concentrations
as high-risk factors [34]. Other groups found that water addition rate and stir rate during water
titration impact emulsion diameter [14–16], though FMECA was not utilized in these reports. Given
this, we postulated that microemulsion composition and water titration process parameters could
significantly impact the defined CQAs. These points are reflected in the FMECA (Table 3). The highest
risk priority numbers correspond to high oil to surfactant ratio, fast water addition rate, and slow stir
rate. To the best of our knowledge, this is the first example of FMECA applied to a microemulsion
formulation development.
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Table 2. Descriptions for upper, middle, and lower risk priority number values for the categories of
severity, frequency of occurrence, and detectability.

1 3 5

Severity (S) No appreciable consequence
to batch quality

Requires action, but
batch is recoverable Total batch loss

Frequency of Occurrence
(O) Has not happened Happens sporadically Happens with regularity

Detectability (D) Readily detected Detected, but not always,
or not in a timely manner

Not detectable within current
manufacturing operation

Table 3. Abridged risk analysis with rankings. Using ranked risk priority numbers (RPNs), a methodical
risk assessment identified the most influential parameters on microemulsion critical quality attributes.
These parameters were studied in a screening mixture process variable design of experiments.

S O D RPN Method of Failure CQA Impacted Cause of Failure

5 3 5 75

Microemulsion
diameter too large
(>50 nm) and/or

microemulsion PDI
too large (>0.1)

Microemulsion
diameter and/or

microemulsion PDI

Water addition rate too fast

5 3 5 75 Stir rate too slow

3 1 5 15 Stirring time too short

5 1 5 25 Fluctuating room
temperature

5 1 5 25
Vessel size incompatible

with microemulsion
volume

5 3 5 75 Oil:surfactant ratio too high

5 2 5 50 Incompatible excipients
lead to phase separation

5 1 5 25

Diameter change too
large (>10%) and/or
PDI too large (>0.1)

Diameter change after
filtration

Shear forces during
filtration

5 2 5 50
Diameter increase
and/or PDI after
centrifugation

High oil:surfactant ratio
causes droplet aggregation

upon exposure to
centrifugal force

5 4 5 100 Diameter increase
and/or PDI after
thermal cycling

High oil:surfactant ratio
leads to droplet coalescence

5 2 5 50 High oil:surfactant ratio
leads to phase separation

5 4 5 100 30-day diameter
change or 30-day PDI

High oil:surfactant ratio
leads to droplet coalescence

5 2 5 50 High oil:surfactant ratio
leads to phase separation

2.4. Design of Experiments–Screening Design

Based upon the FMECA, a 15-run D-optimal screening design of experiments was developed to
study the impact of stir rate, water addition rate, and microemulsion composition on microemulsion
CQAs (runs 1-15, Table 4). CQAs were measured for each run, and the results are presented in Table 5.
To assess microemulsion reproducibility, four runs from the screening DoE (2, 3, 8, and 13) were
replicated in triplicate, and CQAs were measured for each replicated microemulsion. The average and
standard deviation of each triplicated CQA measurement is reported in Table 6. Microemulsions were
consistently reproduced and performed similarly under all quality control tests.
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Table 4. Runs in the design of experiments.

Run Oil (%
w/v)

Surfactants
(% w/v)

Transcutol
(% w/v)

Propylene
Glycol (% w/v)

Water (%
w/v)

Stir Rate
(rpm)

Water Addition
Rate (mL/min)

1 6 27.5 7.5 0 59 350 12
2 ** 6 27.5 2.5 0 64 350 4
3 ** 2 22.5 2.5 2 71 350 12

4 4 27.5 2.5 2 64 700 12
5 6 22.5 7.5 0 64 350 4
6 2 22.5 7.5 2 66 700 4
7 2 22.5 2.5 0 73 350 12

8 ** 4 27.5 7.5 2 59 700 12
9 2 27.5 7.5 0 63 700 4
10 6 22.5 7.5 0 64 700 12
11 2 22.5 7.5 2 66 350 4
12 2 27.5 2.5 0 68 700 4

13 ** 6 22.5 2.5 0 69 700 4
14 2 27.5 7.5 0 63 350 12
15 4 27.5 2.5 2 64 350 4
16 6 22.5 2.5 3.5 65.5 350 4
17 2 25 2.5 5 65.5 350 4
18 6 27.5 2.5 3.5 60.5 350 4
19 2 25.32 7.5 2.5 62.68 350 4
20 2 22.5 2.5 5 68 350 4
21 4.5 22.5 2.5 5 65.5 350 4
22 2 27.5 5 5 60.5 350 4
23 2 25.5 2.5 0 70 350 4
24 6 25 4.25 1.75 63 350 4
25 2 22.5 5 5 65.5 350 4
26 2 22.5 5.5 0 70 350 4
27 2 27.5 4.62 2 63.88 350 4
28 4.5 27.5 2.5 5 60.5 350 4
29 4 24.74 5.24 0 66.02 350 4
30 2 27.5 2.5 5 63 350 4

Runs 1–15 were part of a screening design that was used to identify parameters that significantly contributed to
microemulsion diameter, PDI, and 30-day percent diameter increase. The design was then augmented to include
runs 16–30 that enabled the study of interactions between these significant parameters. ** Indicates that the run was
replicated in triplicate.
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Table 5. Summary of CQA specification testing.

CQA (Specification)

Run Diameter
(<50nm) PDI (<0.1)

Filtration
Diameter Change

(<10%)

Filtration
PDI (<0.1)

Centrifugation
Diameter Change

(<10%)

Centrifugation
PDI (<0.1)

Thermal Cycling
Diameter Change

(<10%)

Thermal
Cycling PDI

(<0.1)

30-day Diameter
Change (<10%)

30-day PDI
(<0.1)

1 33.56 0.087 1.39 0.086 1.39 0.106 74.58 0.071 48.88 0.240
2 29.25 0.055 0.87 0.052 0.87 0.072 28.49 0.079 16.83 0.114

3 * 18.40 0.046 −0.18 0.040 -0.18 0.029 1.71 0.024 2.68 0.040
4 21.51 0.052 0.57 0.042 0.57 0.039 17.04 0.102 10.33 0.095
5 116.50 0.110 0.09 0.118 0.09 0.082 −13.38 0.139 25.78 0.123

6 * 18.08 0.048 −0.20 0.028 −0.20 0.041 0.18 0.026 6.75 0.060
7 * 17.96 0.039 0.89 0.020 0.89 0.027 0.66 0.027 3.49 0.029
8 22.67 0.054 −0.38 0.049 −0.38 0.062 220.70 0.209 18.54 0.091

9 * 17.34 0.031 −0.67 0.031 −0.67 0.034 0.92 0.048 1.90 0.045
10 66.49 0.123 0.11 0.129 0.11 0.117 −5.51 0.089 42.11 0.119

11 * 18.32 0.022 −0.31 0.029 −0.31 0.045 0.63 0.035 5.82 0.049
12 * 17.06 0.037 1.19 0.026 1.19 0.019 −0.06 0.022 3.95 0.022
13 37.64 0.077 −0.20 0.085 −0.20 0.080 −1.77 0.070 31.09 0.115

14 * 17.27 0.029 0.02 0.035 0.02 0.060 0.15 0.029 2.10 0.036
15 22.23 0.054 −0.60 0.033 −0.60 0.044 14.22 0.108 11.35 0.154
16 50.62 0.106 −0.01 0.114 0.32 0.106 −4.70 0.089 30.20 0.103

17 * 17.57 0.059 −1.18 0.016 0.51 0.032 2.07 0.022 1.12 0.014
18 31.26 0.068 −0.29 0.073 0.09 0.098 30.74 0.065 17.32 0.122

19 * 17.20 0.033 −0.29 0.032 −0.56 0.036 −0.19 0.027 2.25 0.041
20 * 17.99 0.037 −2.00 0.030 0.39 0.029 1.22 0.026 3.48 0.026
21 29.90 0.085 0.08 0.069 −0.04 0.085 12.76 0.090 19.31 0.105

22 * 16.89 0.029 −0.53 0.044 −0.83 0.036 −0.24 0.022 1.03 0.028
23 * 17.21 0.035 0.35 0.043 0.00 0.037 1.04 0.018 2.79 0.035
24 39.40 0.103 −0.33 0.106 −0.15 0.103 −0.76 0.071 31.78 0.119

25 * 17.86 0.033 −1.06 0.037 −0.59 0.048 0.11 0.037 3.34 0.046
26 * 17.78 0.041 0.79 0.052 1.53 0.039 0.93 0.030 2.42 0.076
27 * 17.26 0.050 0.00 0.053 1.40 0.032 −0.45 0.032 −1.04 0.025
28 24.14 0.053 0.99 0.064 2.15 0.049 66.83 0.151 8.84 0.090
29 23.45 0.057 −1.46 0.048 −0.29 0.058 51.44 0.120 16.46 0.105

30 * 17.07 0.033 0.16 0.028 0.84 0.025 0.59 0.027 2.30 0.029

Values that meet the CQA specification are highlighted in gray. * Indicates the run met all CQA specifications.
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Table 6. Four runs from the screening design of experiments were replicated in triplicate. All CQAs
were measured for each replicate.

Average ± SD

Run 2 Run 3 Run 8 Run 13

Diameter (nm) 28.87 ± 0.70 18.17 ± 0.33 22.66 ± 0.38 37.65 ± 0.56
PDI 0.0561 ± 0.0037 0.0337 ± 0.0146 0.0502 ± 0.0051 0.0767 ± 0.0003

Filtration Diameter (nm) 29.24 ± 0.63 18.11 ± 0.35 22.46 ± 0.51 37.43 ± 0.61
Filtration PDI 0.0496 ± 0.0030 0.0296 ± 0.0093 0.0462 ± 0.0057 0.0817 ± 0.0055

Centrifugation Diameter (nm) 30.78 ± 0.49 18.30 ± 0.36 23.32 ± 0.50 39.11 ± 0.14
Centrifugation PDI 0.0613 ± 0.0095 0.0289 ± 0.0004 0.0608 ± 0.0015 0.0810 ± 0.0030

Thermal Cycling Diameter (nm) 39.11 ± 1.37 18.52 ± 0.12 77.70 ± 7.46 41.80 ± 1.79
Thermal Cycling PDI 0.0737 ± 0.0044 0.0297 ± 0.0053 0.2304 ± 0.0547 0.0644 ± 0.0072
30-day Diameter (nm) 33.11 ± 1.02 18.45 ± 0.43 26.51 ± 0.89 47.43 ± 1.66

30-day PDI 0.1067 ± 0.0121 0.0366 ± 0.0051 0.1290 ± 0.0610 0.1176 ± 0.0056

MLR was used to identify the process parameters that were most likely to significantly impact
the CQAs of (1) day 1 diameter, (2) day 1 PDI, and (3) 30-day percent diameter change. All process
parameters were included in these screening MLR models, and p-values for parameter estimates are
shown in Table 7. Oil and transcutol significantly contribute to day 1 diameter, while oil, transcutol,
and water significantly contribute to day 1 PDI (p-value < 0.05). Oil content was the only significant
parameter in the 30-day percent diameter change model (p-value = 0.0008). Interestingly, water
addition rate and stir rate did not have significant p-values in any of the MLR models. We concluded
that in this specific design space, microemulsion diameter, PDI, and 30-day percent diameter change are
dependent solely upon microemulsion composition. Specifically, microemulsion oil content appears
to be the most significant predictor of the three studied CQAs, as oil had the lowest p-value in all
screening MLR models.

Table 7. Left: Parameters and their corresponding p-values for MLR models developed from the
screening design of experiments. Significant (p-value < 0.05) parameters are highlighted in gray. Right:
Parameters and their corresponding percent contributions for boosted tree models developed from the
screening design of experiments.

MLR

Term p-Value

Day 1 Diameter

(Oil − 0.02)/0.14 0.00586
(Transcutol − 0.025)/0.14 0.04627

(Water − 0.59)/0.14 0.14028
(Surfactants − 0.225)/0.14 0.29011

Water Addition Rate 0.61893
Propylene Glycol/0.14 0.64347

Stir Rate 0.65578

Day 1 PDI

(Oil − 0.02)/0.14 0.00002
(Transcutol − 0.025)/0.14 0.00165

(Water − 0.59)/0.14 0.00485
(Surfactants − 0.225)/0.14 0.22251

Water Addition Rate 0.25789
Stir Rate 0.42514

Propylene Glycol/0.14 0.43751

30 Day Diameter Change (%)

(Oil − 0.02)/0.14 0.00008
(Transcutol − 0.025)/0.14 0.05528

Water Addition Rate 0.17303
(Surfactants − 0.225)/0.14 0.53077

Stir Rate 0.56218
(Water − 0.59)/0.14 0.60861

Propylene Glycol/0.14 0.67400
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Two microemulsions (runs 5 and 10) from the screening design failed to meet the day 1 diameter
and PDI specifications (Table 5). Specifically, day 1 diameters were 116.50 and 66.49 nm for runs 5
and 10, respectively. The day 1 diameter for run 5 was found to be a statistical outlier (Grubbs’ test,
p-value 0.01). Interestingly, runs 5 and 10 had the same composition, but different stir rates and water
addition rates. This is inconsistent with the MLR results, which suggest that these parameters do not
significantly impact microemulsion diameter. Upon closer inspection, three additional microemulsion
pairs had identical composition but a different stir rate or water addition rate (runs 6 and 11, runs 9
and 14, and runs 4 and 15, Table 4). All three pairs had comparable day 1 diameters (less than 1 nm
difference, Table 5), which is consistent with the MLR results. We hypothesized that runs 5 and 10
behave differently because they have a higher internal phase (oil, transcutol, and propylene glycol) to
surfactants ratio than any other formulation. The internal phase to surfactants ratio was equal to 0.6
for runs 5 and 10, but 0.51 or less for all other formulations. We hypothesized that there is a specific
design space in which stir rate and water addition rate do not significantly impact microemulsion
diameter and other CQAs, and that a high internal phase to surfactants ratio causes runs 5 and 10 to
fall out of this design space. Therefore, runs 5 and 10 were removed from all further analysis.

2.5. Design of Experiments–Augmented Design

Through the screening design of experiments, we were able to (1) identify a subset of parameters
that significantly impacted microemulsion diameter, PDI, and 30-day percent diameter change; and (2)
identify a narrower design space that enabled production of microemulsions in the desired diameter
and PDI range. We used this information to add an additional 15 experimental runs to the design of
experiments. In this augmented design, the internal phase was adjusted from its original maximum
of 13.5% formulation weight to 12%, thus reducing the maximum internal phase to surfactant ratio.
Further, the process parameters of water addition rate and stir rate were eliminated from the augmented
design. Limiting the number of studied parameters increased the number of levels for each parameter
and allowed us to study the impact of interaction terms. Including potential interaction terms has the
potential to improve the predictive capabilities of the model. The 15 additional runs added to the DoE
are shown in Table 4 (runs 16–30). All microemulsions in the augmented DoE underwent the same
quality control tests as the formulations in the screening DoE. The results of these quality control tests
are shown in Table 5.

Results from the augmented design of experiments were used to develop MLR models for day 1
diameter, day 1 PDI, and 30-day percent diameter change as a function of microemulsion composition.
Figure 1 shows a comparison of actual and predicted plots for each model, and model R2 and RASE
values are shown for training and validation sets in Table 8. Model terms, parameter estimates,
standard errors, and p-values are shown in Table 9.

Table 8. R2 and RASE for the MLR models developed from the augmented design of experiments.
Training and validation sets consisted of 75% and 25% of the data, respectively. Validation sets were
selected using a stratified random sampling of the output of interest.

CQA Source R2 RASE

Day 1 Diameter (nm) Training Set 0.9419 2.04 nm

Validation Set 0.9908 0.81 nm

Day 1 PDI Training Set 0.8949 0.0085

Validation Set 0.8207 0.0087

30-day % Diameter Change Training Set 0.9637 2.21%

Validation Set 0.9878 1.41%
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Table 9. Parameter estimates, standard errors, and p-values for the MLR models developed from the
augmented design of experiments.

Term Estimate Std Error p-Value

Day 1 Diameter

(Oil − 0.02)/0.19 231.31 44.26 0.00013
Propylene Glycol/0.19 15.20 5.32 0.01272

(Transcutol − 0.025)/0.19 14.30 5.53 0.02149
(Surfactants − 0.225)/0.19 15.85 5.76 0.01564

(Water − 0.54)/0.19 18.29 1.62 <0.00001
Oil × Surfactants −367.22 84.41 0.00067

Oil*Water −139.94 63.81 0.04569

Day 1 PDI

(Oil − 0.02)/0.14 0.4955 0.0701 <0.00001
(Transcutol − 0.025)/0.14 0.0349 0.0141 0.02545
(Surfactants − 0.225)/0.14 0.0438 0.0142 0.00739

(Water − 0.59)/0.14 0.0318 0.0055 0.00004
Oil × Surfactants −0.7934 0.1648 0.00023

Oil ×Water −0.3178 0.1448 0.04435

30 Day % Diameter
Change

(Oil − 0.02)/0.14 92.86 7.92 <0.00001
(Water − 0.59)/0.14 4.87 1.27 0.00131

Oil × Transcutol 291.59 27.58 <0.00001
Oil × Surfactants −106.37 26.87 0.00102

2.6. Predicting Microemulsion Stability with Logistic Regression

The majority of microemulsions presented here met the CQA specifications for filtration and
centrifugation. However, fourteen formulations failed to meet thermal cycling or 30-day CQA
specifications. We therefore chose to focus on the development of logistic regression models that could
predict the probability that a microemulsion would meet the CQA specifications for thermal cycling
and 30-day stability.

Upon closer inspection of the data, there appeared to be a trend between day 1 diameter and
whether the microemulsion met all CQA specifications. Logistic regression models were developed to
predict the probability of a microemulsion meeting the CQA specifications of 30-day percent diameter
change (Figure 2A) and day 30 PDI (Figure 2C) as a function of day 1 diameter. The left-hand confusion
tables (Table 10) demonstrate the accuracy of these models. The 30-day percent diameter change logistic
model has a single misclassification in both the training and validation data sets, and the day 30 PDI
logistic model has a misclassification in the training data set. To improve predictive accuracy, logistic
models were modified to predict the probability of a microemulsion meeting both the thermal cycling
and 30-day CQA specifications. The first of these logistic models predicted whether a microemulsion
would meet the 30-day percent diameter change and the thermal cycling diameter change CQA
specifications (Figure 2B). Similarly, a logistic model was developed to predict the probability that a
microemulsion would meet the day 30 PDI and the thermal cycling PDI CQA specifications (Figure 2D).
Modifying the response to incorporate two CQA specifications from different stability tests resulted in
more accurate logistic models, as both developed models had zero misclassifications in the training
and validation data sets (Table 10).
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Figure 2. Logistic regression models predict the probability that a microemulsion will meet one or
more CQA specifications-based upon its day 1 diameter measurement. (A) 30-day percent diameter
change; (B) 30-day percent diameter change and thermal cycling percent diameter change; (C) day 30
PDI; (D) day 30 PDI and thermal cycling PDI. The predictive accuracy of the logistic models improves
when two CQA specifications must be met.

2.7. Microemulsion Scale-Up to 1 L

Microemulsions were reproduced consistently on a 100 mL scale (Table 6). Further, we found
that for this specific design space, water addition rate, and stir rate did not significantly impact
microemulsion diameter or PDI. We hypothesized that this would make the microemulsion formulation
robust and therefore easier to scale up. We selected formulation 6 (Table 4), because this formulation
met all CQA specifications, had a low concentration of surfactants, and had high concentrations of both
solubilizers. Therefore, formulation 6 has the potential to solubilize higher concentrations of one or
more lipid-soluble drugs. Formulation 6 was scaled up to 1000 mL in triplicate. All scaled up batches
underwent the same CQA testing as the 100 mL batches. Microemulsion scale-up was reproducible
and comparable to the 100 mL batch (Figure 3, Table 11).
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Table 10. Confusion tables for the logistic models that use day 1 microemulsion diameter to predict
whether a microemulsion will meet the CQA specifications of thermal cycling diameter change and
30-day diameter change.

30-Day % Diameter Change 30-Day % Diameter Change and Thermal Cycling
% Diameter Change

Training Predicted Count Training Predicted Count

1 0 1 0

Actual
Count

1 12 1 Actual
Count

1 12 0
0 0 8 0 0 9

Validation
Predicted Count

Validation
Predicted Count

1 0 1 0

Actual
Count

1 4 0 Actual
Count

1 4 0
0 1 2 0 0 3

Day 30 PDI Day 30 PDI and Thermal Cycling PDI

Training Predicted Count Training Predicted Count

1 0 1 0

Actual
Count

1 12 1 Actual
Count

1 12 0
0 0 8 0 0 9

Validation
Predicted Count

Validation
Predicted Count

1 0 1 0

Actual
Count

1 5 0 Actual
Count

1 4 0
0 0 2 0 0 3
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Table 11. Summary of CQA specification testing for scaled up (1000 mL) microemulsions.

100 mL Scale (n = 1) AV 1000 mL Scale (n = 3) AV ± SD

Diameter (nm) 18.08 17.93 ± 0.19

PDI 0.0477 0.0444 ± 0.0165

Filtration Diameter (nm) 18.05 18.15 ± 0.50

Filtration PDI 0.0283 0.0449 ± 0.0170

Centrifugation Diameter (nm) 18.56 18.30 ± 0.48

Centrifugation PDI 0.0407 0.0382 ± 0.0107

Thermal Cycling Diameter (nm) 18.47 18.17 ± 0.05

Thermal Cycling PDI 0.0257 0.0354 ± 0.0049

30-Day Diameter (nm) 19.30 18.69 ± 0.19

30-Day PDI 0.0597 0.0561 ± 0.0096

The average and standard deviation of three scaled up microemulsions was calculated for each CQA test and
compared to the result for the same formulation produced on a 100 mL scale.

3. Discussion

To fully evaluate stress stability of a product, it is critical to have adequate quality control analyses in
place. However, there is a lack of extensive, orthogonal quality control analyses in early microemulsion
development. Orthogonal quality control analyses such as centrifugation and thermal cycling are
becoming more commonly used in microemulsion literature reports [35,36], but this use is inconsistent.
Many microemulsion literature reports only investigate droplet diameter and PDI over the span of
several months, and microemulsions exhibiting little change in these properties are deemed stable.
The time it takes to identify unstable formulations using this approach is prohibitive. Additionally,
this approach is not representative of the stresses that microemulsions endure upon transportation
or evaluation in in vitro pharmacological studies. In the presented work, we demonstrated that
logistic regression could be used to predict the probability that a microemulsion formulation would
meet one or more CQA specifications. We also demonstrated that model prediction accuracy was
improved when multiple CQA specifications needed to be met simultaneously. This highlights the
importance of rigorous quality control analyses early in the development of microemulsions and other
nanoformulations. For example, consider run 28, Table 5. This formulation met the CQA specifications
for 30-day stability but failed to meet the CQA specifications for thermal cycling. Conversely, runs
13, 16, and 24 (Table 5) met the CQA specifications for thermal cycling but failed to meet the CQA
specifications for 30-day stability. Had these formulations been subjected to only one stability test, they
may have been deemed stable and proceeded to further testing. The extensive quality control analyses
presented here demonstrate that thorough quality control testing early in the development process can
aid in the identification of unsuitable or unstable formulations early, saving time and resources.

Interestingly, the MLR models for day 1 diameter and day 1 PDI were similar. The only difference
between these two models was that the diameter model included propylene glycol, while this main
effect was not significant in the PDI model. It was also interesting that day 1 diameter was able
to accurately predict the probability that the CQA specifications for thermal cycling PDI and day
30 PDI were met (Figure 2C,D). To further investigate this potential relationship between diameter
and PDI, day 1 PDI was plotted as a function of day 1 diameter, and a single regression line was fit
to the data (Figure 4). There is a significant correlation between microemulsion diameter and PDI
(R2 = 0.9016, p-value < 0.0001). This is not surprising when considering the methods used to calculate
these parameters. Diameter measurements reported here are calculated with zetasizer nano software
(Malvern, UK) from the signal intensity, using a cumulants analysis that is the fit of a polynomial to the
log of the G1 correlation function [37]. The fitted polynomial is shown in the equation below:

Ln[G1] = a + bt + ct2 (2)
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The terms a, b, and c are the coefficients of the fitted polynomial, and t is time. The second order
term is used to define the degree to which the data bear a resemblance to single decay, and the first
order term defines diffusion rate, where the coefficient b is the z-average diffusion coefficient, used to
calculate particle diameter. This coefficient b, along with the coefficient c, are used to calculate PDI as
shown in the below equation:

PDI =
2c
b2 (3)

Since both diameter and PDI are dependent upon the z-average diffusion coefficient b, it is
reasonable that a correlation would exist between diameter and PDI. The fact that both MLR and logistic
regression models confirm this correlation is encouraging and suggests that these statistical regression
approaches were able to facilitate our understanding of the relationships between microemulsion
composition, diameter, and PDI.

Models capable of predicting microemulsion stability, including the 30-day percent diameter
change MLR model (Figure 1C, Tables 8 and 9) and the logistic regression models (Figure 2, Table 10) are
particularly useful, because they enable the prediction of microemulsion stability prior to production
(MLR) or only 24 h after production (logistic regression). This has the potential to save significant
time and resources, as microemulsions unlikely to meet CQA specifications can be discarded without
running further tests.

Through a screening DoE followed by subsequent augmentation to the DoE, we were able to
identify a design space in which stir rate and water addition rate did not have a significant impact on
microemulsion diameter, PDI, or stability. This suggests that the presented microemulsion production
approach can tolerate changes in the manufacturing process parameters, as long as composition is
unchanged. This was confirmed, as we were able to consistently scale up a select microemulsion
formulation to ten times its original volume. Successful and reproducible scale up has the potential
to ease the transition into extensive animal work or pre-clinical trials, and is therefore useful for
nanoformulations in particular, as scale up can prove challenging for these types of formulations.

Risk assessment using FMECA, in combination with a screening DoE led to the rapid and efficient
identification of several stable microemulsion formulations and the identification of a robust design
space that enabled microemulsion scale up. Risk analysis narrowed down the number of process
parameters that were studied, and the use of DoE further saved time by minimizing the number of runs
that were needed to understand that relationship between the process parameters and the CQAs. To
the best of our knowledge, this is the first report of a combination risk analysis, DoE, MLR, and logistic
regression approach applied to a microemulsion formulation. This combination of experimental design
and modeling techniques was powerful, because it allowed us to use microemulsion composition
to predict diameter, PDI, 30-day percent diameter change, and probability of meeting multiple
CQA specifications. The QbD approach presented here can be adapted to other nanoformulations’



Molecules 2019, 24, 2066 16 of 20

development and has the potential to reduce expenses through the prediction of unstable and/or
unsuitable formulations in these early developmental stages.

4. Materials and Methods

4.1. Materials

Miglyol 812N was purchased from Fisher Scientific (Fair Lawn, NJ, USA). Kolliphor® EL was
purchased from Sigma-Aldrich (St. Louis, MO, USA). Polyethylene glycol (PEG) 400 monostearate,
transcutol (2-(2-Ethoxyethoxy)ethanol), and propylene glycol were purchased from Spectrum Chemicals
(CA, USA). Millex-GS syringe filters were purchased from EMD Millipore (Burlington, MA, USA).

4.2. Microemulsion Production

Microemulsions were produced on a 100 mL scale via water titration. All microemulsion
components (except water) were added to the beaker, with kolliphor EL and PEG 400 always added at
a 1:1 w/w ratio, so that their total weight was equal to the specified surfactants weight. Excipients were
stirred at a speed of 350 rpm for 30 min. Then, the stir rate was adjusted to 350 rpm or 700 rpm, and
water titration was performed at the specified rate (4 mL/min or 12 mL/min). When water addition was
complete, the microemulsion continued to be stirred for 60 min. All microemulsions were produced at
ambient temperature, which varied between 18 and 22 ◦C.

4.3. Dynamic Light Scattering Measurements

All dynamic light scattering measurements were performed using a Zetasizer Nano ZS series
(Malvern Instruments, Worcestershire, UK). Microemulsions were diluted 1:40 v/v in de-ionized water.
Measurements were performed at a temperature of 25 ◦C and a light scattering angle of 173◦.

4.4. CQA Specification Testing

Filtration: After production, microemulsions were stored at ambient temperature. On day 1 (24 h)
after production, 25 mL microemulsion were filtered through a Millex-GS syringe filter with a pore
size of 0.22 µm and stored in a non-sterile, 50 mL plastic centrifuge tube. Diameter and polydispersity
index (PDI) of filtered and unfiltered microemulsions were measured. Filtered microemulsion was
stored at 4 ◦C, and unfiltered microemulsion was stored at ambient temperature. Centrifugation: Five
days (120 h) after production, filtered microemulsions were diluted 1:40 v/v in de-ionized water and
centrifuged at 1620× g for 30 min. Microemulsion diameter and PDI were then measured without
additional sample dilution. Same day measurements of filtered microemulsion stored at 4 ◦C were
used for comparison. Thermal Cycling: Immediately after filtration, 5 mL of undiluted, filtered
microemulsion was added to a glass vial, sealed with parafilm, and stored at 4 ◦C. After 24 h, samples
were moved to 50 ◦C. Every 24 h, vials were moved between 4 and 50 ◦C for a total of four thermal
cycles (8 days). Upon completion, diameter and PDI of thermal cycling samples were measured after
1 h equilibration to room temperature. Same-day measurements of filtered microemulsion continuously
stored at 4 ◦C were used for comparison.

4.5. Design of Experiments

Screening Design: A two-level, seven factor, D-optimal screening mixture process variable design
of experiments was developed using JMP Pro 13 software. The following constraints were defined
for the mixture variables: Miglyol (2.0, 6.0% weight), transcutol (2.5, 7.5% weight), propylene glycol
(0, 2.0% weight), and surfactants (Kolliphor EL and PEG 400, 1:1 w/w, 22.5, 27.5% combined weight).
An additional constraint specified that the sum of Miglyol and propylene glycol could not exceed 6%
weight for any formulation. Levels of 350 and 700 rpm and 4 and 12 mL/min were defined for stir rate
and water addition rate, respectively. Factor ranges were selected based upon our prior knowledge in
the field in combination with previous reports which studied the same parameters [14–16].
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Augmented Design: Based upon statistical analysis of the screening DoE, this DoE was augmented
to refine the design space and facilitate investigation of composition main effects and second order
interactions. The augmented design consisted of the 15 screening runs plus 15 additional runs
and modified the upper limit of internal phase such that it could not exceed 12% total weight.
Additionally, the upper limit of propylene glycol was increased to 5% weight to capitalize on the
finding that propylene glycol did not contribute significantly to studied CQA specifications. The
selected augmented design maximized the power to detect regression coefficients.

4.6. Multiple Linear Regression (MLR) Modeling

JMP Pro 13 software was used to develop MLR models that predicted day 1 diameter, day 1 PDI,
and 30-day percent diameter increase as a function of modeling process parameters. For screening
studies, runs 1–15 (Table 4) were used to develop models that studied main effects terms only (five
composition parameters, stir rate, and water addition rate). Models contained all seven parameters
and were used solely to identify parameters that were likely to significantly impact (p-value < 0.05) the
CQA specifications of interest.

After screening studies, stir rate and water addition rate were determined to not significantly
impact microemulsion CQA specifications (Table 7), and the design of experiments was augmented
to include an additional 15 runs (runs 16–30, Table 4). This augmented, 30-run DoE was used to
develop MLR models that predicted day 1 diameter, day 1 PDI, and 30-day percent diameter change
as a function of microemulsion composition. All main effects and interactions were studied using a
stepwise forward approach. All terms with a p-value < 0.05 were included in the models. Models
were developed using 21 (75%) runs and validated using the remaining 7 (25%) runs. Validation sets
were selected using a stratified random sampling of the output of interest. All models were developed
without intercept terms.

In all MLR models, mixture terms were coded as L pseudocomponents. This transformation is
x′i =

xi−Li
(Total−L) where x’i is the i’th pseudocomponent, xi is the original component value, Li is the

lower constraint for the i’th component, L is the sum of lower constraints for all components, and
Total is the mixture total. This linear transformation allows the regression coefficients for the mixture
components to be comparable in size.

4.7. Logistic Regression Modeling

Logistic regression models were developed to predict the probability that a microemulsion would
meet one or more CQA specifications. Microemulsions that met the CQA specification(s) were assigned
a value of 1, and microemulsions that failed to meet one or both CQA specifications were assigned a
value of 0. Models were developed using 21 (75%) runs and validated using the remaining 7 (25%)
runs. The validation set was selected using a stratified random sampling of day 1 diameter (the
predictor variable).

4.8. Microemulsion Scale Up to 1 L

A selected microemulsion formulation (see results section for selection explanation) was scaled
from 100 mL to 1000 mL in triplicate. Scaled up microemulsions were produced using a stir rate of
500 rpm and a water addition rate of 80 mL/min. Scaled up formulations underwent the same CQA
specification testing as the 100 mL scale microemulsions.

5. Conclusions

In the present work, we used quality by design methodology to efficiently identify stable,
robust microemulsions and understand the processes that impact microemulsion diameter, PDI,
and stability. We used FMECA to identify the process parameters that were most likely to impact
microemulsion diameter, and through a screening design of experiments, we were able to identify
a design space in which microemulsion diameter, PDI, and stability were dependent solely upon
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microemulsion composition. We hypothesized that microemulsions that were robust to changes
in production processing parameters (stir rate and water addition rate) could undergo successful
scale up. This hypothesis was confirmed, as we successfully and consistently scaled up a selected
microemulsion tenfold, from 100 mL to 1000 mL. Using MLR, we were able to develop predictive
models for microemulsion diameter, PDI, and 30-day percent diameter change. We also developed
logistic regression models that predicted the probability that a microemulsion would meet one or more
CQA specifications as a function of day 1 diameter. This unique combination of MLR and logistic
regression was powerful in this specific application, as it could be used to predict not just the basic
colloidal properties (diameter and PDI), but also the probability that a formulation will pass quality
control testing. The present work is an example meant to demonstrate the usefulness of adapting QbD
approaches to nanoformulation development. Adapting QbD approaches to nanoformulations has
the potential to reduce expenses through early identification of unsuitable formulations, as well as
increase the likelihood that the product can be scaled up for further study.

Supplementary Materials: The Supplementary Materials are available online.
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