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Abstract

The ‘‘Swine flu’’ pandemic of 2009 caused world-wide infections and deaths. Early efforts to understand its rate of spread
were used to predict the probable future number of cases, but by the end of 2009 it was clear that these predictions had
substantially overestimated the pandemic’s eventual impact. In England, the Health Protection Agency made
announcements of the number of cases of disease, which turned out to be surprisingly low for an influenza pandemic.
The agency also carried out a serological survey half-way through the English epidemic. In this study, we use a mathematical
model to reconcile early estimates of the rate of spread of infection, weekly data on the number of cases in the 2009
epidemic in England and the serological status of the English population at the end of the first pandemic wave. Our results
reveal that if there are around 19 infections (i.e., seroconverters) for every reported case then the three data-sets are entirely
consistent with each other. We go on to discuss when in the epidemic such a high ratio of seroconverters to cases of disease
might have been detected, either through patterns in the case reports or through even earlier serological surveys.
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Introduction

In the spring of 2009 an influenza pandemic arose in North

America. The first ‘Swine flu’ influenza A(H1N1) cases were

recorded in March 2009 in Mexico [1]. Infection soon became a

global phenomenon: the first laboratory confirmed cases in the

UK were on 27 April [2], and by the end of May more than 50

countries had confirmed cases. The World Health Organisation

formally declared the outbreak a pandemic on 11 June 2009 [3].

As the pandemic spread around the world it was natural to ask

‘‘how bad will it be?’’, and attempts to forecast epidemic impacts

were rapidly assembled, broadcast and then published. Several of

these studies focused on estimating the new influenza’s basic

reproductive number R0, defined as the number of secondary

cases caused by each case as an epidemic spreads into a population

with no pre-existing immunity [4]. A related parameter, the

effective reproductive number, Reff , pertains when an epidemic

spreads in a population in which some proportion are already

immune [5].

Estimates of the basic reproductive number ranged from 1:2 to

2:1 (see Table 1). A mid-range estimate of 1:5 implied that the

epidemic would grow until 1=3 of the population were infected or

immune, then turnover and come to an end when around 60% of

the population were immune. If all infections lead to illness prior

to the acquisition of immunity this implied that a very large

fraction of the population would become ill during the pandemic’s

early waves. Some alarming predictions were indeed made,

particularly for the UK.

In England, the Health Protection Agency (HPA) monitored

case estimates over the whole period of the pandemic, and

published its findings online in its ‘Weekly Pandemic Flu Media

Updates’ and its ‘Weekly National Influenza Reports’ [2,6]. The

last pandemic flu media update was published on 14 January

2010, the official end of the pandemic in England [2,6]. By this

time HPA’s estimates totalled 910,000 cases over the course of the

pandemic in England [2]. This amounts to less than 2% of the

English population [7], a much lower figure than expected even

with a basic reproductive number from the lower end of the

published estimates.

This large discrepancy between the predicted and observed

epidemics could have several causes. The basic reproductive

number might have been very much smaller than estimated, a

large part of the population might have been immune before the

pandemic arrived, or many susceptible individuals might have

been infected and become immune without being ill enough to

register in the case estimates.

In what follows we use simple mathematical models to

reproduce the HPA case estimates and try to learn how each of

these three factors contributed to the surprisingly small epidemic.

We then ask at what point in time during 2009 it should have

become apparent that the English epidemic would be so small.

Methods

Phases of the Epidemic
We use the HPA case estimates which were made available to

the public via the internet [2] as a data source for estimated

numbers of symptomatic cases with influenza A(H1N1) in

England. On 27 April 2009, the HPA announced the first

laboratory confirmed infected case in the UK. It updated the
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number of new laboratory confirmed cases in England on a daily

basis until 2 July 2009 when it switched to weekly updates of

estimated numbers of new cases in the previous week. The last

pandemic media update was published on 14 January 2010, when

the influenza epidemic in England was officially declared to be

over [6].

HPA’s case estimates were an estimate of the number of people

with symptomatic infections. The number of cases was estimated as

the product of four factors: the number of GP visits with influenza-

like-illness, the proportion of diagnosed cases that were confirmed as

infected with A(H1N1), the proportion of symptomatic cases likely

to contact the health services and the likely impact of the National

Pandemic Flu Service when it became available [8,9].

The data fall into three distinct phases:

Phase I: The first phase is the initial growth phase. It

starts in week 19 with the first infected cases in the UK,

and ends in week 30. From week 19 to week 27, the

HPA released case reports based on laboratory con-

firmed cases. It changed its method to estimate cases

using surveillance measurements in week 28 [2],

explaining the jump in new cases between week 27

and 28. However, we expect that the laboratory

confirmed case numbers released before week 28 are

under-estimates of actual case numbers, because of

limited laboratory facilities and the time delay to test for

influenza A(H1N1).

Phase II: From week 30 to week 36 the number of

cases declined. This is the period of school summer

holidays in England. State schools were closed from 22

July to 3 September 2009 [10], exactly corresponding to

phase II and marking the borders of the three phases. It

is very likely that school closures during the summer

break caused the decline in transmission events as

children and young adults have been identified as the

main age groups that were infected (see Figure 1 and

[11,12]). Most universities were also shut during this

phase, reducing mixing amongst young adults.

Phase III: The last phase is the second epidemic wave

after the school holiday. Schools reopened in week 36,

and the number of new infections increased until week

44 after which numbers of new cases decreased again.

The third phase ends in week 1 of 2010 with no more

published HPA updates on estimated A(H1N1) cases.

Figure 1. HPA case data and cumulative number of cases. The bars show the number of estimated new cases per week. The cumulative
number of cases per week is presented as black line on a separate axis. The plot is separated into three phases, I–III, divided by dashed lines in week
30 and 36 between which state schools in England were closed [10]. Phase I is the initial growth phase before 22 July 2009, phase II is the school
holiday phase until 3 September 2009, and at this date phase III with another growth and decline begins.
doi:10.1371/journal.pone.0030223.g001

Table 1. Reproductive numbers estimates for influenza
A(H1N1) from several independent studies.

Reproductive number estimates

1:22–1:58 (CI: 1:05–2:04) [1]

1:3–1:7 [17]

1:21–1:35 [18]

1:75 (CI: 1:64–1:88) [19]

1:37 (CI: 1:21–1:41){ [20]

1:6 (CI: 1:5–1:8){ [21]

1:78–2:07 (CI: 1:67–2:22) [22]

1:44 (CI: 1:36–1:51){ [23]

1:31 (CI: 1:25–1:38) [24]

A range of possible reproductive numbers is presented when multiple
estimations were made. Estimates marked with { are the effective reproductive
number Reff , while unmarked ones are the basic reproductive number R0 . The
confidence interval (CI) is given wherever possible.
doi:10.1371/journal.pone.0030223.t001
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Theoretical Model
We developed a simple version of the SIR mathematical model

that allows for two routes to immunity; one with disease and one

without. As we are interested in short-term epidemic behaviour it

is a model for a closed population without any births. There are

four types of individual: susceptibles, S, catch the infection at a

rate that is proportional to the fraction of the population that is

infectious. Upon infection they become infectious, either with

symptoms, Is, or without, Ia. The proportion that develop

symptoms on infection is p. After a period of infectiousness they

recover to their respective immune class, Rs or Ra. The rate of

transmission of infection from those infected to the susceptibles is

reduced by some fixed factor rh during phase II, the school

holidays. At the start of the epidemic in England most people are

susceptible so in class S, but some may already be immune so are

already in class R~RszRa. This model has five parameters:

the proportion initially immune, R(t~0)=(R(t~0)zS(t~0)), the

transmission rate, b, the reduction in transmission during

the holidays, rh, the duration of infectiousness, 1=c, and

the proportion of the population who become symptomatic if

infected, p:

dS

dt
~{rh(t) b IszIað Þ S

N
dIs

dt
~p rh(t) b IszIað Þ S

N
{c Is

dIa

dt
~ 1{pð Þ rh(t) b IszIað Þ S

N
{c Ia

dRs

dt
~c Is

dRa

dt
~c Ia

N ~SzIszIazRszRa

ð1Þ

where the reduction in transmission is a time dependent function:

rh(t)~
rh if within school holiday

1 otherwise

�
ð2Þ

Furthermore, the basic reproductive number can be defined as

R0~b=c, and the effective reproductive number is just

Reff ~R0 S=N. In the special case p~rh~1 our model reduces

to the standard, textbook epidemiological model called the ‘‘SIR

model’’ [4].

Serological Data
We used serological data based on samples drawn in England

between July and September 2009. These were published in 2010

[11]. Table S1 shows the reported serological data and the

demographic data that we used to calculate numbers immune

before and after the first wave of the pandemic. The original

report of the serological data split England into two areas, one with

a high risk of seroconversion and one with a low risk. For our

purposes we combine these using population data of the English

population from the Office of National Statistics [7]. This yields

estimates of the proportion of the population immune before the

pandemic arrived and the proportion immune at the end of the

first wave of the pandemic. The simple model that we use to

understand these data is age-independent, and we therefore need

to calculate proportions of the total population immune without

age-stratification. To do that from age-stratified data we used

demographic data on the current age and regional distribution [7].

Qualitative Analysis
Our Method proceeds in four steps:

First we calculate how many people were immune to

A(H1N1) before the pandemic and in September 2009.

The difference between these two numbers yields the

total number of people who were infected during the

English epidemic up to the time of sampling. This is a

conservative estimate as people might have been

infected between their sampling, which started in mid-

July, and September 2009. Our method therefore

underestimates the actual number of infected cases.

Second we compare the number of seroconverters with

the cumulative number of estimated symptomatic cases

by the beginning of September to get an estimate of the

proportion of all infections that manifest themselves in

disease (parameter p in the mathematical model). This

parameter is calculated as a central value with upper

and lower confidence bounds.

We then use these two pieces of information (proportion

immune before the pandemic arrived and proportion of all

infections manifesting as reported cases) and fit our model to the

case report data. In fitting the model to the data we infer values for

the three free model parameters: the basic reproductive number

(R0), the infectious period (1=c) and the reduction in transmission

during the summer holidays (rh).

In a fourth step we use our model to ask if it could have been

obvious from case-reports alone that the English epidemic would

be so small, and if so, when. If we assume S=N&const:, the

number of symptomatic infected can be expressed through an

exponential growth:

Is(t)&I0 e
p Reff {c

� �
t

ð3Þ

The HPA data on symptomatic cases is based on weekly updates.

This weekly sampling rate might be too broad to estimate the

correct number of symptomatic cases at any time point, especially

if the generation time is smaller than a week. But it allows us to

evaluate the accumulated sum of symptomatic cases (new

infections plus recovered ones), which grows with:

Is(t)zRs(t)&
b I0

Reff {c
e

p Reff {c

� �
t
zconst: ð4Þ

where the last term expresses the normalisation constant. As

before, the growth is described with an exponential function. We

can determine the effect of the depletion of susceptible hosts, or in

other words the difference in S=N between the two waves, by

taking the natural logarithm of the accumulated sum of HPA’s

estimates. The slope of the logarithmic growth periods is (p Reff -

c), so differences in the slope of the two epidemic waves reflect the

drop in Reff caused by a depletion of susceptible hosts from one

wave to the next.

Results

The English epidemic unfolded in three phases (Figure 1). The

first phase of rapid growth was followed by a second phase when

the number of cases fell as schools closed for the summer holiday.

The third phase saw the start of the second wave as schools

reopened in the autumn. After a short period of exponential

Impact of 2009 Influenza Pandemic in England
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Figure 2. Comparison of serological data by age group. The number of individuals in each age group is shown with large, grey bars. Red bars
show the number of individuals immune before the pandemic. Blue bars represent numbers who seroconverted between April and September 2009.
Green bars show the number immune by early September 2009. All numbers are calculated using serological data and demographic data from
England (see Table S1).
doi:10.1371/journal.pone.0030223.g002

Figure 3. Comparison of HPA case estimates with theoretical predictions of new cases. The HPA case estimates per week are represented
in a bar plot. The model in equation (1) was fitted to these data with state variable Is representing reported cases. The initial conditions were set at
the observed value of 12:7% of the population immune before week 22. Four different values of parameter p were assumed corresponding to four
different fits: 1=p~1 - brown line, 1=p~1:81 - green line, 1=p~6:62 - blue line and 1=p~18:62 - red line. The figure illustrates that 1=p~18:62 gives
the best agreement between model and data with the smallest least square error, and allows our model to reproduce the case estimates. The fitting
procedure yields estimates for the model’s three parameters, shown in Table 2. Only when 1=p~18:62 do these parameter estimates agree with
previously published values, compare Table 2 with Tables 1, 3 and 4.
doi:10.1371/journal.pone.0030223.g003
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growth, the second wave peaked in mid-November and then tailed

off. This was surprisingly early, given the predicted attack rates.

These data raise four questions:

1. How transmissible was this strain of influenza amongst the

population of England (i.e. how big was R0)?

2. By how much did transmission decline during the summer

holidays (i.e. what was rh)?

3. For each case detected how many seroconverters were there

(i.e. what was p)?

4. How soon could the failure to develop into a large epidemic

have been recognised?

These questions can be addressed by combining the case report

data with serological data (Figure 2). Those serological data show

(red bars) that a substantial number of people were immune before

the epidemic arrived and that this was particularly true for those

over the age of 45. Correspondingly there were many serocon-

versions by early September (blue bars) in the young and very few

in those over 45. Finally by early September a large part of the

English population was already immune (green bars), regardless of

age.

Adding up the number of serconverters across ages gives an

estimate of 2,552,000 infections in England by the beginning of

September 2009 (range 696,000–7,186,000 based on 95%
confidence intervals for the published serological studies). Yet,

by that time, only 385,368 symptomatic cases had occurred

according to HPA case estimates. We can take the ratio of

symptomatic cases to all infections as an estimate of the proportion

of cases that are symptomatic, parameter p in our model. The

serological data imply that p~0:15 (range 0:05–0:55). This is

more easily interpreted as the inverse of p; the number for

seroconverters for each recorded case. This has a mean of 6:62
with range 1:81–18:62. In what follows we use four different values

of 1=p: 1=p~1, every seroconverter is symptomatic; 1=p~1:81,

the lower bound estimate from the serological data; 1=p~6:62,

the mean from the serological data; and 1=p~18:62, the upper

bound from the serological data.

The serological data also yield an estimate for the proportion of

the population who were immune to the pandemic influenza strain

before it arrived. The estimate is 12:7% and is used to define initial

conditions for the model in equation (1).

Having made estimates for the initial conditions and the ratio of

seroconverters to cases we proceed to fit the model to the case

data. This amounts to finding a set of parameter values that are

consistent both with the case reports and with the serological data.

Figure 3 presents the best fits of our mathematical model to the

case reports for four different values of 1=p ranging from the

situation where all seroconverters present as cases (1=p~1) to the

upper limit of estimated values in which for each reported case

there are more than 18 seroconverters (1=p~18:62) [11]. All fits

assume that 12:7% of the population are immune before the

pandemic arrives, reflecting pre-existing immunity in the popula-

tion. Our fitting procedure is to fix p to one of our four values, fix

the percentage immune before the pandemic to 12:7% and then

estimate the three parameters R0, 1=c and rh by making a least

square fit of the solution of the model (equations (1) and (2)) to the

HPA’s case report data. Table 2 reports best fit parameter

estimates for each value of 1=p. Overall, the best fit is for

1=p~18:62. The parametric fit yields R0~1:59, very much in

agreement with previous estimates (see Table 1). In addition, an

infectious period of 2:42 days lies well within previous independent

estimates for influenza A(H1N1) (see Table 3 and Table 4). The

best-estimate reduction factor, rh~0:65 reveals that transmission

is 35% lower over the period of school holidays. While there is no

empirical data to validate this result, it seems plausible as the

number of infected cases was highest in the age group of 5 to 14
years old (see Figure 2). This reconciliation of the case report data

and the serological data concludes that the 2009 English epidemic

of symptomatic cases was small for the following reasons:

1. a large fraction (12:7%) of the population were immune before

the pandemic arrived in England,

2. for every reported case there were many (approx. 18)

seroconversions that were not reported as cases so the

susceptible pool was very quickly diminished,

3. initial estimates for R0 of around 1:5 were roughly right.

Table 2. Estimated parameters using a least square fit.

Estimated parameters

1=p R0 1=ª rh

1:00 1:16 0:18 0:98

1:81 1:18 0:28 0:97

6:62 1:27 0:82 0:89

18:62 1:59 2:42 0:65

All parameters were estimated assuming an immune fraction of 12:7% at the
beginning of the pandemic. A least square fit was used to minimise the error
between our model and HPA case estimates.
doi:10.1371/journal.pone.0030223.t002

Table 3. Infectious period estimates for influenza A(H1N1)
from two independent studies with confidence interval (CI).

Infectious period

2:5 (CI: 1:1–4:0) [19]

3:38 (CI: 2:06–4:69) [24]

The infectious period is presented in days.
doi:10.1371/journal.pone.0030223.t003

Table 4. Generation time estimates for influenza A(H1N1)
from several independent studies.

Generation time

6–8 [25]

1:91 (CI: 1:30–2:71) [1]

2:6 (CI: 2:2–3:5) [26]

2:6–3:2 [17]

2:7 (CI: 2:0–3:5) [27]

2:9 [21]

1:9–2:6 (CI: 1:3–3:0) [22]

6 (CI: 5–7) [23]

The generation time is presented in days. A range of possible generation times
is shown when multiple estimations were made. The confidence interval (CI) is
given wherever possible. A median latent period of 1:4 days (CI: 1:0–1:8) [27]
and 2:62 days (CI: 2:28–3:12) [24] has been reported. The infectious period can
be estimated using the generation time as latent period and half the infectious
period are on average the generation time [4].
doi:10.1371/journal.pone.0030223.t004
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This raises the following question: how early would it have been

possible to detect that there were so many seroconverters for every

reported case? Was the epidemic already starting to slow in late

July, before schools broke up? Figure 4 A answers this question

with a clear ‘‘no’’. If the schools had not broken up, using our best-

fit parameters, we believe that the epidemic would have continued

to grow rapidly for several more weeks. It is therefore not

surprising that a logarithmic plot of cumulated cases during the

weeks before schools closed (Figure 4 B) shows that the epidemic

was clearly still in its exponential growth phase with no indication

of a falling off in the growth rate. However, when schools

reconvened in September, the second pandemic wave clearly grew

at a much slower rate than before the holiday. Figure 4 C plots

cumulated case numbers in a logarithmic plot that compares the

rising phases of the first and second waves. The second wave is

clearly growing very much more slowly than the first wave, which

is consistent with the large fraction of the population that had

already seroconverted by the end of the first wave. In short, the

very slow growth of the second wave of the pandemic was a clear

indicator that many people had already seroconverted during the

first wave.

Discussion

The HPA published their case estimates on influenza A(H1N1)

infections over the period of the pandemic in England. Overall,

the HPA estimated that approximately 910,000 individuals were ill

with the pandemic influenza virus during 2009, amounting to less

than 2% of the English population [2]. This surprisingly small

number of symptomatic cases only makes sense in the light of the

HPA’s serological survey which found that around 17:7% of the

English population were already immune by the end of the first

wave of the pandemic in late September 2009. This observation,

combined with knowledge of the level of immunity prior to the

pandemics’ arrival and the dates of the English summer holidays

combine together to tell a coherent story about the 2009 influenza

pandemic in England. The pandemic had a comparatively small

impact because for every case that was reported there were around

18 seroconversions with no symptoms at all.

In retrospect, it was clear from the very slow growth of the

second epidemic wave that something was different as the known

cases up until September were too few to explains such slow

growth. Depletion of susceptibles through asymptomatic cases

would always have been a strong contender as a mechanism for

this slow observed growth.

The HPA’s serology study was organised, collected, analysed

and published in a very short space of time. No other country has,

to our knowledge, published such extensive data [13–15]. In

principle, the same pattern that was picked up in these data in

September would have been seen in samples drawn even earlier.

This modelling study is a ringing endorsement of the explanatory

power of serological surveys in a pandemic setting. However, it is

not obvious that a serological survey could have been organised

and executed any earlier in a pandemic than this one was.

The distinction between infection and disease is an early lesson

in the teaching of infectious disease biology [16]. Predictions of the

likely impact of the 2009 influenza pandemic were made using

models that did not distinguish between cases of infection and

cases of disease. A very simple model that allows asymptomatic

seroconversion is presented here and yields a coherent reconcil-

iation of the estimated numbers of disease versus the estimated

number of infections through the course of the 2009 pandemic in

England. Once it is clear how many asymptomatic cases there

were, the epidemiology of the 2009 influenza pandemic in

England makes sense.

Supporting Information

Table S1 Shown are the serological data of [11] combined with

the demographic data of England given by [7]. Values in brackets

show the 95% confidence intervals as estimated by [11]. All

numbers shown are in 1,000s. Numbers might not sum due to

rounding.

(PDF)
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