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Abstract. The increasing morbidity and high mortality of 
intrahepatic cholangiocarcinoma (ICC) has led to the urgent 
need for new diagnostics and therapeutics. Liver kinase B1 
(LKB1) exerts a tumor suppressor role in multiple malig‑
nances, while its regulatory role in exosomes secreted by ICC 
cells is obscure. In the present study, exosomes were extracted 
from cell culture supernatants of RBE and HCCC‑9810 ICC 
cells as well as plasma of patients with ICC by ultracentri‑
fugation and the morphology of exosomes was identified by 
transmission electron microscopy. Notably, compared with 
that of intracellular LKB1, the protein level of exosomal LKB1 
was decreased. Silencing intracellular LKB1 increased the 
protein levels of programmed death ligand 1 (PD‑L1), Slug 
and phosphorylated‑AKT in exosomes, accompanied by 
decreased expression levels of exosomal LKB1. Exosomes 
with lower protein levels of LKB1 promoted the expression of 
the immune checkpoint PD‑L1, malignant phenotypes of ICC 
cells in vitro, and cancer metastasis in vivo. Moreover, the low 
level of exosomal LKB1 in plasma was tightly associated with 
the poor prognosis of patients with ICC. Collectively, exosomal 
LKB1 inhibits the immune checkpoint PD‑L1 and metastasis 
of ICC cells. These findings may provide new methods for the 
diagnosis and immune therapy of ICC.

Introduction

Intrahepatic cholangiocarcinoma (ICC) is a highly lethal 
hepatobiliary neoplasm with increasing incidence (1). The 
established standards for the treatment of ICC include 
first‑line (gemcitabine and cisplatin), second‑line (FOLFOX) 
and adjuvant (capecitabine) systemic chemotherapy (2,3). Due 
to the high aggressiveness of ICC, long‑term survival is only 
observed in patients undergoing complete R0 surgical resec‑
tion (4). Lymph node involvement is one of the most important 
prognostic factors. Therefore, novel and efficient methods for 
the diagnosis and therapy of ICC are urgently needed.

As a serine/threonine kinase, liver kinase B1 (LKB1) has been 
shown to be a tumor suppressor that regulates cell growth, metab‑
olism, survival and polarity (5‑7). LKB1 inactivation can also lead 
to centromere defects and genome instability via p53‑dependent 
upregulation of survivin, independent of AMPK (8). LKB1 
regulation of the tumor immune microenvironment is complex 
and has received widespread attention. For example, LKB1 
deficiency promotes neutrophil recruitment and proinflamma‑
tory cytokine production to suppress T‑cell activity (9). LKB1 
mutations may cause PD‑1 inhibitor resistance in KRAS‑mutant 
lung adenocarcinoma (10). Loss of LKB1 silences the expression 
of stimulator of interferon genes, decreasing the sensitivity of 
KRAS‑mutant lung cancer cells to cytoplasmic double‑stranded 
DNA (11). Certain preclinical therapeutic methods have been 
developed to treat malignant tumors with LKB1 loss, such as 
dual molecular targeted therapy for mTOR (Rapamycin) and 
PI3K (BKM‑120) (12) as well as the combination of metformin 
with cisplatin (13). In addition, LKB1 is involved in regulating 
intestinal stem cell fate, skeletal muscle development, liver regen‑
eration and certain non‑neoplastic diseases (14‑17).

Exosomes, derived from the endocytic pathway, are 
membranous vesicles with a diameter of ~40‑200 nm (18,19). In 
various diseases, exosomes provide a channel to view the altered 
cellular or tissue states, and their detection in biological fluids 
potentially offers a multicomponent diagnostic readout (20). 
Tumor‑derived exosomes modulate intercellular communica‑
tion between tumor and stromal cells, influencing malignant 
phenotypes and the tumor microenvironment (21‑23). Although 
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the regulation of exosomes has been widely studied in multiple 
types of cancer, exosomes derived from and acting on ICC are 
rarely mentioned. Even so, exosomal circ‑0000284 has been 
found to be a competitive endogenous RNA that promotes ICC 
progression and can be directly transferred from ICC cells to 
surrounding normal cells (24). P2RX7 may influence ICC in 
an exosome‑related manner (25). Considering the significant 
role of exosomes in cancer, it was suggested that exosomes may 
provide a new window for the diagnosis and therapy of ICC.

Cholangiocarcinoma represents a diverse group of 
epithelial tumors, including intrahepatic, perihilar and distal 
types (26). Although the biological characteristics of the three 
types of cholangiocarcinoma are similar, surgical resection is 
more likely to be performed for ICC than for the other two 
types. Therefore, the present study focused on ICC research. 
In a recent study, the inhibitory effect of LKB1 on the tran‑
scriptional activity of the immune checkpoint PD‑L1 was 
uncovered in ICC cells (27). However, the regulatory role of 
LKB1 in exosomes secreted by ICC cells remains obscure. 
Exosomes from cell culture supernatants of ICC cells were 
extracted and examined in the present study. Further study 
uncovered the inhibitory effect of exosomal LKB1 on PD‑L1 
and phosphorylated (p)‑AKT expression in cells and exosomes 
as well as malignant phenotypes and metastasis of ICC cells. 
The change in exosomal LKB1 expression in plasma may be 
a promising target for the diagnosis and therapy of ICC in the 
future.

Materials and methods

Cell culture. The human embryonic kidney fibroblasts 293T 
(RRID: CVCL_0063) were purchased from the American 
Type Culture Collection (ATCC). The human ICC cells RBE 
(RRID: CVCL_4896) and HCCC‑9810 (RRID: CVCL_6908) 
were obtained from Wuhan Boster Biological Technology, 
Ltd. The culture medium for 293T cells and ICC cells was 
composed of DMEM, 10% (v/v) FBS and penicillin‑strepto‑
mycin (all from Thermo Fisher Scientific, Inc.). Cells were 
passaged at an average of three days and tested routinely to 
avoid mycoplasma contamination.

Plasmid construction and lentiviral infection. The 2nd gener‑
ation system of lentiviruses was used in the present study. 
Plasmids for silencing LKB1 expression were constructed 
using pGreenPuro™ small hairpin (sh)RNA Cloning and 
Expression Lentivector (System Biosciences, LLC), and 
the target sequences for gene silencing are listed below: 
LT‑shLKB1 (CCTGCTGAAAGGGATGCTT) and negative 
control LT‑shControl (ACTACCGTTGTTATAGGTG). By 
mixing 8.0 µg gene silencing plasmids, 8.0 µg packaging 
plasmid psPAX2 and 2.7 µg envelope plasmid pMD2G with 
18 µl transfection reagent Lipofectamine® 2000 in 600 µl 
Opti‑MEM™ (both from Thermo Fisher Scientific, Inc.) for 
20 min at room temperature, plasmids were co‑transfected 
into 293T cells. After 2 days, cell culture supernatants 
containing lentivirus were collected every 8 h and filtered 
with 0.45‑µm filter membranes. Cells were infected with lenti‑
virus at different multiplicity of infection (1, 2.5, 5, 10, 20), 
and silencing efficiency of LKB1 lentivirus was determined 
by western blotting 72 h after infection. Puromycin (2 µg/ml; 

Thermo Fisher Scientific, Inc.) was used to screen the lenti‑
virus‑infected cells, and in vitro and in vivo experiments were 
conducted immediately after the puromycin selection.

Western blot analysis. The cultured cells were sequentially 
rinsed with ice‑cold PBS, lysed in ice‑cold RIPA lysis buffer 
(Thermo Fisher Scientific, Inc.) supplemented with proteinase 
inhibitor cocktail (Thermo Fisher Scientific, Inc.), and 
collected into 1.5‑ml microtubes. After incubation on ice for 
30 min, cell lysates were centrifuged at 16,100 x g for 15 min 
at 4˚C. The protein concentration was determined using a 
BCA protein quantification kit (Beijing Dingguo Changsheng 
Biotechnology Co., Ltd.). An appropriate amount of BCA 
working solution was prepared according to the number of 
standards and samples and standard BSA protein solution 
(1 mg/ml) was dispensed into 96‑well plates at 0, 1, 2, 4, 6, 
8 and 10 µl and supplemented to 10 µl by adding ddH2O. At 
the same time, 10 µl diluted protein samples were added to 
each well of 96‑well plates. A total of 200 µl of BCA working 
solution was added to the sample and protein standard wells 
and mixed. The 96‑well plates were incubated at 37˚C for 
30 min and then cooled to room temperature. The absorbance 
was measured at 562 nm wavelength on a microplate reader 
SENERGY HTX (BioTek Instruments, Inc.). Densitometric 
analysis was conducted using software Image Lab (Version 
5.2; Bio‑Rad Laboratories, Inc.).

Then, 20 µg total protein was electrophoresed in 10% 
SDS‑PAGE gels and transferred onto PVDF membranes 
(Merck Millipore). The PVDF membranes were sequentially 
blocked with 5% skim milk for 30 min at room temperature 
and incubated with the primary antibodies overnight at 4˚C 
and the secondary antibodies for 2 h at room temperature. 
Protein bands on PVDF membranes were detected by 
Supersignal West Pico chemiluminescent substrate (Thermo 
Fisher Scientific, Inc.).

The commercially obtained antibodies were used according 
to the manufacturer's protocol: LKB1 (1 µg/ml; cat. no. sc‑32245, 
Santa Cruz Biotechnology, Inc.), E‑cadherin (1 µg/ml; cat. 
no. 3195S), N‑cadherin (1 µg/ml; cat. no. 13116S), β‑Catenin 
(1 µg/ml; cat. no. 8480S), Slug (1 µg/ml; cat. no. 9585S), Snail 
(1 µg/ml; 3879S; all from Cell Signaling Technology, Inc.), 
PD‑L1 (0.67 µg/ml; cat. no. 17952‑1‑AP; ProteinTech Group, 
Inc.), GAPDH (1 µg/ml; cat. no. MAB374; Merck Millipore), 
CD9 (1 µg/ml; cat. no. sc‑13118; Santa Cruz Biotechnology, 
Inc.), TSG101 (1 µg/ml; cat. no. 102286‑T38; Sino Biological), 
p‑AKT (1 µg/ml; cat. no. 4060S), AKT (1 µg/ml; cat. no. 4691S; 
both from Cell Signaling Technology, Inc.), goat anti‑mouse 
IgG (HRP‑linked) (1:5,000; cat. no. 401211; Merck Millipore) 
and anti‑rabbit IgG (HRP‑linked) (1:5,000; cat. no. 7074S; Cell 
Signaling Technology, Inc.).

Exosome extraction. Exosomes in cell culture supernatants 
and plasma specimens of patients with ICC were extracted 
according to standard protocols (28,29). The simplified proce‑
dures of exosome extraction are listed below: i) To remove 
dead cells, cell culture supernatants and plasma were centri‑
fuged at 2,000 x g for 20 min at 4˚C; ii) To remove cell debris, 
the collected supernatants and plasma were centrifuged at 
10,000 x g for 30 min at 4˚C; iii) The purified supernatants 
were transferred to clean ultra‑tubes and then ultra‑centrifuged 
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at 100,000 x g for 70 min at 4˚C; iv) The precipitates were 
resuspended with ice‑cold PBS and ultra‑centrifuged at 
100,000 x g for another 70 min at 4˚C; v) The precipitated 
exosomes at the bottom of the ultracentrifuge tubes were 
resuspended with ice‑cold PBS for subsequent research. The 
protein markers of exosomes, including CD9, TSG101 and 
GAPDH, were examined by western blotting.

Electron microscopy. The morphology of exosomes was 
observed using a transmission electron microscope (TEM) 
JEM‑3010 (JEOL, Ltd.), and the simplified protocol was as 
follows: i) Exosomes resuspended in 10 µl PBS were mixed 
with 10 µl of 4% paraformaldehyde for 20 min at room 
temperature and then added to the carbon films; ii) After 
standing for 20 min, the carbon films were rinsed with PBS 
twice for 2 min each time; iii) Exosomes on carbon films 
were then stained with 10 µl of 2% uranyl‑acetate solution for 
1 min at room temperature; (4) Carbon films were air‑dried for 
10 min at room temperature; (5) The morphology of exosomes 
was visualized at 100 kV.

Exosome treatment in cell culture. An average of 6x105 ICC 
cells with differential expression of LKB1 were seeded into 
each well of a six‑well culture plate. A total of 24 h later, 2 µg 
exosomes resuspended in 10 µl PBS were added to each well of 
the cell culture supernatants. After incubation for another 24 h 
in cell culture incubator at 37˚C with 5% CO2, total protein 
was collected from the cells and examined by western blotting.

MTT assay. A total of 500 µl of culture medium containing 
10,000 ICC cells with differential expression of LKB1 was 
added to each well of a 24‑well cell culture plate. A total of 
24 h later, 0.50 µg exosomes resuspended in 2.5 µl PBS were 
added to each well of the cell culture supernatants. After culti‑
vation for different times, MTT solution (Sangon Biotech) was 
added to each well at a final concentration of 0.50 µg/µl. After 
6 h, the culture medium was carefully discarded and replaced 
with 150 µl of DMSO (Sangon Biotech Co., Ltd.). After 20 min 
of gentle shaking, the OD value at 490 nm was measured and 
statistically analyzed.

Transwell assay. Transwell experiments were conducted to 
determine the migratory ability of ICC cells. Before conducting 
experiments, cultured ICC cells in plates were starved with 
serum‑free DMEM for 24 h. Transwell chambers with 8.0‑µm 
PET membrane pores (Corning, Inc.) were inserted into each 
well of a 24‑well plate. Then, 600 µl of DMEM supplemented 
with 10% (v/v) FBS and 0.50 µg exosomes was added to the 
lower chamber, and 100 µl of serum‑free DMEM containing 
1x105 cells was added to the upper chamber. A total of 24 h 
later, the cells were fixed with methyl alcohol for 15 min at 
room temperature and stained with 0.2% (m/v) crystal violet 
(Sigma‑Aldrich; Merck KGaA) for 15 min at room temperature. 
Then, the remaining cells in the upper chamber were removed 
with a medical cotton swab. Images of the migratory cells were 
captured under an inverted light microscope, and the number of 
migratory cells was counted and statistically analyzed.

Animal experiment. In total, 12 six‑week‑old male BALB/c 
nude mice (weight, ~20 g) were purchased from Hunan SJA 

Laboratory Animal Co., Ltd. (Changsha, China) and fed at the 
animal care facility of The Central Hospital of Xiangtan. Mice 
were housed three per cage with free access to food and sterile 
water, under 12‑h light/dark cycle at 25˚C and 50% humidity. 
To assess the regulatory effect of exosomal LKB1 on the metas‑
tasis of ICC cells in vivo, mice were arbitrarily assigned to 
four groups (n=3 each). Overall, 2.0x106 ICC cells in 200 µl of 
sterile PBS with differential expression of LKB1 were injected 
into mice via the tail vein. After 7 days, 50 µg of exosomes 
resuspended in 100 µl of sterile PBS with differential expres‑
sion levels of LKB1 were injected into mice every via the tail 
vein three days for five consecutive injections. Fluorescence 
in live mice was detected using the IVIS Lumina XR live 
animal imager (PerkinElmer, Inc.) according to the expression 
of green fluorescence protein (GFP) in lentivirus‑infected ICC 
cells. The mice in the present study were sacrificed when they 
experienced a sharp decrease in activity, water and diet intake. 
Therefore, 40 days after cell injection, mice were sacrificed by 
cervical dislocation. The protocol used for animal experiments 
was approved (approval no. 2020073) by the Animal Care and 
Experiment Committee of The Central Hospital of Xiangtan 
(Xiangtan, China). All applicable international, national, 
and/or institutional guidelines for the care and use of animals 
were followed in the present study.

Patient information. A total of 42 pairs of cancer and 
para‑cancer tissue specimens used in the present study were 
obtained from The Central Hospital of Xiangtan with informed 
consent from 2014 to 2019. No patients received chemotherapy, 
radiotherapy or immune therapy before surgery. The age of 
the patients ranged from 37‑74 years old, with 27 patients 
being over 60 years old. Among them, 18 patients were male 
and 24 patients were female. Limited by the diagnosis and 
treatment strategies of the hospital for ICC, gene mutational 
information for patients is not available. Plasma specimens 
of patients with ICC used in the present study were obtained 
with written informed consent and approved (approval 
no. 2019‑08‑001) by the institutional review boards of The 
Central Hospital of Xiangtan and were in accordance with the 
Declaration of Helsinki (2000).

Statistical analysis. GraphPad Prism 8 (GraphPad Software, 
Inc.) was used to generate statistical graphs, and statistical anal‑
yses were conducted using SPSS 22.0 (IBM Corp.). Student's 
two‑sided unpaired t‑test was used to compare the significance 
between two groups, and one‑way ANOVA with Tukey‑Kramer 
post hoc test was used to determine differences among multiple 
groups. The correlation between the protein expression of LKB1 
and PD‑L1 examined by western blotting was determined by 
Pearson's correlation analysis (two‑tailed). The Kaplan‑Meier 
method followed by log‑rank test was performed to generate 
survival curves. Experiments were repeated two or three times 
with similar results. Data are represented as the means ± SD 
with at least three biological replicates. P<0.05 was considered 
to indicate a statistically significant difference.

Results

LKB1 inhibits exosomal PD‑L1 in ICC cells. Our previous 
research revealed that LKB1 inhibits ICC by repressing the 
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Figure 1. Identification of exosomes extracted from ICC cell culture supernatants. (A) Western blot showing the protein levels of LKB1, PD‑L1, CD9 and 
GAPDH in cell lysates and exosomes of ICC RBE and HCCC‑9810 cells. (B) Morphology of extracted exosomes from cell culture supernatants of RBE cells, 
as examined by transmission electron microscopy. Exosomes in the image are indicated by arrows in black. Scale bar, 100 nm. Data are represented as the 
means ± SD and significance was analyzed using Student's two‑sided t‑test. n=3 in each group. *P<0.05, **P<0.01 and ***P<0.001. ICC, intrahepatic cholangio‑
carcinoma; LKB1, liver kinase B1; PD‑L1, programmed death ligand 1.

Figure 2. Negative regulation of LKB1 on exosomal PD‑L1. (A) Western blot analysis for protein expression of PD‑L1, p‑AKT, AKT, LKB1 and epithe‑
lial‑mesenchymal transition‑associated markers (Slug, β‑Catenin, E‑cadherin, and N‑cadherin) in cell lysates of RBE and HCCC‑9810 ICC cells with LKB1 
knockdown. (B) Western blotting for protein expression of PD‑L1, LKB1, TSG101, CD9 and GAPDH in cell lysates and exosomes of RBE cells with LKB1 
knockdown. Data are represented as the means ± SD and significance was analyzed using Student's two‑sided t‑test. n=3 in each group. *P<0.05, **P<0.01 and 
***P<0.001. LKB1, liver kinase B1; PD‑L1, programmed death ligand 1; p‑, phosphorylated; ICC, intrahepatic cholangiocarcinoma; sh‑, small hairpin; LT, 
lentivirus; ns, no significance.
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transcriptional activity of the immune checkpoint PD‑L1 (27). 
However, the regulatory effect of exosomal LKB1 on ICC 
remains unclear. In the present study, the role of exosomal 

LKB1 in ICC was investigated using the RBE and HCCC‑9810 
cell lines. The high level of CD9 protein (Fig. 1A) and the 
morphology revealed by TEM (Fig. 1B) suggested the 

Figure 3. Regulatory effects of exosomes with differential expression of LKB1 on malignant phenotypes of ICC cells. (A) Western blotting for protein expres‑
sion of PD‑L1, p‑AKT, AKT, LKB1 and epithelial‑mesenchymal transition‑associated markers (Slug, β‑Catenin, E‑cadherin and N‑cadherin) in lysates of RBE 
and HCCC‑9810 ICC cells. The adherent ICC cells were incubated with exosomes extracted from cell culture supernatants of corresponding ICC cells with 
differential expression of LKB1 for 24 h. (B) Proliferation ability of RBE and HCCC‑9810 cells as assayed by MTT. The adherent ICC cells were incubated 
with exosomes extracted from cell culture supernatants of corresponding ICC cells with differential expression of LKB1 for different times. n=4 in each 
group. (C) Representative images and statistical analysis of the migratory RBE and HCCC‑9810 ICC cells as examined by Transwell assays. Cells in the upper 
chambers of the Transwell were incubated with exosomes extracted from cell culture supernatants of corresponding ICC cells with differential expression of 
LKB1 for 24 h. n=3 in each group. Scale bar, 100 µm. Data are represented as the means ± SD and significance was analyzed using Student's two‑sided t‑test 
or one‑way ANOVA with the Tukey‑Kramer post hoc test. *P<0.05, **P<0.01 and ***P<0.001. LKB1, liver kinase B1; ICC, intrahepatic cholangiocarcinoma; 
PD‑L1, programmed death ligand 1; p‑, phosphorylated; ECs, exosomes secreted by LT‑shControl cells; ELs, exosomes of LT‑shLKB1 cells; sh‑, small hairpin; 
LT, lentivirus; ns, no significance.
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successful extraction of exosomes from cell culture superna‑
tants of ICC cells. The diameter of the captured exosomes in 
the image was ~150 nm (Fig. 1B). Notably, the protein level 
of LKB1 in exosomes secreted by RBE and HCCC‑9810 cells 
was lower than that in cell lysates (Fig. 1A). Meanwhile, the 
PD‑L1 level in exosomes was higher than that in cell lysates. 
These findings indicated that exosomes secreted by ICC cells 
may exert a tumor‑promoting role and that exosomal LKB1 
may suppress ICC.

To verify this hypothesis, ICC cells stably infected with 
lentivirus for silencing LKB1 expression were constructed for 
the following research. Silencing LKB1 expression increased 
the PD‑L1 level in ICC cells as well as that of p‑AKT and 
the transcription factor Slug (Fig. 2A). Consistent with our 
previous research, LKB1 did not affect the protein expression 
of epithelial‑mesenchymal transition‑associated markers, 
including β‑Catenin, E‑cadherin, and N‑cadherin (27). 
Exosomes were extracted from the cell culture supernatants 
of ICC cells RBE and HCCC‑9810 with differential expression 
of LKB1. Exosomal PD‑L1 and LKB1 levels were examined 
by western blotting. Silencing intracellular LKB1 downregu‑
lated the protein level of exosomal PD‑L1, accompanied by a 
decrease in the protein level of exosomal LKB1 (Fig. 2B).

Exosomal LKB1 inhibits the immune checkpoint PD‑L1 and 
malignant phenotypes of ICC cells. Next, the inhibitory effect 
of exosomal LKB1 on ICC was confirmed in vitro. Notably, 
compared with exosomes secreted by LT‑shCtrl cells, ICC 
cells incubated with exosomes secreted by LT‑shLKB1 cells 

expressed lower levels of LKB1 protein and higher levels of 
PD‑L1, p‑AKT and Slug (Fig. 3A). These findings suggested 
that exosomal LKB1 inhibits the immune checkpoint PD‑L1 
and tumor signal transduction of ICC cells. Thus, exosomal 
PD‑L1 plays a tumor suppressor role in ICC.

Next, the malignant phenotypes of ICC cells were examined 
after treatment with exosomes with differential expression of 
LKB1. Compared with exosomes derived from ICC cells with 
high levels of LKB1, exosomes secreted by ICC cells with low 
levels of LKB1 significantly promoted the proliferation of ICC 
cells RBE and HCCC‑9810 (Fig. 3B). Moreover, exosomes with 
low levels of LKB1 exhibited a significant effect on enhancing 
the migratory ability of ICC cells (Fig. 3C). Therefore, it was 
identified that exosomal LKB1 inhibits the malignant pheno‑
types of ICC cells.

Exosomal LKB1 suppresses ICC cell metastasis in vivo. 
Considering the inhibitory effect of exosomal LKB1 on 
the migration ability of ICC cells, it was hypothesized that 
exosomal LKB1 may influence ICC metastasis. Therefore, 
animal experiments were conducted to explore the regulatory 
effect of exosomal LKB1 on ICC metastasis. The wild‑type 
ICC cell line HCCC‑9810 was administered to male BALB/c 
nude mice through tail vein injection. After 7 days, exosomes 
of HCCC‑9810 cells with differential expression of LKB1 
resuspended in sterile PBS were administered to mice by 
tail vein injection. Through tracing the GFP expression of 
lentivirus‑infected HCCC‑9810 cells in vivo, it was found 
that mice injected with exosomes with lower levels of LKB1 

Figure 4. Regulation of exosomes with differential expression of LKB1 on cancer metastasis in vivo. (A) Representative images and (B) statistical analysis 
of GFP fluorescence in BALB/c nude mice 40 days after tail vein injection of HCCC‑9810 cells. Exosomes extracted from cell culture supernatants of 
HCCC‑9810 cells were administered to mice by tail vein injection every three days for five consecutive injections. Data are represented as the means ± SD and 
significance was analyzed using one‑way ANOVA with the Tukey‑Kramer post hoc test. n=3 in each group, *P<0.05 and **P<0.01. LKB1, liver kinase B1; ECs, 
exosomes secreted by LT‑shControl cells; ELs, exosomes of LT‑shLKB1 cells; sh‑, small hairpin; LT, lentivirus.
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exhibited a significantly stronger intensity of luciferase, while 
mice injected with exosomes with higher levels of LKB1 
protein exhibited a significantly weaker intensity of lucif‑
erase (Fig. 4A). The statistical analysis of luciferase intensity 
showed a significant difference among the groups (Fig. 4B). 
These findings suggested that exosomal LKB1 inhibits ICC 
metastasis.

Low levels of exosomal LKB1 may predict poor prognosis of 
ICC. To further evaluate the clinical importance of exosomal 
LKB1 in cancer research, exosomes were extracted from plasma 
specimens of patients with ICC. Western blotting revealed that 
the expression trends of LKB1 and PD‑L1 protein in exosomes in 
the plasma of patients with ICC were almost opposite (Fig. 5A). 
Pearson's correlation (R) analysis revealed a negative correlation 
between the protein levels of LKB1 and PD‑L1 in exosomes of 
plasma specimens (Fig. 5B). These findings are consistent with 
the aforementioned observations in cell culture supernatants of 
ICC cells. Moreover, the Kaplan‑Meier analysis for the overall 
survival of ICC indicated that a low level of exosomal LKB1 
may predict poor prognosis of ICC (Fig. 5C). These experi‑
mental results from clinical samples suggested the inhibitory 
effect of LKB1 on exosomal PD‑L1 and demonstrated the tumor 
suppressor role of exosomal LKB1 in ICC.

Discussion

Accumulating evidence reflects LKB1 regulation of the 
immune checkpoint PD‑L1. In KRAS‑mutated lung cancer, the 
LKB1 co‑mutation is associated with a reduced level of PD‑L1 
protein, resulting in therapeutic resistance to PD‑1/PD‑L1 
inhibitors (30). Compared with patients with non‑squamous 
LKB1‑mutant non‑small‑cell lung cancer, patients with 
wild‑type LKB1 present improved response to anti‑PD‑L1 
immunotherapy. Therefore, loss of LKB1 clearly leads to 
upregulated levels of PD‑L1 (27,31). In the present study, a 
low level of exosomal LKB1 was uncovered in the cell culture 
supernatants of ICC cells and the plasma of patients with ICC. 
At present, no P53 mutations have been reported in ICC cells 
RBE or HCCC‑9810, while the IDH1 mutation (R132S) exists 
in RBE cells (32). Both RBE and HCCC9810 cells exhibit strong 
migratory and clonogenic abilities (33), while HCCC9810 
cells exhibit stronger resistance to drugs, such as anlotinib 
and gemcitabine, than RBE cells (34). HCCC‑9810 cells have 
the ability to form tumors in vivo (35,36), while RBE cells 
cannot form tumors in athymic nude mice (37). Based on the 
aforementioned findings, it was considered that HCCC‑9810 
cells may have stronger aggressive and metastatic ability 
than RBE cells. These two differential cell lines, RBE and 

Figure 5. Correlation between the protein level of exosomal LKB1 derived from plasma specimens and survival prognosis in ICC. (A) Western blotting showing 
the protein levels of LKB1, PD‑L1 and GAPDH in exosomes derived from the peripheral blood of patients with ICC. (B) Pearson's correlation coefficients for 
the relative protein levels of LKB1 and PD‑L1 in exosomes derived from the plasma of patients with ICC (n=21). (C) Kaplan‑Meier analysis for the overall 
survival of patients with ICC presenting high and low levels of PD‑L1 protein in exosomes derived from plasma, as analyzed using the log‑rank test (n=42). 
LKB1, liver kinase B1; ICC, intrahepatic cholangiocarcinoma; PD‑L1, programmed death ligand 1.
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HCCC‑9810, were selected to study the regulation of exosomal 
LKB1 on ICC. The downregulation of intracellular LKB1 led 
to the downregulation of exosomal LKB1 and the upregula‑
tion of PD‑L1, Slug and p‑AKT in exosomes. Exosomal PD‑L1 
contributes to immunosuppression and is associated with the 
anti‑PD‑1 response (38). Thus, LKB1 may be involved in 
immunosurveillance of ICC by suppressing exosomal PD‑L1. 
Exosomal LKB1 was revealed to downregulate PD‑L1 levels 
in ICC cells, which may provide new insights into the immune 
evasion of ICC cells by modulating exosomes.

Moreover, exosomes secreted by ICC cells with low levels 
of LKB1 promoted the metastasis of ICC cells. PD‑L1 and 
p‑AKT are both closely related to malignant transformation and 
poor prognosis of malignances (39‑41). The crosstalk between 
the PI3K‑AKT‑mTOR and LKB1‑AMPK signaling pathways 
is critical for modulating cancer metastasis, metabolism and 
prognosis (42,43), and Slug functions greatly in cancer devel‑
opment (44). Although the present study did not show direct 
evidence of the involvement of AKT and Slug in the inhibitory 
effect of LKB1 on ICC metastasis, it could still be concluded 
that LKB1 may suppress metastasis via an exosome‑mediated 
mechanism. These regulatory factors may be the key points 
for LKB1 to inhibit immune evasion and metastasis of ICC. 
However, the direct mechanism by which exosomal LKB1 regu‑
lates ICC metastasis still needs to be further explored.

Exosomes secreted by cancer cells can be used as ware‑
houses to transfer biologically active molecules, such as 
RNA and proteins, thereby regulating the occurrence and 
development of malignances (45,46). Except for CD9, CD63 
and TSG101, both GAPDH and β‑actin have been detected in 
exosomes (47‑49), all of which may be exosomal markers. The 
abundant level of GAPDH protein in exosomes secreted by 
RBE and HCCC‑9810 cells suggested the role of GAPDH as a 
loading control for exosomes at least. Limited by experimental 
conditions and wide spread of COVID‑19, nanoparticle tracking 
analysis on the extracted exosomes was not performed, which 
may need to be further improved in future studies. Notably, 
exosomal PD‑L1 promotes the immune evasion of cancer cells 
and reduces the response efficiency to PD‑1 inhibitors (38). 
The regulatory role of LKB1 in exosomes remains obscure. 
Consistent with the inhibition on p‑AKT and Slug, LKB1 
was revealed to decrease exosomal PD‑L1 in ICC cells in the 
present study, providing a new mechanism for understanding 
the anticancer effect of LKB1. These findings may provide 
new methods for inhibiting the immune evasion of ICC cells 
by targeting exosomal LKB1 and PD‑L1.

Liquid biopsy has gained momentum in clinical cancer 
research. Continuously released by living cells, exosomes 
contain DNA, RNA and proteins, providing direction for 
clinically relevant diagnosis (50). Owing to their non‑invasive 
nature and real‑time assessment, exosome‑based diagnos‑
tics are more readily available to track patients over time 
and monitor potential disease progression and therapeutic 
intervention in an improved way (51). Through conducting 
small RNA sequencing and proteomics evaluation, certain 
miRNAs and proteins have been identified with elevated or 
attenuated expression in plasma specimens of cancer patients, 
acting as potential diagnostic markers for multiple types of 
cancer (52‑54). In the present study, it was revealed that low 
expression of exosomal LKB1 in the plasma of patients with 

ICC may predict poor prognosis, further emphasizing the 
clinical significance of LKB1 research in ICC.

In summary, the significance and innovations of the 
present study are mainly reflected in the following aspects. 
First, LKB1 was shown to inhibit exosomal PD‑L1 in ICC 
cells. Second, in vitro and in vivo experiments revealed the 
inhibitory effect of exosomal LKB1 on ICC. Third, the low 
expression level of exosomal LKB1 was found to be tightly 
associated with the metastasis and poor prognosis of ICC. 
Exosomal LKB1 exerts a tumor suppressor role in ICC and 
may be an important biomarker for the diagnosis and immune 
therapy of ICC.
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