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Abstract: Carbon fiber reinforced polymer materials are widely applied in structure strengthened
engineering because of the many advantages of carbon fiber reinforced polymer. However,
the debonding damage between the carbon fiber reinforced polymer and host structures occurs
frequently, which might lead to the brittle failure of structure components, especially flexural
ones. In this paper, an electromechanical impedance-based method, an important technique
in structural health monitoring, was adopted to detect the debonding damage of carbon fiber
reinforced polymer plate-strengthened steel beam by using lead zirconate titanate (PZT) transducers.
A carbon fiber reinforced polymer plate-strengthened steel beam specimen was fabricated in the
laboratory and two PZT sensors were attached at different locations on the carbon fiber reinforced
polymer plate. The impedance signatures with variation of the different degrees of the debonding
damage were measured by an impedance analyzer. The root-mean-square deviation method
and the cross-correlation coefficient method were used to quantify the correlation between the
electromechanical impedance and the debonding damage degree. The results reflect that an
electromechanical impedance-based structural health monitoring technique can serve as a good
method to detect the debonding damage of carbon fiber reinforced polymer plate-strengthened
steel structures.

Keywords: carbon fiber reinforced polymer; lead zirconate titanate transducer; debonding detection;
electromechanical impedance; cross-correlation coefficient

1. Introduction

Concrete and steel are the most common construction materials, however, they are subject to
corrosion [1,2], fatigue [3,4], and other adverse effects, which often lead to structural damage and may
reduce the structural bearing capability and durability if not repaired in time. Therefore, to ensure
the safety and normal function of these structures, it is necessary to conduct a reliability evaluation
of and reinforcement to these structural damages. With strong corrosion resistance, fiber reinforced
polymer (FRP) has been widely used in civil engineering [5,6], including strengthening civil structures,
especially the bending components [2–4]. Although at a higher cost, carbon fiber reinforced polymer
(CFRP), because of its advantages of high tensile strength, high elastic modulus, good durability,
and light weight, is being increasingly used in structural repair and strengthening [1,5].
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The existing research shows that the bond between CFRP and the structure is usually the weakest
link, and the debonding of the CFRP from the structure substrate is one of the main failure modes,
which can cause the brittle and sudden failure of structures [7–9]. Meanwhile, some experimental
studies have also shown that the CFRP plates possess more advantages than the CFRP sheets for
strengthening the damaged flexural components [10,11]. However, the CFRP plates are more likely to
generate debonding damage than the CFRP sheets, especially at the two ends of the components under
loading. [12]. At present, there are many studies on the debonding damage of CFRP plate-strengthened
reinforced concrete structure components [13–15], but very few studies on CFRP plate-strengthened
steel structure components have been reported, especially for CFRP plate-strengthened bending steel
components [16]. Therefore, this paper conducts an experimental research on the debonding damage
of the CFRP plate-strengthened steel structure beam.

Different to the failure form of CFRP sheet-strengthened concrete structures, in the CFRP
plate-strengthened steel structures, the steel and CFRP plates possess much higher failure strength
than the adhesive bond layer [17,18]. As shown in Figure 1, the debonding failure types of the CFRP
plate-strengthened steel structures are given as follows and mainly include: (a) adhesion failure at the
CFRP/adhesive interface; (b) adhesion failure at the steel/adhesive interface; (c) cohesive failure in the
adhesive layer and (d) CFRP plate delamination. The main reason for the debonding damage is that
the adhesive layer is subject to overload. Meanwhile, under the bending effect of the beam component,
the bending deformation of the CFRP plate presents an inconsistent characteristic, which is also an
important cause of the debonding damage. On the other hand, due to the material discontinuity at the
location of the bond end, the stress concentration in these areas may cause the failure of the adhesive
before the steel and the CFRP plate both reach their ultimate strengths. Such a steel beam may fail
due to the debonding of the CFRP plate that generally initiates at one of the plate ends. This failure
mode not only wastes the high performance of the CFRP, but also greatly reduces the reliability of the
strengthened components [19].
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Figure 1. Form of the debonding failure for the carbon fiber reinforced polymer (CFRP) plate-
strengthened steel components. 

Since debonding damage is a type of brittle failure, therefore, an effective non-destructive 
monitor technique to monitor the initial debonding failure becomes essential in this application. This 
can help provide timely references to take further measures and avoid serious failures. [20]. Non-
destructive monitoring techniques, such as acoustic inspection technology [21,22], ultrasonic 
inspection technology [23–25], infrared thermography [26,27], fiber optic sensing [28–31] and X-ray 
inspection [32,33] have been used extensively to detect structure damage. However, these 
conventional inspection technologies require complex algorithms and equipment, which is more 
difficult for real engineering applications. 

In recent years, lead zirconate titanate (PZT) materials, which have many advantages such as 
small size, light weight, low cost, good stability, etc., have been widely applied in structural health 
monitoring (SHM) [34–39]. Based on the PZT materials, a wide range of methods have been 
developed, including the smart aggregate enabled active sensing method [40–44], the 
electromechanical impedance (EMI)-based damage monitoring technique [45–49] and some other 
methods [50–55]. As a new technology for the non-destructive testing (NDT), the EMI technique 
largely attracts researchers’ attention, and EMI methods have many advantages such as sensitivity to 
the initial damage of the structure, strong anti-interference ability in the environment, and the dual 
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plate-strengthened steel components.

Since debonding damage is a type of brittle failure, therefore, an effective non-destructive
monitor technique to monitor the initial debonding failure becomes essential in this application.
This can help provide timely references to take further measures and avoid serious failures. [20].
Non-destructive monitoring techniques, such as acoustic inspection technology [21,22], ultrasonic
inspection technology [23–25], infrared thermography [26,27], fiber optic sensing [28–31] and X-ray
inspection [32,33] have been used extensively to detect structure damage. However, these conventional
inspection technologies require complex algorithms and equipment, which is more difficult for real
engineering applications.

In recent years, lead zirconate titanate (PZT) materials, which have many advantages such as
small size, light weight, low cost, good stability, etc., have been widely applied in structural health
monitoring (SHM) [34–39]. Based on the PZT materials, a wide range of methods have been developed,
including the smart aggregate enabled active sensing method [40–44], the electromechanical impedance
(EMI)-based damage monitoring technique [45–49] and some other methods [50–55]. As a new
technology for the non-destructive testing (NDT), the EMI technique largely attracts researchers’
attention, and EMI methods have many advantages such as sensitivity to the initial damage of the
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structure, strong anti-interference ability in the environment, and the dual effects of sensing and
driving. Thus, compared with active sensing technology, the number of PZT patches can be reduced,
and without relying on model analysis. The EMI technique has been successfully applied to steel
and concrete crack detection [56–59], concrete strength monitoring [60,61] and corrosion monitoring
of reinforced concrete [62] among others. In recent years, the EMI technique has been used in the
debonding monitoring on CFRP strengthened concrete structures [63–66]. However, to the authors’
knowledge, few studies have been carried out on the use of the impedance measurement on the
debonding of CFRP plate-strengthened steel structures.

In the present study, the different debonding damage states were investigated by analyzing
the electromechanical impedance variations of the piezoelectric sensors. The root-mean-square
deviation (RMSD) method and cross-correlation coefficient (CC) method were used to quantify the
correlation between the impedance signatures and the debonding states. Finally, the experimental
results demonstrate that the debonding damage of the CFRP plate-strengthened steel beam can be
effectively monitored by adopting the EMI-based method.

2. EMI-Based SHM Technique

2.1. Technical Background

The EMI method is used to monitor the debonding damage of the CFRP plate-strengthened steel
beam by the PZT-based transducers in this paper. Due to the fact that the PZT transducer has direct
and inverse piezoelectric effects, the EMI method can employ one PZT patch both as an actuator and a
sensor at the same time. The electrical impedance of the PZT bonded onto a host structure is directly
related to the mechanical impedance of the structure. The interaction between the PZT patch and
the host structure can be idealized as an electromechanical coupling system. Thus, the change in the
mechanical impedance of the structure caused by damage, which leads to the reduction of stiffness
and/or damping of structure, is reflected by the change in the electrical impedance of the PZT patch.
Thus, the presence of damage and its severity to the host structure can be detected by analyzing the
electrical impedance signatures of the PZT patch [67]. The one-dimensional, electromechanical system
formed by the interaction between the PZT patch and a host structure was first established by Liang
et al. [68] and was then studied by many other researchers [56–66]. An illustration is shown in Figure 2.
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Figure 2. One-dimensional model of lead zirconate titanate (PZT)—structure dynamic interaction. 

Since the PZT patch has the deformation in the x-direction and y-direction, the one-dimensional 
electromechanical model only considers the deformation in one direction, and the deformation in the 
other direction is ignored. Therefore, the two-dimensional electromechanical model can more 
accurately reflect the effect of electromechanical coupling between the PZT patch and the host 
structure [69,70]. The one-dimensional and two-dimensional electromechanical models ignore the 
interaction effect of the longitudinal vibration of the PZT patch for the vibration of the embedded 
PZT patch. The three-dimensional electromechanical model was proposed [71,72]. However, the two-
dimensional and three-dimensional electromechanical models are complex and cannot reflect the 
influence of PZT mechanical impedance and structural mechanical impedance on the coupled 
conductance. It is still difficult to apply in engineering practices. The one-dimensional, 
electromechanical model has many advantages, including clear physical meaning, simple model, and 
good one-to-one correspondence between parameters, which facilitates structural parameter 
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Since the PZT patch has the deformation in the x-direction and y-direction, the one-dimensional
electromechanical model only considers the deformation in one direction, and the deformation in the
other direction is ignored. Therefore, the two-dimensional electromechanical model can more accurately
reflect the effect of electromechanical coupling between the PZT patch and the host structure [69,
70]. The one-dimensional and two-dimensional electromechanical models ignore the interaction
effect of the longitudinal vibration of the PZT patch for the vibration of the embedded PZT patch.
The three-dimensional electromechanical model was proposed [71,72]. However, the two-dimensional
and three-dimensional electromechanical models are complex and cannot reflect the influence of PZT
mechanical impedance and structural mechanical impedance on the coupled conductance. It is still
difficult to apply in engineering practices. The one-dimensional, electromechanical model has many
advantages, including clear physical meaning, simple model, and good one-to-one correspondence
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between parameters, which facilitates structural parameter identification and health monitoring.
Therefore, in this paper, a one-dimensional model is used and expressed as [68]

Y(ω) = G(ω) + B(ω) j = ω j
wl
h

[
εT

33 − d2
31Y

E
+ d2

31Y
E
(

Za(ω)

Zs(ω) + Za(ω)

)(
tanκl
κl

)]
(1)

where d2
31 is the piezoelectric strain coefficient of the PZT material, Y

E
is the complex Young’ s modulus

under constant electric field, κ is the wave number, ν is Poisson’s ratio, G is the conductance, B is the
susceptance, j is the imaginary unit, Zs(ω) and Za(ω) are the electrical impedance of a PZT patch and
host structure, respectively, εT

33 is the complex electric permittivity at constant stress, w, l and h are the
width, length and thickness of a PZT patch, respectively.

As indicated in Equation (1), once the CFRP plate-strengthened steel beam experiences the
debonding damage, the mechanical impedance of the structure will change, which can be further
reflected by the coupled electrical impedance of the PZT patch. This serves as the principle for
monitoring the debonding damage of the CFRP plate-strengthened steel beam through the EMI method.

2.2. Statistical Damage Indices: Root-Mean-Square Deviation (RMSD) and Cross-Correlation Coefficient

In order to assess the degree of the debonding damage, in this paper, the root-mean-square
deviation (RMSD) is adopted to quantify the overall change of the impedance signature with variation
of the debonding damage. The mathematical expression of the RMSD is written as [73]

RSMD(%) =

√√√√√√√√√√√√ n∑
i=1
{Re(Zi,1) −Re(Zi,0)

}2

n∑
i=1
{Re(Zi,0)

}2
× 100% (2)

where Re denotes the real part of the electromechanical impedance, Zi,0 is the impedance of the PZT
measured in the initial state (perfect bonding), Zi,1 is the impedance of the PZT measured in the
concurrent debonding damage state and n is the number of the frequency points.

With the RMSD index, a greater numerical value of the index indicates a larger difference between
the baseline reading and the subsequent reading, which further reflects the degree of the dynamic
debonding damage. Moreover, another statistic index, named as the cross-correlation coefficient (CC),
is also used as an index to characterize the debonding damage of the CFRP plate-strengthened steel
beam and its mathematical expression [74] can be written as

CC =

1
N

N∑
i=1

(xi − x)(yi − y)

σxσy
(3)

where x and y are the mean values of the two data sets, respectively, and σx and σy are the standard
deviations of the signature data x and y, respectively. The Equation (3) shows that the more closely
correlated the two signatures are, the closer the CC is to 1. With an increase to the degree of debonding
damage, the damage index increases, therefore, normally using “1-CC” instead of CC.

At present, the above statistical damage index methods have been applied in the analysis of the
damage monitoring and strength development of concrete [58,60], debonding damage monitoring of
FRP strengthened RC Beams [62], debonding damage monitoring of CFRP sheet-strengthened concrete
structures and fiber-reinforced polymer rebar–reinforced concrete [63,66], and concrete grouting density
monitoring of concrete-filled fiber-reinforced polymer tube [64]. However, these damage-index-based
methods have not been applied in the analysis of the debonding damage of CFRP plate-strengthened
steel structural members based on the EMI method. Therefore, in this paper, the RSMD and CC
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statistical damage indices will be adopted to analyze the debonding damage of CFRP plate-strengthened
steel beams.

3. Experimental Details

3.1. Preparation of Test Specimen

In this paper, a CFRP plate-strengthened steel beam specimen was prepared for debonding
damage monitoring based on the EMI method. The lengths of the I-shaped steel beam specimen
and the CFRP plate were 1.3 m and 1.1 m, respectively. The CFRP plate was bonded on the steel
beam with epoxy glue. Two PZT sensors (PZT-1 and PZT-2), which had a size of 10 mm × 10 mm × 1
mm, were bonded on the surface of the CFRP plate. The PZT-2 sensor was located in the midspan
of the CFRP plate, while the PZT-1 sensor was located 15 cm away from the left end of CFRP plate.
The geometry of the CFRP plate-strengthened steel beam specimen along with the layout of the PZT
sensors are shown in Figure 3.
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Figure 3. (a) CFRP plate strengthened steel beam specimen; (b) cross section of the CFRP plate
strengthened steel beam.

The debonding damage between the CFRP plate and the steel beam was produced by using
tools such as a grinder and scalpel. Due to the brittleness performance of debonding failure, it is
difficult to obtain the predesigned debonding length in this test. Therefore, the five different debonding
lengths, namely, 0.0 cm (D0, perfect bonding), 3.0 cm (D1), 6.5 cm (D2), 10.5 cm (D3) and 13.5 cm (D4),
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were obtained in sequence at the right side of the specimen and the real-time impedance measurements
were performed at each debonding damage state, as shown in Figure 4.
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In order to further verify the sensitivity of the PZT patch to the debonding damage distance, in
this test, when the debonding length reached the PZT-1 position, the debonding length was increased
continually, and then the PZT-2 patch was used to monitor the debonding damage. The distance from
debonding damage position to PZT-2 patch was 32–33 cm (D5), 15–16 cm (D6), 12–13 cm (D7) and
10–11 cm (D8), respectively.

3.2. EMI Monitoring

The EMI testing and the data acquisition system consisted of two PZT patches, one impedance
analyzer, and one personal computer equipped with the designed data acquisition software, as shown
in Figure 5. The impedance signatures of the PZT patches at the aforementioned five debonding
damage states were recorded by an Agilent 4294 A impedance analyzer. The impedance spectra,
including the real and imaginary parts, namely, the resistance and the reactance of the PZT patches,
were measured for further analysis. It should be mentioned that the resistance had already been
verified to be a more sensitive and stable indicator than the reactance, thus only the statistical analysis
of the resistance was performed in this study [58,60].
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Figure 5. Experimental setup and PZT patches attached to the host structure.

The EMI spectra of the bonded PZT transducer were measured by sweeping a frequency range
from 50 kHz to 400 kHz in this test. Figure 6 shows the real part of impedance signatures within the
frequency band of 50 kHz–400 kHz, which were measured by the PZT-1 and PZT-2 transducers at the
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non-damage state of the CFRP plate-strengthened steel beam. It can be seen that the two signatures
coincide basically both in the shape and magnitude of the spectra. There are two observed resonant
frequency peaks (RFP) approximately at the frequency range from 140 kHz to 260 kHz, as shown in
Figure 6. In this paper, the second RFP with a larger magnitude at the frequency range from 200 to
260 kHz was focused on for further data analysis.Sensors 2019, 18, x FOR PEER REVIEW  7 of 13 
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PZT-2 transducers at the perfect bonding state.

4. Results and Discussion

Figure 7 displays the real parts of the impedance signatures of the two different PZT-based
impedance transducers at different states of debonding damage. As can be seen from Figure 7a,
the resistance signature obtained by the PZT-1 presents more noticeable changes at different debonding
damage states. The peak resistance decreases significantly with the increase in the length of debonding,
especially at the initial stage of debonding damage, where the debonding damage state aggravates
from D0 to D1. Meanwhile, the frequency corresponding to the peak resistance gradually moves to the
lower frequency from D0 to D4. As compared with the resistance obtained by the PZT-1, the resistance
obtained by the PZT-2 is basically unchanged from D0 to D4. This is mainly because the location of
the debonding damage still has a certain distance from the area of debonding. Thus, the PZT-2 is less
sensitive to the debonding damage compared with the PZT-1 transducer.
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As mentioned above, to estimate the effective distance of the PZT transducer for debonding
damage monitoring, in this test, the debonding length was increased continually when the debonding
damage reached the PZT-1 position. At this time, PZT-2 was used to detect the debonding damage
monitoring. The results are shown in Figure 7b. As can be seen, when the debonding damage reached
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D5 and D6, the peak resistance decreases slightly which is not significant. And the corresponding
frequency did not change. When the debonding damage reaches D7, the peak resistance is significantly
decreased, and the corresponding frequency gradually moves to the lower frequency. So based on the
test results, in this paper the effective range of the PZT patch for debonding damage monitoring of the
CFRP plate-strengthened steel beam is about 12 cm from the PZT patch. Hereafter, the debonding
damage continues to increase and the monitoring results are similar to the results obtained by PZT-1.
Hence, the real part of impedance signatures obtained by PZT-1 is used in the analysis in the next section.

The changes in the magnitude of the peak resistance and the frequency corresponding to the peak
resistance with the development of the debonding damages are shown in Figure 8a,b, respectively.
It can be seen from the figure that the resonant frequency and the resistance magnitude maintain
similar trends under the different debonding damage states. The relative changes to the peak resistance
decrease by 20.57%, 15.64%, 5.46%, 11.06% at the four different debonding damage states, respectively,
while the relative changes in the frequency corresponding to the peak resistance under different
debonding damage states decrease by 0.63%, 1.8%, 0.86%, 0.54%, respectively. As compared with the
change in the resonant frequency, the change in peak resistance under different debonding damage
states is more obvious. This is mainly due to significant changes in structure stiffness caused by the
dynamic debonding damage, which results in significant changes to the mechanical impedances of the
strengthened steel beam. This demonstrates that both the change in the resonant frequency and the
change in the peak resistance value can be an effective indicator to monitor the debonding damage of
the CFRP plate-strengthened steel structure.
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Figure 8. Changes in the peak resistance and frequency corresponding to the peak resistance with
the different debonding damage states at PZT-1. (a) Changes of frequency corresponding to the peak
resistance; (b) changes in the peak resistance.

As mentioned above, some statistic indices, such as the RMSD and the CC, can reflect the overall
difference of impedance curves under different debonding damage states, thus making them an
alternative method to determine the degree of the debonding damage. The RMSD of the resistance
signatures of the PZT-1 transducer was obtained, as shown in Figure 9. It can be seen from the figure
that the RMSD value increases gradually with the increase in the degree of damage. A larger RMSD
value indicates a more severe debonding damage, especially at the initial stage of debonding damage,
which confirms the PZT sensors are very sensitive in identifying change in the debonding damage.
After that, the RMSD index still goes up but with a gradually decreasing rate.
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According to Equation (3), the 1-CC values were also calculated to quantify the overall changes in
the resistance signatures of the PZT-1 transducer attached to the specimen with different debonding
lengths of 0 cm, 3 cm, 6.5 cm, 10.5 cm and 13.5 cm, respectively. Table 1 shows that as the CFRP
debonding length increases from 0 to 13.5 cm, the 1-CC-based damage metric changes as follows:
0, 0.076, 0.26, 0.31 and 0.37 at PZT-1. Using 1-CC values of PZT-1, the 93.9% confidence level threshold
of the intact condition was set using the generalized extreme value distribution. The relationship
between the 1-CC and the different debonding damages is displayed in Figure 10. It shows that the
1-CC increases gradually with the increase in the degree of the debonding damage, which shares a very
similar trend to that between the RMSD and the debonding damage. Based on the above experiment
research, it can be concluded that both the RMSD and the CC can be adopted to quantitatively monitor
the debonding damage, which further demonstrates that the EMI method is effective in detecting the
debonding damage of the CFRP plate-strengthened steel structures.

Table 1. Damage index: 1-CC at PZT-1.

Damage State 1-CC

D0 0
D1 0.076
D2 0.26
D3 0.31
D4 0.37
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5. Conclusions and Future Work

In this paper, the applicability of the electromechanical impedance-based method in monitoring
the debonding damage of the carbon fiber reinforced polymer (CFRP) plate-strengthened steel structure
was studied. A CFRP plate-strengthened steel beam was fabricated in the laboratory. Based on the
method, two lead zirconate titanate (PZT) sensors were adopted to conduct the experiments. The results
show that the real parts of the impedance signatures decrease with the increase in the debonding
damage degree. In addition, the lead zirconate titanate sensor should be attached close to the debonding
damage area, in order to ensure adequate sensitivity. The real parts of the impedance signatures of
the lead zirconate titanate transducer show obvious changes when the debonding damage length
changes. The statistical damage indices root-mean-square deviation and cross-correlation coefficient
were both adopted to quantify the degree of the debonding damage. The values of root-mean-square
deviation and cross-correlation coefficient increase obviously with the increase in the debonding length
of carbon fiber reinforced polymer plate. The two damage indices clearly monitor the debonding
damage evolution. The experimental results show that the electromechanical impedance method can
be used to detect the debonding damage of the carbon fiber reinforced polymer plate-strengthened
steel structures effectively.

Future work will involve testing CFRP strengthened steel specimens, which consider different
design factors, with the PZT patch under loading. During the tests, the change of debonding length will
be detected by the PZT patch under different loadings. We can use the sensor to provide real-time data
on structural health monitoring for in-service structures with integrated sensors. Meanwhile, we will
further conduct some investigation into the finite element analysis (FEA) method of CFRP-strengthened
steel specimens. The correctness of the FEA method is further verified by comparing with the theoretical
calculation results and the experimental results.
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