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ABSTRACT
Small cell lung cancer (SCLC) is a recalcitrant cancer for which no new treatments 

have been approved in over 30 years. While molecular subtyping now guides treatment 
selection for patients with non-small cell lung cancer and other cancers, SCLC is still 
treated as a single disease entity. Using model-based clustering, we found two major 
proteomic subtypes of SCLC characterized by either high thyroid transcription factor-1 
(TTF1)/low cMYC protein expression or high cMYC/low TTF1. Applying “drug target 
constellation” (DTECT) mapping, we further show that protein levels of TTF1 and 
cMYC predict response to targeted therapies including aurora kinase, Bcl2, and HSP90 
inhibitors. Levels of TTF1 and DLL3 were also highly correlated in preclinical models 
and patient tumors. TTF1 (used in the diagnosis lung cancer) could therefore be used 
as a surrogate of DLL3 expression to identify patients who may respond to the DLL3 
antibody-drug conjugate rovalpituzumab tesirine. These findings suggest that TTF1, 
cMYC or other protein markers identified here could be used to identify subgroups of 
SCLC patients who may respond preferentially to several emerging targeted therapies.

INTRODUCTION

Small cell lung cancer (SCLC) is the most aggressive 
form of lung cancer, with a 5-year survival rate of less 
than 6% [1]. Although the majority of SCLC patients 
respond to chemotherapy and radiation initially, relapse 
is nearly universal among extensive stage patients and 

current treatment options for relapsed SCLC are largely 
ineffective [2]. A major barrier to the lack of progress in 
SCLC is an incomplete understanding of heterogeneity 
between patients and the absence of biomarkers that could 
guide selection of personalized therapeutic strategies. 
This is in contrast to non-small cell lung cancer (NSCLC) 
where a growing number of biomarker-defined subsets 
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have been discovered that predict response to targeted 
or immunotherapies. These biomarker defined subsets 
include mutations in EGFR, BRAF, MET; fusions in ALK, 
ROS1, RET; and now PD-L1 protein expression levels. 
The development of biomarkers that can define subsets 
of SCLC patients with specific therapeutic vulnerabilities 
is urgently needed and will increase the likelihood of 
targeted therapies being successfully developed.

Currently, there is a single standard of care applied 
across all SCLC patients. However, in the clinic, we 
see a range of responses to chemotherapy as well as to 
targeted agents being tested in clinical trials in unselected 
SCLC populations, suggesting benefit in a small (but 
undefined) subset of patients. We previously demonstrated 
the potential of proteomic profiling to identify novel 
therapeutic targets in SCLC such as the DNA repair 
proteins PARP1 and CHK1 based on differences in target 
expression and pathway activation between SCLC and 
NSCLC [3, 4]. We further used proteomic data to identify 
predictive biomarkers for targeted therapies in SCLC 
models [4, 5] leading to the clinical development of new 
combination strategies to overcome drug resistance [6, 7].

In previous studies using reverse phase protein 
arrays (RPPA) to measure the expression of total and 
phosphorylated proteins in SCLC models, we observed 
heterogeneous protein expression profiles among 
preclinical SCLC models, as well as a wide range of 
in vitro drug sensitivities. Given the rapid evolution 
of lung cancer treatment towards a personalized, 
biomarker-guided approach using both genomic and 
proteomic markers, the finding that subgroups of SCLC 
respond differently to specific targeted approaches is not 
unexpected, but is incompletely understood. We propose 
that further categorization of SCLC based on protein 
expression could help define clinically-relevant molecular 
subsets of SCLC that could ultimately inform the clinical 
development of emerging therapies for SCLC such as 
those targeting DLL3, aurora kinase, Bcl2, and immune 
checkpoints [8].

Recent studies in a number of cancer types have 
used molecular data to identify subsets of disease that 
have different prognoses and responses to therapies [9-
13]. While RPPA measures a discrete number of targets 
enriched for druggable and oncologically important 
pathways (typically around 200 total/phosphorylated 
proteins), it offers significant advantages over other 
approaches. For example, proteomics, unlike DNA 
or RNA-based profiling, directly measures pathway 
activation and candidate target expression (e.g., the protein 
“target” itself). Furthermore, protein biomarkers-particular 
those that can be assayed by immunohistochemistry 
(IHC)-have the potential for rapid translation into the 
clinic, as illustrated by the clinical use of PD-L1 IHC 
in NSCLC [14], and MET IHC in breast cancer [15]. 
Finally, in contrast to NSCLC where mutational profiling 
has defined targetable driver genes (e.g., EGFR), no such 

actionable single-gene drivers have been identified to date 
in SCLC. As such, the identification of proteomically 
defined subsets of SCLC has great potential to identify 
readily actionable markers to select patients for treatments 
undergoing clinical development or new targets and 
therapeutic susceptibilities in defined SCLC populations.

In this study, we performed proteomic profiling of a 
large panel of SCLC cell lines and then applied a model-
based clustering approach to identify distinct subtypes 
of SCLC. Differentially expressed total proteins driving 
subtype membership were then further validated in 
preclinical models and two independent clinical cohorts 
[16, 17]. Having defined two groups of SCLC, we further 
explored differences between these groups by analyzing 
expression of specific proteins and/or genes, and response 
to potential therapeutic agents. Using a novel drug 
mapping approach, we created “drug target constellation” 
maps - DTECT maps - which identified drugs with 
differential sensitivity based on marker expression, and 
linked these drugs based on their primary, secondary and 
tertiary targets. Through DTECT mapping, low thyroid 
transcription factor-1 (TTF1) and high cMYC were 
confirmed as biomarkers of response to several drugs 
in development for SCLC, including the aurora kinase 
inhibitor alisertib (MLN8237). As TTF1 and cMYC 
protein can be assessed by IHC assays routinely used in 
clinical pathology labs, they represent highly translational 
markers for agents in development for SCLC. Potential 
applications of these biomarkers include the use of TTF1 
to predict DLL3 levels (associated with response to the 
antibody-drug conjugate rovalpituzumab tesirine) and of 
cMYC to predict benefit from alisertib.

RESULTS

Clustering identifies two proteomically defined 
subsets of SCLC

To test the hypothesis that SCLC is a heterogeneous 
disease with distinct subtypes that can be defined at the 
proteomic level, we quantified the expression of 169 
total- and phosphorylated-proteins (assayed by RPPA) 
in 63 SCLC cell lines. The optimal number of proteomic 
subgroups was then determined using a model-based 
clustering method [18, 19]. Specifically, six distinct 
models were used to classify cell lines into subgroups 
(between 1-20 subgroups defined by protein expression). 
Following this, Bayesian Index Criterion (BIC) was 
applied to determine the optimal number of subgroups. For 
all six models, maximum BIC scores were obtained when 
cell lines were divided into two groups (Groups 1 and 2) 
(Figure 1A-1B; Supplementary Figure 1). The optimal 
model/group combination was then used to segregate the 
cell lines into two groups. Global differences in protein 
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expression between these two groups are illustrated in 
Figure 1C.

Having determined that at the highest level, each 
SCLC cell line could be assigned to one of two proteomic 
subsets, we then identified proteins driving subgroup 
membership. Comparing the mean expression of each 
protein between the two groups (Figure 1D), we found 
that the most highly expressed protein in Group 1 was 
TTF1 (FC = 3.4, p < 0.001), whereas the highest in Group 
2 was cMYC (FC = 3.9, p < 0.001). Other proteins with 
differential expression include potentially druggable 
targets such as Bcl2 and cKIT (higher in Group 1: FC 

= 2.7 p < 0.001 and FC = 3.5, p < 0.001 respectively), 
and PARP and AXL (higher in Group 2: FC = 1.1 p = 
0.024 and FC = 1.3, p < 0.001 respectively) (Figure 
1D). Further supporting this two-group classification, an 
independent principal component analysis of the cell lines 
again identified two main clusters with cMYC and TTF1 
as the most differentially expressed proteins (p < 0.001; 
Supplementary Figure 2).

To further validate these findings, we next 
tested whether protein differences between the Groups 
corresponded to differences in mRNA expression. For this 
analysis, we limited our analysis to the 38 total proteins 

Figure 1: SCLC cell lines cluster into two subsets defined by TTF1 and cMYC. A. Schematic flow of how SCLC was divided 
into two molecular subgroups using proteomic profiling of 63 cell lines and was subsequently utilized to identify molecular markers and 
potential therapeutic targets using clinical cohorts and drug sensitivity databases. B. Clustering using Bayesian Information Criterion (BIC) 
determines that two was the most significant number of clusters. C. Supervised hierarchical analysis shows distinct expression patterns 
between the two subsets which reflect the distinct protein expression patterns between them. D. Mean expression for each RPPA probe 
compared between the two subsets shows TTF1 and cMYC to be the most differentially expressed. E. Gene expression of significant total 
protein differences between the two subsets using publically available data available from 53 cell lines [29] shows NKX2-1 and MYC to 
be amongst the most differentially expressed. F. Supervised hierarchical analysis of the expression of the 38 genes used in panel E in the 
George et al. patient cohort. Mutations in the NOTCH family (NOTCH1, NOTCH2, NOTCH3 or NOTCH4) are also indicated. At the 
highest level patient samples fall into 2 groups based on cutting the first branch in the dendrogram as indicated by the blue and red bars. G. 
Comparison of cMYC/MYC and TTF1/NKX2-1 expression between the two subsets in cell lines and patient samples. p-values determined 
by t-test.
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differentially expressed between the Groups (p < 0.05, FC 
≥1.3), as mRNA data would not reflect post-translational 
modifications detected by RPPA such as phosphorylation. 
Consistent with the protein findings, mRNA levels of 
NKX2-1 (the gene name of TTF1) and MYC were among 
the most differentially expressed genes between the two 
cell line groups out of 38 tested (NKX2-1 FC = -1.78 p < 
0.001, MYC FC = 4.82 p < 0.001) (Figure 1E).

As cell culture may impact gene expression, we then 
tested whether the cell line findings were recapitulated in 
human SCLC tumors [20]. Because mRNA expression 
levels correlated well with total protein expression in the 
cell lines for most genes (e.g., correlation of TTF1 protein 
to NKX2-1 mRNA levels Rho = 0.919, p < 0.001; cMYC 
protein and MYC mRNA Rho = 0.792, p < 0.001), we then 
used gene expression data from the same 38 genes used 

in Figure 1E to cluster patient tumors from two published 
cohorts (n = 81 and 23 respectively [16, 17]) (Figure 1F 
and Supplementary Figure 3). Based on differences in the 
expression of these 38 genes, at the highest level patient 
samples segregated into two groups (as indicated by 
the bars labelled groups 1 and 2), with the same group 
assignment for all 38 probes as seen with the cell lines 
(Figure 1E).

Similar to the cell lines, NKX2-1 and MYC were 
among the most differentially expressed genes between 
the two groups (Figure 1G, Supplementary Figure 3). In 
Cohort 1 (George et al), we observed a 3.6-fold difference 
between groups for NKX2-1 expression and a 2.6-fold 
difference between groups for MYC; in Cohort 2 (Sato 
et al) fold differences in NKX2-1 and MYC levels were 
21.9 and 3.6, respectively, between the two main patient 

Figure 2: TTF1 and MYC are single biomarkers of response to multiple drugs. A. Supervised comparison of NKX2-1, ASCL1 
MYC and NEUROD1 expression in George et al. patient tumors (sorted by NKX2-1 expression, p-values for correlation to NKX2-1). B. 
Comparison of mean drug sensitivities (relative IC50) between the two subsets shows Group 2 (TTF1 low) cell lines to be more sensitive 
to a number of targeted agents. C. Drug-target constellation (DTECT) maps of drugs differentially sensitive between TTF1 high and low 
cell lines (FC >3.0, p < 0.01). Drugs with differential sensitivity are mapped by their primary, secondary and tertiary targets. Underlined 
drugs are either FDA approved or licensed for use in Canada/Europe. D. Density plot of TTF1 expression mapped to expression of cMYC, 
NKX2-1, MYC and sensitivity to selected drugs (relative IC50’s) in cell lines. p-values from Spearman correlation between TTF1 expression 
and IC50.
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groups (all p < 0.001 by t-test). As expected, NKX2-
1 and MYC were also inversely correlated in both cell 
lines (Supplementary Figure 4) and patient tumors (Rho 
= -0.494, p < 0.001. Figure 1H). In contrast, there were 
no significant differences in commonly mutated genes (p 
< 0.05 by Fisher’s exact test). Mutations in the NOTCH 
family are shown in Figure 1F for illustrative purposes.

TTF1-high SCLC is enriched for ASCL1

ASCL1 and NEUROD1 are largely non-overlapping 
transcription factors that are required for the normal 
development of multiple neuronal and neuroendocrine cell 
lineages [21] and have been used to define heterogeneity 
in SCLC [22]. ASCL1 has been associated with classic 
SCLC, whereas NEUROD1 has been associated with 

so-called variant SCLC [21, 23]. Prior studies have 
established that TTF1 and cMYC are targets of key SCLC 
transcription factors ASCL1 and NEUROD1 respectively 
[22]. Therefore, we tested whether expression of ASCL1 
and NEUROD1 was significantly different between 
Groups 1 (TTF1 high) and 2 (cMYC high).

As expected, ASCL1 gene expression was 
significantly higher in Group 1 (FC = -20.78, p < 
0.001 cell lines, FC = -4.96, p < 0.001 patient tumors). 
However, NEUROD1 expression was not significantly 
different between the Groups (cell lines p = 0.07, patient 
tumors p = 0.35). To further explore the role of ASCL1 
and NEUROD1 and their relation to TTF1 and cMYC, 
we then ranked the SCLC lines and patient samples by 
NKX2-1 expression and compared the expression of 
ASCL1, MYC and NEUROD1 (Figure 2A). While a robust 

Figure 3: TTF1 and cMYC are biomarkers of response to alisertib in vitro. A. Cell line sensitivity to alisertib (ranked by IC50, 
µM), dashed line indicates Cmax (1.83µM) from Phase 1 study [47]. B. Comparison of proteomic markers between most (IC50 < 0.1µM) 
and least sensitive (IC50≥10µM) cell lines. p-values by t-test. C. Western blot analysis comparing protein expression between parental (P) 
and cMYC overexpressing (OE) cell lines. D. Comparison of drug sensitivity between parental and cMYC overexpressing (MYCOE) cell 
lines. Area under the curve (AUC) calculated from dose response curves and compared by paired test between the parental and MYCOE 
groups.
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negative correlation was observed between NKX2-1 and 
MYC (Rho = -0.570, p < 0.001 cell lines, Rho = -0.494, p 
< 0.001 patient tumors), as well as between NKX2-1 and 
ASCL1 (positively correlated, Rho = 0.601, p < 0.001 cell 
lines; Rho = 0.512, p < 0.001 patient tumors), no such 
correlation was seen with NEUROD1 (Rho = 0.086, p = 
0.465 cell lines; Rho = 0.178, p = 0.112 patient tumors).

We therefore conclude that, while ASCL1 
overexpression likely explains mechanistically the high 
levels of TTF1 seen in Group 1, the proteomic subsets 

are not merely representative of the previously described 
classic and variant SCLC as they are not correlated 
with NEUROD1 levels. Indeed, the lack of a negative 
correlation between ASCL1 and NEUROD1 (Rho = 
0.004, p = 0.736 cell lines; Rho = 0.048, p = 0.668 patient 
samples), along with findings from other groups that 
some SCLCs express neither ASCL1 nor NEUROD1 [22], 
would suggest the proteomic subsets provide additional 
information beyond the classic and variant designations. 
The cMYC high group is heterogeneous for NEUROD1 

Figure 4: TTF1 is a surrogate marker of DLL3 expression. A. Spearman correlation of DLL3 protein and DLL3 gene expression 
in SCLC cell lines. B. Comparison of DLL3 protein and DLL3 gene expression between TTF1 high/low cell lines (bimodal), and DLL3 
gene expression between NKX2-1 high/low patient samples. p-values by t-test. C. Correlation between NKX2-1 and DLL3 gene expression 
in patients from the George et al cohort color coded for high (red) and low (blue) DLL3 based on bimodal distribution (BI = 0.92). 
Correlation of TTF1 H-score with DLL3 protein and DLL3 gene expression in SCLC PDX models (color coded for TTF1 positive (blue, 
IHC score≥1) and negative (IHC score < 1). D. Western blot analysis comparing cMYC, TTF1, DLL3 and ASCL2 expression between 
SCLC GEMM models with and without cMYC overexpression (RPM and RPP respectively). TTF1 and DLL3 expression relative to 
HSP90 quantified (p-values by t-test, * p < 0.05, *** p < 0.001). E. Heatmaps comparing TTF1 and DLL3 protein expression in SCLC 
cell lines and comparing NKX2-1 and DLL3 gene expression in SCLC cell lines, three SCLC clinical cohorts (George et al., Sato et al., 
and Peifer et al.) and one glioblastoma clinical cohort (Brennan et al.). p-values from Spearman correlation between TTF1 and DLL3 or 
NKX2-1 and DLL3. Gene expression data standardized to same scale across datasets. F. Comparison of TTF1 and DLL3 IHC staining in 
26 patients screened for enrollment in trials at MD Anderson Cancer Center. Fisher’s exact test shows significant concordance between 
staining for the two markers.
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expression reflecting recent observations that there is an 
ASCL1/NEUROD1 double-negative subset of SCLC [23].

TTF1 low SCLC is more sensitive to multiple 
classes of drugs

Having identified two subsets of SCLC, we then 
tested whether these subsets had different sensitivities 
to targeted therapies (many of which are in development 
for SCLC) or to standard chemotherapies. IC50 values 
to a total of 273 drugs were determined in our lab using 
proliferation assays in a panel of 51 cell lines or obtained 
from a public database (GDSC [24]). Differences in drug 
sensitivity between the Groups were determined by t-test. 
Group 2 (MYC high) was relatively more sensitive to 
24 drugs (p < 0.05), including classes of drugs targeting 
mitosis (e.g., the AURKA inhibitor alisertib, polo-like 
kinase inhibitors GW843682X and BI-2536), PI3K/RAS 
(e.g., GDC-0941), HSP90 (e.g., 17-AAG), and DNA 
repair (e.g. BEZ-235 and THZ-2-49) (Figure 2B).

Having observed a differential sensitivity to drugs 
that target DNA repair such as BEZ-235, a PI3K/ATR 
inhibitor believed to kill cancer cells primarily through 
ATR inhibition [25] and the CDK inhibitors THZ-2-49 
and THZ-2-1020-1 (CDK’s regulate the DNA damage 
response [26]), we compared our previously published 
DNA repair score between the two subsets [5]. The DNA 
repair score is modestly higher in Group 2 (Supplementary 
Figure 6) which may explain why Group 2 is more 
sensitive to DNA repair inhibition. Expression levels of 
the drug targets themselves were not significantly different 
between groups (all p >0.05), suggesting that for these 
agents the degree of target expression is not predictive of 
sensitivity. As platinum-based chemotherapy is standard 
of care treatment for SCLC, we also compared cisplatin 
sensitivity between the two subsets. Interestingly there 
was no significant difference in sensitivity to cisplatin 
(Supplementary Figure 6, p = 0.428) between the groups, 
or to other chemotherapeutic agents commonly used in 
the treatment of SCLC, including carboplatin (p = 0.149) 
etoposide (p = 0.405), irinotecan (p = 0.285), or topotecan 
(p = 0.938). Notably, none of the drugs analyzed had 
relatively greater activity in Group 1.

TTF1 and cMYC single biomarker analysis

Within Group 2 SCLC patient tumors, we observed 
a subset with exceptionally high cMYC and low TTF1 
(Figure 1F and Supplementary Figure 7). Based on this 
and the fact that protein expression of cMYC and TTF1 
were the top markers defining proteomic subgroups in 
both cell lines and tumors, we then investigated whether 
TTF1 or cMYC, as individual markers, were predictive 
of in vitro drug response. Using a previously established 
method for determining bimodality [27], we found that the 

expression of these genes were bimodally distributed in 
both SCLC cell lines (bimodal index (BI) 2.34 and 1.86, 
for TTF1 and cMYC respectively) and patient tumors 
(1.85 and 1.55, respectively) (Supplementary Figure 7). 
Using the bimodal classification, we separated cell lines 
into TTF1-high (68%) and TTF1-low (32%) and cMYC-
high (25%) and cMYC-low (75%).

Notably, cell lines with high cMYC expression 
were not exclusively MYC amplified. Indeed, only 7 of 
13 cMYC over-expressing cell lines carry a known MYC 
amplification [4] (Supplementary Figure 8). High cMYC 
protein expression thus captures a larger subset of SCLC 
than MYC amplification alone. While MYC status is 
often reported in terms of MYC amplification [28], our 
findings suggest that cMYC expression levels (rather MYC 
amplification) identify a larger, translationally relevant 
subset of SCLC and is a more inclusive marker of MYC 
status.

We then compared drug sensitivity of TTF1-high 
versus TTF1-low cell lines using the recently published 
NCI SCLC drug sensitivity database [29]. This database 
contains sensitivity data for 63 human SCLC cell lines 
across 526 agents, including FDA-approved oncology 
agents and investigational agents. For this exploratory 
analysis, we identified those drugs with a greater than 
3-fold difference in mean IC50 between TTF1-high and 
-low lines and a p-value ≤0.05 (equivalent FDR = 0.19) 
by t-test. Using this threshold, we identified 39 drugs, 38 
of which were more effective in TTF1-low cell lines.

We subsequently applied an in-house curated drug-
target database to generate a “drug-target constellation 
map” (DTECT map) of the 39 drugs with differential 
activity in cell lines with high versus low TTF1 levels 
(Figure 2C). Similar to the analysis of drug sensitivity 
between Groups 1 and 2, TTF1-low cell lines exhibited 
greater sensitivity to several drug classes, including 
drugs targeting aurora kinase (n = 3), PLK (n = 3), the 
PI3K/MTOR pathway (n = 6), and HSP90 (n = 10). For 
example, inhibitors of aurora kinase A/B with greater 
activity in TTF1-low cell lines included alisertib (FC = 
7.3, p = 0.009), AS-703569 (FC = 8.1, p = 0.009), and 
SCH-1473759 (FC = 8.0, p = 0.001). A number of drugs 
included in the analysis are FDA approved for other cancer 
types (underlined in Figure 2C) and include the DHFR 
inhibitor methotrexate which has previously shown 
modest single agent activity in an unselected patient 
population with extensive stage SCLC [30].

Interestingly, the sole drug more effective in TTF1-
high cell lines was the Bcl2 inhibitor ABT-737, which 
has been shown to have activity in SCLC PDX models in 
combination with rapamycin (mTOR inhibitor) [31]. The 
targets of ABT-737 (Bcl2 and BCLXL) are the only targets 
of drugs identified in this analysis to have significantly 
different expression between TTF1 high and low cell 
lines (FC = 2.85, p = 0.008, and FC = 2.13, p = 0.040 
respectively, higher in the TTF1 high/ABT-737 sensitive 
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group). An association between higher Bcl2 expression 
and sensitivity to Bcl2 inhibition has previously been 
described in both SCLC and lymphoma models [32, 
33]. To further visualize the relationship between drug 
sensitivity and biomarker expression at the individual 
cell line level, we generated a heatmap in which cell lines 
were ordered by TTF1 protein expression and correlations 
with cMYC expression and sensitivity to top drugs from 
DTECT analysis are shown (including drugs targeting 
aurora kinase, PLK, and BCL-2) (Figure 2D).

We also analyzed drug sensitivity based on cMYC 
expression (Supplementary Figure 9). Applying the same 
criteria as for TTF1, we identified 11 drugs, all of which 
were more effective in cMYC high cell lines. Eight of 
the drugs identified inhibited the same targets identified 
in the TTF1 analysis (e.g. aurora kinase, PLK, DHFR). 
For example, the aurora kinase inhibitor AS-703569 was 
found to be more efficacious in cMYC-high cell lines (FC 
= 6.8, p = 0.034), as were the PLK inhibitors MLN-0905 
(FC = 5.9, p = 0.019) and TAK-960 (FC = 3.0, p = 0.040). 
Interestingly, one of the three drugs unique to the cMYC 
analysis of the NCI database was the CHK1 inhibitor 

praxasertib (LY-2606368) (FC = 1.9, p = 0.006), which our 
group has independently been shown to have preferential 
activity in pre-clinical models of SCLC that overexpress 
cMYC protein [4].

cMYC protein predicts response to the aurora 
kinase A inhibitor alisertib

The aurora kinase A inhibitor alisertib has 
demonstrated preclinical and/or clinical activity in several 
cancer types, including SCLC and other high grade 
neuroendocrine cancers such as neuroblastoma [34]. Based 
on promising activity of single agent alisertib in a subset 
of SCLC patients [35], the combination of alisertib with 
paclitaxel was recently investigated in a Phase 2 clinical 
trial for relapsed SCLC (NCT02038647). However, there 
are no established predictive biomarkers for this drug.

We performed a supervised analysis of candidate 
proteomic biomarkers for single agent alisertib in our cell 
line panel using the full RPPA panel. 51 SCLC cell lines 
were treated with alisertib for four days and IC50 values 

Figure 5: Working model. A. Working model of how SCLC patients may be divided into two groups based on TTF1 and cMYC IHC, 
with different therapeutic vulnerabilities between the two groups. Example TTF1 and cMYC IHC from two archived SCLC tumor samples 
on a neuroendocrine TMA (scale bar = 100µm) B. Schematic of signaling pathways integrating how key molecules identified in these 
studies may interact to result in TTF1 high and cMYC high subsets. Proteins/genes in red have higher expression in TTF1 high SCLC, 
those in blue in cMYC high SCLC.
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calculated (Figure 3A, range 0.002µM to >10µM, median 
= 10µM, mean = 6.27µM). We then compared expression 
of protein markers between the most (IC50 < 0.1µM, n = 
15) and least sensitive (IC50 ≥10 µM, n = 33) cell lines 
(Figure 3B) and as continuous variables.

Comparing the most sensitive versus the least 
sensitive cell lines, cMYC (FC = 3.49, p = 0.009) and 
TTF1 (FC = -4.25, p = 0.003) were identified as the 
top markers of resistance and sensitivity, respectively. 
Similarly, when compared as continuous variables, both 
cMYC and TTF1 were highly correlated with alisertib 
sensitivity (cMYC: Rho = -0.450, p < 0.001; TTF1: 
Rho = 0.385, p = 0.006). While the association of MYC 
amplification with sensitivity to alisertib is not new 
observation [23, 28], we identify twice as many SCLC 
cell lines that are sensitive to alisertib based on high 
cMYC expression (14 cell lines) than would be identified 
by MYC amplification alone (7 cell lines). This finding - 
that high cMYC protein expression and low TTF1 protein 
expression are top markers of alisertib sensitivity (out of 
170 protein markers tested) through a supervised analysis 
of alisertib is consistent with the identification of aurora 
kinase inhibitor activity in the DTECT analyses above.

The recent publication by Mollaoglu et al confirmed 
MYC as a driver of response to alisertib by showing that 
over-expression of MYC in a conditional genetically 
engineered mouse model (GEMM) of SCLC with Myc 
overexpression increased sensitivity to alisertib [23]. To 
further understand the functional role cMYC plays in the 
sensitivity of SCLC to targeted therapeutics, we created 
stable clones of three human SCLC cell lines (H889, 
H1417 and DMS79) that overexpress cMYC. Western blot 
analysis comparing parental and cMYC overexpressing 
cell lines showed in all cases an increase in cMYC 
expression and decreases in TTF1 and ASCL1 expression 
(Figure 3C).

We hypothesized that altering cMYC expression 
would affect sensitivity to a panel of targeted agents 
identified in our earlier analyses - increasing sensitivity 
to alisertib, BI2536, ganetespib and AZD8055; reducing 
sensitivity to ABT-737; but having no effect on cisplatin 
sensitivity. As predicted, cMYC overexpressing clones 
showed greater sensitivity to alisertib (p = 0.005), BI2536 
(p = 0.004), ganetespib (p = 0.069) and AZD8055 (p = 
0.011) (Figure 3D). In contrast but as predicted, in the two 
parental cell lines that were sensitive to the Bcl2 inhibitor 
ABT-737 (H1417 and H889), cMYC overexpression lead 
to decrease in sensitivity (although this did not reach 
statistical significance (p = 0.183) as the DMS79 parental 
cell line was not sensitive). Notably, altering cMYC 
expression had no effect upon sensitivity to cisplatin, 
confirming our earlier observation in the proteomic subset 
analysis (Supplementary Figure 6) and indicating that 
the differences in drug sensitivity are not merely due 
to differences in the rate of cell proliferation driven by 
elevated cMYC. These experiments suggest that cMYC 

expression has a direct effect on both cellular signaling 
and drug sensitivity.

TTF1 as a surrogate marker for DLL3 expression

The antibody-drug conjugate (ADC) rovalpituzumab 
tesirine that delivers a pyrrolobenzodiazepine dimer 
toxin to DLL3 expressing cells has shown striking 
clinical activity in relapsed, DLL3-expressing SCLC 
(NCT0191653) [36]. Based on this, a registration study 
in DLL3-positive, relapsed SCLC is currently underway 
(TRINITY trial, NCT02674568). DLL3, an inhibitory 
NOTCH ligand, is overexpressed in many neuroendocrine 
cancers and is a downstream target of ASCL1 [37]. As 
NOTCH2 protein expression was observed to be higher 
in group 2 (TTF1 low), while ASCL1 was higher in group 
1 (TTF1 high), we investigated whether the proteomically 
defined subsets would also delineate SCLC subsets with 
different expression of DLL3 and, therefore, vulnerability 
to rovalpituzumab tesirine.

Published data from our group has demonstrated a 
strong positive correlation between levels of TTF1 protein 
as measured by IHC and RPPA and between TTF1 protein 
levels and NKX2-1 mRNA in lung tumors [38]. Similarly, 
here we found that DLL3 protein (by RPPA) and DLL3 
mRNA levels were highly correlated in SCLC cell lines 
(Rho = 0.833, p < 0.001, Figure 4A). Categorizing cell 
lines as TTF1-high versus TTF1-low based on bimodal 
protein expression revealed higher DLL3 protein and 
mRNA expression in the TTF1 high group (Figure 4B. 
DLL3 protein: FC = 1.49; DLL3 gene expression: FC 
= 2.91; both p < 0.001). Similarly patient samples with 
high NKX2-1 mRNA expression also had higher DLL3 
expression (Figure 4B, FC = 7.52, p < 0.001), whereas 
NOTCH family members (NOTCH1, NOTCH2, NOTCH3) 
were higher in NKX2-1-low tumors (FC ≥ 1.28, p ≤ 0.005).

Based on these results, we tested the correlation 
between NKX2-1 and DLL3 mRNA expression in patient 
samples, finding that NKX2-1 and DLL3 were strongly 
correlated (Rho = 0.532, p < 0.001. Figure 4C). In a panel 
of SCLC PDX models [39] we correlated TTF1 and DLL3 
protein expression (R = 0.499, p = 0.083). Although this 
was not statistically significant likely due to the small 
sample size, it does reinforce the association between 
TTF1 and DLL3.

We then tested whether these observations from 
the human models/patients were recapitulated in the 
genetic SCLC (GEMM) models. We hypothesized that 
expression of TTF1, DLL3 and ASCL1 would be higher 
in the Myc wild type (RPP) GEMM model than in the 
Myc overexpressing model (RPM). Western blot analysis 
comparing five RPM and five RPP tumors showed 
significantly higher expression of TTF1, ASCL1, and 
DLL3 in the Myc wild type models (Figure 4D, TTF1 p = 
0.041, DLL3 p < 0.001).

We further compared the correlation between 
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TTF1 and DLL3 protein in cell lines, and NKX2-1 and 
DLL3 mRNA in cell lines, an additional SCLC patient 
cohort [40] and a cohort of glioblastoma patient samples 
[41] and found significant correlations in each dataset 
(Figure 4E). The correlation between DLL3 and NKX2-1 
in glioblastoma is notable as rovalpituzumab tesirine is 
indicated for glioblastoma in an ongoing basket trial (NCT 
02709889) and requires DLL3 expression for enrollment. 
We also compared expression of Nkx2-1 and Dll3 in the 
Myc overexpressing (RPM) GEMM model of SCLC [23], 
where we observed a strong correlation (Rho = 0.709, 
p = 0.015). The overexpression of Myc in this model 
generated a heterogeneous population of tumors allowing 
for comparison of the relationship between Nkx2-1 and 
Dll3 in a consistent genetic back ground.

To validate the potential for TTF1 IHC to substitute 
for DLL3 IHC we compared staining of these markers in 
patients screened for enrollment in the recently published 
phase I [36] and the TRINITY trial testing rovalpituzumab 
tesirine in SCLC (Figure 4F). For the six SCLC patients 
treated on the phase I study and the 25 treated on the 
TRINITY trial at MD Anderson, IHC scores (positive or 
negative) were available for both markers in a total of 26 
patients. Concordant staining, either positive or negative 
for both TTF1 (from diagnostic pathology reports) and 
DLL3 was observed in 23 of the 26 patients (p = 0.031 
by Fishers exact test, Figure 4F). Combined, these 
findings suggest that TTF1 protein expression (a routine 
clinical diagnostic IHC marker for lung cancer) could be 
a surrogate marker for DLL3 expression and, thus, help 
identify patients with DLL3-positive tumors (which have 
the highest response rates to rovalpituzumab tesirine).

DISCUSSION

Subtyping of cancers has shown potential to 
both increase our understanding of cancer biology and 
to identify sub-populations with greater response to 
particular therapeutic agents [9, 38, 42]. In this study we 
investigated proteomic subtyping of SCLC using cell lines 
and patient samples. Using a unique dataset of proteomic 
profiles across 63 cell lines, we initially found that SCLC 
can be separated into two main subsets defined by levels 
of TTF1 and cMYC expression. Using publically available 
data from two clinical cohorts we validated these groups 
in patient samples. Major findings in this study include 
an association between protein expression of TTF1 and/or 
cMYC expression and (1) sensitivity to alisertib and other 
mitotic inhibitors, and (2) a strong, positive correlation 
between DLL3 expression (the target of and marker of 
response to rovalpituzumab tesirine) and TTF1.

In-house and publically available SCLC drug 
screening data allowed us to investigate those targeted 
agents with different activity between proteomic subsets. 
We found that cell lines in Group 2 had greater sensitivity 
to multiple agents including those inhibiting aurora kinase 

(e.g., alisertib), PLK, PI3K/RAS pathway, and DNA 
repair. This analysis was further refined using single 
markers - TTF1 and cMYC protein - and linking these 
to in vitro sensitivity. This analysis highlighted the ability 
for these single markers to predict sensitivity or resistance 
to several key drug classes currently in development for 
SCLC. These include Bcl2 inhibitors, mitotic inhibitors 
(aurora kinase and PLK), and CHK1 inhibitors.

Interestingly, the observation that TTF1 low 
expressing SCLC are more sensitive to inhibitors of 
DNA repair mirrors our previous findings in lung 
adenocarcinoma [38], suggesting a common effect of 
TTF1 loss in SCLC and LUAD in regards to DNA 
damage response. This finding may be related to higher 
cMYC levels (and therefore greater replication stress), as 
higher cMYC levels were observed in LUAD and SCLC 
with low TTF1. While single marker analysis using TTF1 
recapitulated many of the observations from the initial 
clusters (Groups 1 and 2), it also identified additional 
vulnerabilities including greater activity of HSP90 
inhibitors in TTF1-low SCLC and of Bcl2 inhibitors in 
TTF1-high models. These findings suggest that a patient 
selection strategy based on TTF1 status might enrich for 
patients more likely to respond to Bcl2 inhibition, despite 
previous negative trial results in an unselected SCLC 
patient population [8].

The recent phase 1 study of rovalpituzumab 
tesirine, an antibody-drug conjugate targeting DLL3, 
found that SCLC patients whose tumors express DLL3 
had higher response rates [36]. Our analysis of human 
cell lines, multiple patient cohorts (including both SCLC 
and glioblastoma), and mouse models revealed a strong, 
positive correlation between the expression of DLL3 and 
TTF1. Although the SCLC samples analyzed here are 
predominantly from early stage surgical resections, we 
observe a similar percentage of TTF1-low tumors (18.5%) 
as reported elsewhere in advanced disease (17.2%)[43]. 
Clinically, concordance between TTF1 staining (from 
diagnostic pathology reports) and DLL3 IHC scores in 
tumors from patients treated with rovalpituzumab tesirine 
at our institution further confirmed this observation. TTF1 
IHC is a diagnostic biomarker used routinely in the clinic 
to discriminate primary lung tumors versus metastases 
from other sites and to determine histologic subtype 
(e.g., SCLC, adenocarcinoma, squamous). Based on the 
findings here, TTF1 IHC may have a clinical application 
as a biomarker to identify those patients who should 
be screened for DLL3 expression for enrollment onto 
rovalpituzumab tesirine trials or for other DLL3 targeted 
therapies.

Using two approaches, we show that cMYC 
expression is the top marker of response to alisertib. 
This observation agrees with a recently published study 
in which a GEMM model of SCLC that overexpresses 
cMYC was more sensitive to alisertib than the cMYC 
wild-type model [23]. Initial biomarker analysis from the 
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recent clinical trial comparing chemotherapy (paclitaxel) 
alone versus chemotherapy with alisertib (which did 
not meet its primary endpoint of improved progression 
free survival (PFS) in unselected SCLC patients) has 
been completed [44]. Based on the preclinical findings 
described here, an initial analysis of cMYC expression by 
IHC was performed that indicated significantly higher PFS 
in cMYC positive patients receiving alisertib (p < 0.001). 
Further analysis of patients and related biomarkers from 
these studies are ongoing. However, if confirmed, these 
findings would provide clinical validation of the pre-
clinical observations described here.

This study identifies a subset of SCLC characterized 
by high TTF1 expression that has an overall protein 
expression pattern distinct from TTF1-low SCLC. TTF1 is 
under the control of a second transcription factor ASCL1 
[21] and while ASCL1 is elevated in the TTF1-high 
subset, we observe significant heterogeneity at the protein 
level in ASCL1 negative SCLC. This heterogeneity in the 
ASCL1 negative group demonstrates that the differences 
observed at the mRNA level are associated with a distinct 
profile going beyond the previously reported classic 
(ASCL1) versus variant (NEUROD1) classification of 
SCLC [22, 23]. Expression of ASCL1 is inhibited by 
NOTCH family signaling [45], which is down-regulated in 
the TTF1 subset, possibly through the over-expression of 
DLL3 (which itself is a downstream target of ASCL1 [37]) 
providing a potential mechanism through which TTF1 is 
overexpressed [46]. When cMYC (both a downstream 
target of NOTCH and a promoter of NOTCH signaling) 
is overexpressed in either cell lines or the GEMM model, 
expression of ASCL1 and TTF1 is significantly reduced 
indicating that cMYC overexpression drives membership 
of the cMYC high subset. A working model of how these 
molecules may interact is shown as Figure 5.

In summary, the subsets shown here can be 
identified clinically using an established, standard-of-care 
for lung cancer, biomarker (TTF1) or a marker routinely 
used in other cancers such as breast cancer (cMYC). These 
markers - particularly TTF1 - could be easily translated 
into clinical practice and present novel candidate 
predictive markers that could be immediately leveraged 
for chemo-refractory SCLC patients to select treatment 
with rovalpituzumab tesirine (TTF1-positive) versus other 
targeted agents such as alisertib (TTF1-negative, cMYC-
high).

MATERIALS AND METHODS

Clinical cohorts

The George et al. cohort [16] included material from 
152 SCLC cases (predominantly treatment naïve stage 
I-IV tumors) obtained by surgical resection (132), plural 

effusion (1) or autopsy (15). Gene expression data was 
available for 81 patients.

The Sato et al. cohort [17] included material from 23 
SCLC cases obtained from patients undergoing pulmonary 
resection.

The Peifer et al cohort [40] included material from 
15 SCLC cases obtained from patients undergoing surgical 
resection.

The Brennan et al cohort [41] included material 
from 164 glioblastoma cases.

Patient population

Patients enrolled in the rovalpituzumab tesirine 
clinical trials provided written consent for participation 
and the study was approved by The MD Anderson Cancer 
Center Institutional Review Board.

Biostatistics

BIC criteria: We estimated the number of clusters 
using model-based clustering method based on Gaussian 
mixture models [18, 19]. It uses maximum likelihood to fit 
models with different covariance matrix parameterizations 
over a range of different components. Then the best model 
is selected based on Bayesian Information Criterion (BIC). 
Maximum value of BIC score indicates optimal model 
with corresponding number of clusters and covariance 
matrix structure.

Bimodal Index: The bimodality index [27] was used 
to identify genes and proteins with bimodal expression 
patterns.

Additional methods are included in the supplemental 
materials.
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