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Abstract Recent research has revealed that self-referential
processing enhances perceptual judgments — the so-called
self-prioritization effect. The extent and origin of this effect
remains unknown, however. Noting the multifaceted nature of
the self, here we hypothesized that temporal influences on
self-construal (i.e., past/future-self continuity) may serve as
an important determinant of stimulus prioritization.
Specifically, as representations of the self increase in abstrac-
tion as a function of temporal distance (i.e., distance from
now), self-prioritization may only emerge when stimuli are
associated with the current self. The results of three experi-
ments supported this prediction. Self-relevance only enhanced
performance in a standard perceptual-matching task when
stimuli (i.e., geometric shapes) were connected with the cur-
rent self; representations of the self in the future (Expts. 1 & 2)
and past (Expt. 3) failed to facilitate decision making. To
identify the processes underlying task performance, data were
interrogated using a hierarchical drift diffusion model
(HDDM) approach. Results of these analyses revealed that
self-prioritization was underpinned by a stimulus bias (i.e.,
rate of information uptake). Collectively, these findings eluci-
date when and how self-relevance influences decisional
processing.
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As far as indispensable psychological constructs go, the self
occupies a position near the top of the list (Baars, 1988).
Pervading core aspects of daily life, it guides cognition,
shapes behavioral elicitation, and provides coherence and con-
tinuity to the ebb and flow of subjective experience (James,
1890; Neisser, 1988). As Kihlstrom and Klein (1994) ob-
served, “self is the unquestionable, elementary, universal fact
of mental life, and the fundamental unit of analysis for a sci-
ence of mental life” (p. 155). It is little wonder, therefore, that
the self is a topic that has intrigued scholars for centuries and
continues to engender interest from diverse sections of the
academic community (e.g., Baumeister, 1998; Boyer,
Robbins, & Jack, 2005; Conway & Pleydell-Pearce, 2000;
Gallagher, 2000; Gillihan & Farah, 2005; Heatherton, 2011;
Heatherton, Macrae, & Kelley, 2004; James, 1890; Klein,
Rozendal, & Cosmides, 2002; H. Markus & Wurf, 1987).
For the most part, attention has focused on two basic issues:
elucidating how the self impacts cognition and decision mak-
ing and identifying the neuroanatomical structures that sup-
port these activities (Blakemore & Robbins, 2012; Conway,
2005; Conway & Pleydell-Pearce, 2000; Heatherton, 2011;
Heatherton et al., 2004; Mezulis, Abramson, Hyde, &
Hankin, 2004; Sali, Anderson, & Courtney, 2016; Sheppard,
Malone, & Sweeny, 2008). Motivating these complementary
lines of inquiry is the assumption that self-relevance (i.e.,
items associated with the self) exerts a potent influence on
stimulus processing (Baumeister, 1998; Conway & Pleydell-
Pearce, 2000; Heatherton, 2011).

Examination of the available evidence attests to the effects
of self-relevance on a range of cognitive operations, but most
notably memory function (Conway, 2005; Conway &
Pleydell-Pearce, 2000; Heatherton et al., 2004; Symons &
Johnson, 1997). When it comes to recollecting the past, self-
referential thinking affords information a reliable benefit in
recognition and recall (e.g., Kelley et al., 2002; Macrae,
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Moran, Heatherton, Banfield, & Kelley, 2004; Maki &
McCaul, 1985; Rogers, Kuiper, & Kirker, 1977; Symons &
Johnson, 1997). For example, following a task in which par-
ticipants are required to rate the extent to which personality
characteristics are descriptive of both the self and a familiar
other (e.g., celebrity, best friend, parent), items encoded in the
context of the self are advantaged in memory (i.e., self > other;
see Symons & Johnson, 1997). Aside from self-descriptive
personality traits, people are also highly adept at recognizing
their own actions (Knoblich & Flach, 2003). Whether the
outcomes of interest are walking, kinematic aspects of hand-
writing, the trajectories of darts, excerpts of classical music, or
the sound of hands clapping, actors are better at identifying
their own behavioral products than the comparable outputs of
other individuals (e.g., Beardsworth & Buckner, 1981;
Knoblich & Flach, 2001; Knoblich & Prinz, 2001; Repp,
1987; Repp & Knoblich, 2004). Put simply, self-relevance
enhances memory performance, even when prior levels of
engagement with a stimulus are minimal (Cloutier &
Macrae, 2008).

Pertinent to the current investigation, the effects of self-
referencing extend beyond memorial outcomes. As noted by
Sui and Humphreys, self-relevance also has the capacity to
influence people’s perceptual judgments (Humphreys & Sui,
2015; Sui & Humphreys, 2015). This, of course, is by no
means a novel idea given previous demonstrations of facilitat-
ed processing when participants encounter self-relevant (vs.
irrelevant) stimuli, such as their face or name (e.g., Bargh,
1982; Bargh & Pratto, 1986; Imafuku, Hakuno, Uchida-Ota,
Yamamoto, & Minagawa, 2014; Keyes & Brady, 2010; Ma &
Han, 2010; Moray, 1959; Sui, Zhu, & Han, 2006; Sui & Han,
2007; Wood & Cowan, 1995). These studies are not without
limitation, however. As the critical items differ substantially in
familiarity (e.g., own face vs. a stranger’s face), it is unclear
the extent to which self-relevance per se modulates perceptual
processing. Remedying this shortcoming, Sui, He, and
Humphreys (2012) recently furnished evidence for the en-
hanced processing of self-relevant information in a bespoke
associative-learning paradigm. Specifically, after coupling ar-
bitrary geometric shapes with person-labels (e.g., circle = you,
triangle = best friend, square = stranger), participants’
perceptual-matching judgments (i.e., do the items go togeth-
er?) were fastest and most accurate for stimulus pairs associ-
ated with the self (vs. friend or stranger)—the so-called self-
prioritization effect (Sui et al., 2012; Sui, Liu, Moverach, &
Humphreys, 2013). It has been suggested that self-relevance
triggers prioritized processing by enhancing the salience of
stimuli (Humphreys & Sui, 2015; Sui & Humphreys, 2015;
Sui, Liu, et al., 2013).

Notwithstanding numerous demonstrations of self-
prioritization during perceptual matching (e.g., Sui et al.,
2012; Sui, Liu, et al., 2013; Sui, Rothstein, &
Humphreys, 2013; Sui, Sun, Peng, & Humphreys, 2014),
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two outstanding issues merit consideration and further empir-
ical scrutiny. These pertain to the generality and basis of the
reported self-prioritization effect. First, how sensitive is this
effect to differences in the operationalization of the self? At
least among healthy individuals, the overarching message in
the available literature is that stimulus prioritization is an
obligatory consequence of self-referential processing. To op-
timize functioning in complex and challenging environments,
attention is automatically tuned to favor self-relevant stimuli
(Humphreys & Sui, 2015; Sui & Humphreys, 2015). But is
this inevitably the case or, as is perhaps more likely, is stimu-
lus prioritization sensitive to differences in self-construal
(Trope & Liberman, 2003, 2010)? Second, what is the basis
of the self-prioritization effect? Despite widespread evidence
that self-relevant stimuli facilitate perceptual judgments
(Humphreys & Sui, 2015; Sui & Humphreys, 2015), the pre-
cise mechanism through which this effect arises remains un-
known. Accordingly, the goals of the current research were
twofold—to explore the extent and source of the self-
prioritization effect during perceptual matching (Sui et al.,
2012).

Self-construal and perceptual matching

In exploring the self-prioritization effect, research to date has
adopted a rigid operationalization of the self that potentially
underestimates the nuanced ways in which it may (or indeed
may not) impact task performance (Humphreys & Sui, 2015;
Sui & Humphreys, 2015). Rather than comprising a unitary,
monolithic entity, the self is a multifaceted, flexible construct
shaped by the collective influence of long-term knowledge,
situational forces, and temporary processing goals (Conway &
Pleydell-Pearce, 2000; McConnell, 2011; Roberts &
Donahue, 1994). For example, it is widely acknowledged that
the self comprises multiple social identities (with associated
beliefs, expectations, and values)—derived from membership
in various social groups (Tajfel, 1978)—that influence behav-
ior in a context-specific manner. When a particular subcom-
ponent of the self is active, individuals make sense of the
world through the lens of the associated knowledge structure
(e.g., McConnell, 2011; Oyserman, 2009). Similarly, and of
relevance to the current inquiry, it is well established that
thinking and doing are highly susceptible to temporal influ-
ences on self-construal (see Trope & Liberman, 2003, 2010).
A central tenet of construal-level theory (CLT) is that forth-
coming events (e.g., going on vacation) can be represented in
either a super- or subordinate manner, what matters is when an
event is scheduled to occur (e.g., next month vs. next year).
Whereas impending events (e.g., a trip to Hong Kong) are
characterized in a concrete, detail-rich manner (e.g., booking a
hotel, acquiring local currency, finding one’s passport), distant
events comprise abstract, decontextualized representations that
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convey only the gist or general meaning of an episode (e.g.,
enjoying a well-earned break). In other words, as events be-
come temporally distant, representations decrease in detail
and increase in schematic content (see also Vallacher &
Wegner, 1985).

Importantly, characterizations of the self display compara-
ble temporal shifts in complexity (i.e., concrete to abstract), a
structural phenomenon that has implications for assessments
of self-continuity (i.e., the perceived similarity between one’s
current and future self). Specifically, overlap between one’s
current and future self fluctuates as a function of temporal
distance, such that a person feels greater affinity with her
potential self in the near than distant future (e.g., Parfit,
1971, 1987; Pronin & Ross, 2006; Schelling, 1984; Thaler
& Shefrin, 1981; Wakslak, Nussbaum, Liberman, & Trope,
2008). Indeed, travel deeply into the future and psychological
connectivity between these constructs can be severed alto-
gether, resulting in one’s future self acquiring the status of a
stranger (Hershfield, 2011; Mitchell, Schirmer, Ames, &
Gilbert, 2011; Parfit, 1971, 1987; Pronin, Olivola, &
Kennedy, 2008; Pronin & Ross, 2006; Wakslak et al., 2008).
Intriguingly, this self-becomes-other effect has also been re-
ported for events in the not-so-distant future (e.g., next month,
next semester; Pronin et al., 2008; Pronin & Ross, 2006).
These temporal influences on self-construal may act as
an important determinant of the self-prioritization effect
(Humphreys & Sui, 2015; Sui & Humphreys, 2015).
Such a boundary condition would have important impli-
cations for contemporary theoretical accounts of self-pri-
oritization, as it would challenge the viewpoint that self-
biases are a mandatory characteristic of perceptual pro-
cessing (Humphreys & Sui, 2015). Of course, what has
also yet to be established is the specific mechanism that
underpins the self-prioritization effect during perceptual
matching (Sui et al., 2012).

In exploring the origins of decisional bias, prior research
has identified two distinct pathways through which top-down
knowledge (e.g., self-relevance) can influence task perfor-
mance (Ashby, 1983; Leite & Ratcliff, 2011; Link & Heath,
1975; Summerfield & de Lange, 2014; van Ravenzwaaij,
Mulder, Tuerlinckx, & Wagenmakers, 2012; White &
Poldrack, 2014). During decision making, adjustments can
be made to how the stimulus under consideration is evaluated
(i.e., stimulus bias) or the manner in which a response is pre-
pared (i.e., response bias). That is, biases can be traced to how
sensory information is converted into decisional evidence or
how that evidence is used to generate a decision (White &
Poldrack, 2014). In terms of the self-prioritization effect, the
prevailing viewpoint is that self-relevance influences the per-
ceptual operations that underpin decision making (Humphreys
& Sui, 2015; Sui & Humphreys, 2015) and thus represents a
bias in stimulus processing. To demonstrate such a bias, how-
ever, necessitates the decomposition of task performance

during perceptual matching to isolate the specific cognitive
process that underpins the self-prioritization effect (Sui et al.,
2012). Importantly, in the context of binary decision tasks,
drift diffusion models provide just such an opportunity (e.g.,
Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff, Smith,
Brown, & McKoon, 2016; Voss, Nagler, & Lerche, 2013;
Voss, Rothermund, & Brandtstidter, 2008; Voss, Rothermund,
& Voss, 2004; Voss & Voss, 2007; Voss, Voss, & Lerche, 2015;
Wagenmakers, 2009).

Decomposing the self-prioritization effect

Drift diffusion models decompose behavioral data (i.e., re-
sponse times & accuracy) into a set of latent parameters that
represent the cognitive operations underlying decisional pro-
cessing (Voss, Nagler, et al., 2013; Voss et al., 2015). A variant
of continuous sampling approaches, these models assume that
information is continuously gathered during a decision phase
until sufficient evidence is acquired to initiate a response. A
schematic depiction of the model is provided in Fig. 1. The
model describes evidence accumulation unfolding over time
and fits accuracy and response time distributions. The dura-
tion of the diffusion process is known as the decision time and
the diffusion process itself can be characterized by several
important parameters (Voss et al., 2004; Voss, Rothermund,
etal., 2013; Voss et al., 2015).1

The drift rate (v) maps the speed and quality of information
acquisition (i.e., larger drift rate = faster information uptake),
thus provides a measure of stimulus processing (i.e., stimulus
bias) during decision-making (White & Poldrack, 2014).
Threshold separation (@) estimates the distance between the
decisional boundaries, hence indexes how much evidence is
sampled before a decision is made (i.e., higher estimates rep-
resent thresholds that are most distinct from each other, sug-
gesting greater certainty is required before a response is initi-
ated). The starting point (z) defines the position at which ev-
idence accumulation begins. If z is not centered between the
thresholds, this indicates an a priori bias in favor of the out-
come that is closer to the starting point (i.e., response bias).
Finally, the duration of all nondecisional processes (i.e., oper-
ations occurring pre/post decision making) is given by the
additional parameter ¢, _and is taken to indicate biases in stim-
ulus encoding and response execution (Voss, Nagler, et al.,
2013; Voss et al., 2015).

Drift diffusion modeling is useful in the current context as
it has the capacity to isolate the cognitive processes underlying
decision making (White & Poldrack, 2014), thereby elucidate
the origin of the self-prioritization effect. If, as has been

! For additional information about diffusion modeling, see Ratcliff and
McKoon’s website (The Diffusion Decision Model for Non-Specialists,
http://star.psy.ohio-state.edu/wp/?page_id=169).
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Fig.1 Schematic version of'the drift diffusion model, adapted from Voss,
Rothermund, et al., (2013, p. 4). An information gathering process begins
at starting point z and continues with a mean slope v until it reaches an
upper (@) or lower (0) threshold. The process durations and outcomes
vary from trial to trial because of random noise. Outside the threshold
boundaries the decision-time distributions are shown

suggested, self-relevance influences the perceptual compo-
nent of the decisional process (Humphreys & Sui, 2015; Sui
& Humphreys, 2015), then self-prioritization should be
underpinned by differences in the rate of information uptake
(i.e., stimulus bias, v) during the standard shape-label
matching task (Sui et al., 2012).

Overview

In three experiments, the goals of the current research were to
explore when and how self-relevance impacts the emergence
of the self-prioritization effect during perceptual matching
(Humphreys & Sui, 2015; Sui & Humphreys, 2015). Noting
fundamental temporal influences on self-construal (Hershfield,
2011; Mitchell et al., 2011; Pronin et al., 2008; Pronin & Ross,
2006; Wakslak et al., 2008)—specifically, that representations
of the self increase in abstraction as a function of temporal
distance—we expected the self-prioritization effect during per-
ceptual matching to be restricted to geometric shapes associated
with temporally proximate (vs. distant) representations of the
self. We explored this hypothesis in a standard perceptual
matching task in which participants associated labels pertaining
to the self (e.g., self now, self tomorrow) and a stranger with
various geometric shapes (e.g., circle, diamond), then judged
(as quickly and accurately as possible) whether subsequent
shape-label pairings matched or mismatched the previously
learned associations (see Sui et al., 2012). To identify the deci-
sional processes underlying task performance, data were sub-
mitted to a HDDM analysis (Wiecki et al., 2013). Of theoretical
interest was establishing the extent to which self-relevance in-
fluences the rate at which evidence is acquired (i.e., drift rate, v)
during perceptual matching.> Experiments 1 and 2 explored
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prospective representations of the self, Experiment
Experiment 3 representations of the self in the past.

Experiment 1
Participants and design

Sixteen undergraduates (one male, M,z = 19.69 years, SD =
1.89) took part in the research, for which they received £5
(~$6.20).> All participants had normal or corrected-to-
normal visual acuity. Informed consent was obtained from
participants prior to the commencement of the experiment,
and the protocol was reviewed and approved by the Ethics
Committee at the School of Psychology, University of
Aberdeen. The experiment had a 4 (shape category: self-
now vs. self-year vs. self-forty vs. stranger) x 2 (trial type:
matching vs. nonmatching) repeated-measures design.

Stimulus materials and procedure

Participants arrived at the laboratory individually, were
greeted by an experimenter, and told they would be
performing a perception task. Following Sui et al. (2012),
the experiment had two phases. The first phase comprised a
learning task in which participants were required to associate
geometric shapes (i.e., circle, horizontal rectangle, cross, dia-
mond) with four targets: self-now, self-in-one-year, self-in-
forty-years, and a stranger. To bolster the temporal manipula-
tion and trigger construal-based processes, participants en-
gaged in periods of guided imagery (i.e., a simulation for each
target) during which they formed target-shape associations.
Based on prior research, participants were instructed to close
their eyes and imagine the self (now, in-one-year, in-forty-
years) or a stranger walking along a quiet beach (Macrae
etal., 2015).* After 20 seconds had elapsed, participants were
instructed to represent the target of the respective simulation
(i.e., self-now, self-one, self-forty, stranger) with a specific
geometric shape (i.e., circle, horizontal rectangle, cross, dia-
mond). The shapes were not presented at this stage. The order
of the mental simulations and shape-target associations were
counterbalanced across the sample.

Next, participants were seated in front of a desktop com-
puter and informed they would be performing a perceptual-
matching task. Using two buttons on the keyboard (i.e., N &

2 Ineach experiment, all multiple comparisons were corrected using the Holm-
Bonferroni method (Holm, 1979).

3 Based on the average effect size reported by Sui et al. (2012), G¥Power (f=
40, « = .05, power = 80%) revealed a requirement of 16 participants. This
sample size was adopted for each of the reported experiments.

* This manipulation of mental imagery has been shown to influence the spec-
ificity of self representation, triggering a switch from concrete to abstract self-
construal as a function of increasing temporal distance (Macrae et al., 2015).
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Table 1 Mean reaction times and accuracy as a function of shape
category and trial type (Experiment 1)

Trial type Shape category Mean RT (ms) Accuracy (%)

Matching Self-now 637 (74) 90 (7)
Self-one 718 (41) 77 (8)
Self-forty 717 (65) 76 (15)
Stranger 684 (65) 74 (16)

Nonmatching Self-now 762 (53) 70 (14)
Self-one 749 (44) 72 (16)
Self-forty 756 (35) 73 (14)
Stranger 764 (51) 73 (11)

Note. RT = reaction time. Standard deviations appear within parentheses

M), participants had to report whether a series of shape-label
pairings (e.g., circle & self-now, cross & stranger, rectangle &
self-year, diamond & self-forty) were correct (or incorrect) on
the basis of the associations learned previously. Each trial
began with the presentation of a central fixation cross for
500 ms, followed by the pairing of a shape (i.e., circle, rect-
angle, cross, diamond) and label (e.g., self-now, self-one, self-
forty, stranger) above and below the fixation cross, respective-
ly, for 100 ms. After each shape-label pairing was presented,
the screen turned blank for a variable interval (i.e., 800 ms to
1,100 ms). Participants had to judge the accuracy of the
pairings (i.e., whether they matched or mismatched the asso-
ciations learned earlier) by pressing the corresponding button
as quickly as possible within this time frame to encourage
immediate responding (Sui et al., 2012). The meaning of the
response buttons was counterbalanced across participants.
Feedback (i.e., correct or incorrect response) was given on
the screen for 500 ms at the end of each trial and participants
were also informed of their overall accuracy at the end of each
block of trials. Participants initially performed 18 practice tri-
als, followed by seven blocks of 72 trials in which self-now,
self-one, self-forty, stranger, and re-paired stimuli occurred
equally often in a random order. In total, across all the blocks,

900 Self Now 900
< Selfin 1 Year
| Selfin 40 Years
m | © Stranger m
£ 800 ' £ 800
[%2] [}
£ £
= 700 1 o = 700
c =
e kel
8 8
® 600 - © 600
24 o
500 - 500

there were 63 trials in each condition (i.e., self-now matching,
self-now non-matching, self-one matching, self-one
nonmatching, self-forty matching, self-forty nonmatching,
stranger matching, stranger nonmatching). On completion of
the task, participants were debriefed and dismissed.

Results and discussion
Perceptual matching

Responses faster than 200 ms were excluded from the analy-
sis, eliminating less than 1% of the overall number of trials.
Table 1 shows the accuracy and response time (RT) data.
Following Sui et al. (2012), a bootstrapping procedure was
adopted to examine the distribution characteristic of
perceptual-matching judgments in each condition, combining
accuracy and RT performance (Davison & Hinkley, 1997).
For each participant in each condition, accuracy and RT were
paired as a single data point (x, y). A bootstrapped data set was
then created by re-sampling the data with replacement, keep-
ing the sample size as the number of participants. The mean of
this bootstrapped data set was then calculated and plotted as a
single data point in the distribution (x, y). This procedure was
repeated 2,000 times to estimate the population mean and
variation for each condition. The resultant distributions across
the different shape-category judgments are displayed in Fig. 2.
Whereas the bootstrapped sample mean observations for self-
now matching judgments fell in the lower right corner of the
figure, all other matching judgments fell in an upper middle
location (see Fig. 2a). In contrast, an overlapping distribution
of observations emerged for responses to non-matching
shape-category pairs (see Fig. 2b).

To explore the accuracy of participants’ responses, a signal
detection approach was adopted. For each shape-category,
performance in the matching and non-matching conditions
were combined to calculate a measure of sensitivity (d') and
a single factor (shape category: self-now vs. self-one vs. self-

c

50 60 70 80 90 100 50 60

Accuracy (%)

70

Accuracy (%)

T T 0.5

80 Self in
1 year

Self
Now

Selfin

Stranger
40 years

Fig. 2 Distribution of bootstrapped sample means for matching (a) and nonmatching (b) trials (Experiment 1). The x-axis represents the accuracy rates
and the y-axis the reaction times. ¢ Shows d’ as a function of shape category. Error bars represent +1 SEM
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forty vs. stranger) repeated-measures analysis of variance
(ANOVA) was performed on these data (see Fig. 2c). This
revealed an effect of shape category, F(3, 45) = 4.08, p =
012, np2 = .21, such that d’ was larger for self-now than for
self-one, #(15) = 3.23, p = .003, d = .81, and stranger, #(15) =
222, p =02, d = .55. The difference between self-now and
self-forty was not significant, #(15) = 1.62, p = .063.

A 4 (shape category: self-now vs. self-one vs. self-forty vs.
stranger) x 2 (trial type: matching or nonmatching) repeated-
measures ANOVA on the RTs revealed main effects of shape
category, F(3, 45) = 5.88, p =.002, n,”> = .28, trial type, F(1,
15) = 83.83, p < .001, np2 = .85, and a significant Shape
Category x Trial Type interaction, F(3, 45) = 15.68, p <
.001, np2 = .51. Further analyses yielded a significant simple
effect of shape category on matching trials, F(3,45)=11.74,p
<.001, np2 = .44, such that RTs were faster for self-now than
self-one, #(15) =-6.61, p <.001, d = 1.65, self-forty, #(15) = -
3.67,p <.001, d = .92, and stranger, #(15) = -2.86, p = .006, d
= .72. No other significant differences were observed.

Replicating Sui et al. (2012), these results demonstrate a
self-prioritization effect on perceptual matching (Humphreys
& Sui, 2015; Sui & Humphreys, 2015). Critically, however,
performance was only enhanced when geometric shapes were
associated with the current self. Future conceptions of the self
produced patterns of performance equivalent to associating
stimuli with a stranger, even when the self was construed only
1 year forwards in time (see Pronin et al., 2008; Pronin &
Ross, 2006; Wakslak et al., 2008). This self-now prioritization
effect confirms that temporal influences on self-construal im-
pact perceptual matching.

Diffusion modeling

To identify the processes underlying task performance during
perceptual matching, data were submitted to a HDDM analysis.
HDDM is an open-source software package written in Python for
the hierarchical Bayesian estimation of drift diffusion model pa-
rameters (Wiecki et al., 2013). This approach assumes that the
model parameters for individual participants are random samples
drawn from group-level distributions and uses Bayesian statisti-
cal methods to estimate all parameters at both the group- and
individual-participant level (Vandekerckhove, Tuerlinckx, &
Lee, 2011). An advantage of this approach is that it is robust at
recovering model parameters when less data (i.e., experimental
trials) are available (Wiecki et al., 2013).

Models were response coded, such that the upper threshold
corresponded to a matching response and the lower threshold
to a nonmatching response. To test the hypothesis that self-
prioritization is underpinned by a stimulus bias (Humphreys
& Sui, 2015; Sui & Humphreys, 2015), separate drift rates (v)
were estimated (i.e., allowed to vary) as a function of shape
category and trial type (i.e., positive values = drift rate on
matching trials, negative values = drift rate on nonmatching

@ Springer

trials). A single starting value (z) was allowed to vary between
the response thresholds, such that z = 0.5 indicates no bias
(i.e., the starting point is located at the midpoint between the
thresholds). Separate nondecisional processes (#)) were esti-
mated for matching and non-matching trials (Voss,
Rothermund, Gast, & Wentura, 2013). Bayesian posterior dis-
tributions were modeled using a Markov Chain Monte Carlo
(MCMC) with 10,000 bootstraps (following 1,000 burn in
samples). Prior to analysis, trials with latencies faster than
200 ms were removed, and the HDDM software removed
the 5% of trials with the longest response latencies (Ratcliff
& Tuerlinckx, 2002). In this model, bias during decisional
processing could be mapped on to the drift rate (v), indicating
a stimulus bias; or the position of the starting point (z), indi-
cating a response bias (White & Poldrack, 2014).

To determine the adequacy of this model, five additional
models were tested for comparison. For the first two models,
only the drift parameter (v) and starting point (z) were allowed
to vary. For the other models, combinations of drift rate (v),
starting point (z), and nondecision (¢,) processes were allowed
to vary. As can be seen in Table 2, the model that included all
three parameters yielded the best fit (i.e., smallest DIC value).
Interrogation of the posterior distributions revealed evidence
of both stimulus and response biases during decision-making
(see Fig. 3). Specifically, on matching trials, drift rates (v)
were higher (i.e., evidence accumulation was faster) for self-
now than all other shape-category pairings [pgayes(self-now >
self-one & self-forty & stranger) = 1.0]. This was not the case
on nonmatching trials [pgayes(self-now > self-one & self-forty
& stranger) = .312]. In addition, comparison of the observed
starting value (z = .62) with no bias (i.e., z = 0.5) revealed an a
priori bias towards matching responses [pgayes(bias > 0.5) =
1.0]. Finally, nondecisional processes (¢,) yielded no difference
between matching and non-matching trials [pgaye(matching <
nonmatching) = .777].

These results explicate the basis of the self-prioritization
effect on perceptual matching (Sui et al., 2012). Compared

Table 2  Deviance information criterion (DIC) values for each model
(Experiments 1-3)

DIC

Models Expt. 1 Expt. 2 Expt. 3
v 2141 1152 2859

z 5195 5054 5865
v,z 1429 463 2176
Z 1t 4757 4674 5550
v, 1y 1708 844 2726
vzl 1125 83 1961

Note. v = drift rate, z = starting point, 7, = nondecision processes. A DIC
difference of 2 is positive evidence for a model, greater than 10 is strong
evidence for a model (Kass & Raftery, 1995).
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to other shape-category pairings (i.e., self-one, self-forty,
stranger), self-now was characterized by a higher drift rate
(v). This provides the first evidence that self-relevance en-
hances information uptake during perceptual matching
(Humphreys & Sui, 2015; Sui & Humphreys, 2015). In addi-
tion, a bias in decisional processes relating to the position of
the starting point (z) was also observed, indicating that partic-
ipants favored matching over nonmatching responses.

Experiment 2

n Experiment 1, we expected self-prioritization effects to
emerge when geometric shapes were associated with one’s
current (i.e., self-now) and near-future (i.c., self-one) self,
but not with conceptions of the self in the distant future (i.e.,
self-forty). Interestingly, however, a different pattern of results
was observed. Although stimulus prioritization was sensitive
to temporal influences in self-construal (Pronin et al., 2008;
Pronin & Ross, 2006; Trope & Liberman, 2003, 2010;
Wakslak et al., 2008), only shapes associated with the current
self yielded enhanced performance, a self-now prioritization
effect that was underpinned by a stimulus bias during deci-
sional processing (Sui et al., 2012). It is conceivable, however,
that for undergraduates in their early 20s even a single year

into the future feels temporally distant (Pronin et al., 2008),
thereby eliminating prioritized processing. Acknowledging
this possibility, our next study comprised a replication of
Experiment 1 but with an important modification. On this
occasion, together with current self and stranger, geometric
shapes were associated with future self in a day and in a
month. Of interest was whether narrowing the future horizon
would impact the emergence of the self-prioritization effect.
As in Experiment 1, to identify the processes underlying task
performance, the data were submitted to a HDDM analysis
(Wiecki et al., 2013)

Participants and design

Sixteen undergraduates (three male, M,,. = 20.88 years, SD =
2.45) took part in the research, for which they received £5
(~$6.20). All participants had normal or corrected-to-normal
visual acuity. Informed consent was obtained from partici-
pants prior to the commencement of the experiment, and the
protocol was reviewed and approved by the Ethics Committee
at the School of Psychology, University of Aberdeen. The
experiment had a 4 (shape category: self-now vs. self-day
vs. self-month vs. stranger) X 2 (trial type: matching vs.
nonmatching) repeated-measures design.

@ Springer
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Stimulus materials and procedure

Participants arrived at the laboratory individually, were
greeted by an experimenter, and told they would be
performing a perception task. The study closely followed
Experiment 1 but with an important modification. On this
occasion, during the learning phase, participants associated
geometric shapes (i.e., circle, horizontal rectangle, cross, dia-
mond) with self-now, self-in-a-day, self-in-a-month, and
stranger. During the subsequent perceptual-matching task,
participants had to report whether a series of shape-label
pairings (e.g., circle & self-day, cross & self-month) were
correct (or incorrect) on the basis of the associations learned
previously. As in Experiment 1, participants initially per-
formed 18 practice trials, followed by seven blocks of 72 trials
in which self-now, self-day, self-month, stranger, and re-
paired stimuli occurred equally often in a random order. In
total, across all the blocks, there were 63 trials in each condi-
tion. On completion of the task, participants were debriefed
and dismissed.

Results and discussion
Perceptual matching

Responses faster than 200 ms were excluded from the analy-
sis, eliminating less than 1% of the overall number of trials.
Table 3 shows the accuracy and response time (RT) data. As in
Experiment 1, a bootstrapping procedure was adopted to ex-
amine the distribution characteristic of perceptual-matching
judgments in each condition, combining accuracy and RT
performance. The resultant distributions across the different
shape-category judgments are displayed in Fig. 4. Whereas
the bootstrapped sample mean observations for self-now
matching judgments fell in the lower right corner of the figure,
all other matching judgments fell in an upper middle location
(see Fig. 4a). In contrast, an overlapping distribution of

Table 3 Mean reaction times and accuracy as a function of shape
category and trial type (Experiment 2)

Trial type Shape category Mean RT (ms) Accuracy (%)

Matching Self-now 611 (78) 91 (6)
Self-day 724 (62) 77 (15)
Self-month 730 (73) 77 (14)
Stranger 688 (73) 79 (13)

Nonmatching Self-now 778 (57) 73 (13)
Self-day 753 (55) 72 (14)
Self-month 746 (62) 74 (14)
Stranger 753 (62) 74 (11)

Note. RT = reaction time. Standard deviations appear within parentheses

@ Springer

observations emerged for responses to non-matching shape-
category pairs (see Fig. 4b).

As before, a signal detection approach was adopted to ex-
plore the accuracy of participants’ responses. For each shape,
performance in the matching and nonmatching conditions
were combined to calculate a measure of sensitivity (d') and
submitted to a single factor (shape category: self-now vs. self-
day vs. self-month vs. stranger) repeated-measures ANOVA
(see Fig. 4c). This revealed an effect of shape category, F(3,
45)=5.77,p =.002, npz =.28, such that d' was larger for self-
now than self-day, #(15) =4.55, p <.001, d = 1.14, self-month,
t(15) = 3.33, p = .002, d = .83, and stranger, #(15) = 2.58, p
=01, d = .64.

A 4 (shape category: self-now vs. self-day vs. self-month
vs. stranger) X 2 (trial type: matching or nonmatching)
repeated-measures ANOVA on RTs revealed main effects of
shape category, F(3,45)=10.21,p <.001, npz = .41, trial type,
F(1,15)=108.08, p <.001, np2 = .88, and a significant Shape
Category x Trial Type interaction, F(3, 45) = 33.24, p < .001,
npz =.609. Further analyses yielded a significant simple effect
of shape category on matching trials, F(3, 45) = 25.28, p <
.001, np2 = .63, such that RTs were faster for self-now than
self-day, #(15)=-9.23, p <.001, d = 2.31; self-month, #15) = -
6.38,p<.001, d=1.60; and stranger, #(15) =-4.69, p < .001, d
= 1.17. In addition, RTs were faster for stranger than self-
month, #(15) = 2.71, p = .029, d = 0.92. A simple effect of
shape category also emerged on nonmatching trials, (3, 45) =
5.84, p =.005, npz = .28, indicating that RT’s were slower for
self-now than self-day, #(15) = 2.84, p = .006, d = .71; self-
month, #(15) = 2.96, p = .005, d = .74; and stranger, #(15) =
2.93, p =.005, d = .73. No other significant differences were
observed.

Replicating Experiment 1, these results demonstrate a self-
prioritization effect on perceptual matching (Humphreys &
Sui, 2015; Sui & Humphreys, 2015). As previously, however,
prioritized processing only emerged when geometric shapes
were associated with the current self (i.e., self-now prioritiza-
tion effect). Even for characterizations of the self in the very
near future (i.e., tomorrow, in a month) self-relevance did not
facilitate performance (i.e., self = stranger). This self-now pri-
oritization effect corroborates the contention that temporal in-
fluences on self-construal influence perceptual matching.

Diffusion modeling

To identify the processes underlying task performance, data
were submitted to a HDDM analysis (Wiecki et al., 2013). As
in Experiment 1, five additional models were tested for com-
parison. As can be seen in Table 2, the model that included all
three parameters yielded the best fit (i.e., smallest DIC value).
Interrogation of the posterior distributions revealed evidence
of both stimulus and response biases during perceptual
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matching (see Fig. 5). Specifically, on matching trials, drift
rates (v) were higher (i.e., evidence accumulation was faster)
for self-now than all other shape-category pairings
[PBayes(self-now > self-day & self-month & stranger) = 1.0].
This was not the case on nonmatching trials [ppayes(self-now >
self-day & self-month & stranger) = .376]. In addition, com-
parison of the observed starting value (z = .64) with no bias
(i.e., z = 0.5) revealed an a priori bias towards matching re-
sponses [ppayes(bias > 0.5) = 1.0]. Finally, nondecisional
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processes (#y) were faster on matching than nonmatching trials
[PBayes(matching < nonmatching) = .986].

These results directly replicate the pattern of effects report-
ed in Experiment 1. Compared to all other shape-category
pairings (i.e., self-day, self-month, stranger), self-now was
characterized by a larger drift rate (v), thus supporting the
contention that self-relevance enhances information uptake
during perceptual matching (Humphreys & Sui, 2015; Sui &
Humphreys, 2015). As previously, a bias in decisional
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processes relating to the position of the starting point (z) was
also observed. Specifically, participants favored matching
over nonmatching responses. Corroborating Experiment 1,
these findings confirm that, at least in the context of a shape-
label matching task, self-prioritization is underpinned by a
bias in stimulus processing (Sui et al., 2012).

Experiment 3

Thus far, the results have revealed a self-now prioritiza-
tion effect, such that perceptual-matching is enhanced
when one’s current self is contrasted with representations
of the self in the distant (i.e., Expt. 1) and near (i.e.,
Expt. 2) future. What this demonstrates is that perceptual
matching is influenced by temporally induced differences
between one’s current and future (i.e., hypothetical)
selves (Trope & Liberman, 2003, 2010). It is worth not-
ing, however, that the effects of temporal construal also
extend to representations of the self in the past, repre-
sentations grounded in actual experience (e.g., Frank &
Gilovich, 1989; Libby & Eibach, 2002; Nigro & Neisser,
1983; Pronin & Ross, 2006; Robinson & Swanson,
1993). Echoing the principles of CLT (Trope &
Liberman, 2003, 2010)—despite detailed knowledge of
one’s prior self (e.g., recollections of last week/month/
year)—self-relevant cognitions and memories increase
in abstraction as one travels backwards in time (e.g.,
Broemer, Grabowski, Gebauer, Ermel, & Diehl, 2008;
Conway & Pleydell-Pearce, 2000; D’Argembeau & Van
der Linden, 2004; Johnson, Foley, Suengas, & Raye,
1988). This then raises an interesting question. Is the
self-prioritization effect similarly sensitive to representa-
tions of the self in the past? We explored this issue in
our final experiment. As previously, a HDDM analysis
was used to interrogate the cognitive processes underpin-
ning task performance (Wiecki et al., 2013).

Method
Participants and design

Sixteen undergraduates (three male, M,,. = 20.44 years, SD =
1.67) took part in the research, for which they received £5
(~$6.20). All participants had normal or corrected-to-normal
visual acuity. Informed consent was obtained from partici-
pants prior to the commencement of the experiment and the
protocol was reviewed and approved by the Ethics Committee
at the School of Psychology, University of Aberdeen. The
experiment had a 4 (shape category: self-now vs. self-day
vs. self-month vs. stranger) X 2 (trial type: matching vs.
nonmatching) repeated-measures design.
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Stimulus materials and procedure

Participants arrived at the laboratory individually, were
greeted by a male experimenter, and told they would be
performing a perception task. The study closely followed
Experiment 2 but with an important modification. On this
occasion, during the learning phase, participants associated
geometric shapes (i.e., circle, horizontal rectangle, cross, dia-
mond) with self-now, self-a-day-ago, self-a-month-ago, and
stranger. During the subsequent perceptual-matching task,
participants had to report whether a series of shape-label
pairings (e.g., circle & self-day, cross & self-month) were
correct (or incorrect) on the basis of the associations learned
previously. As in Experiment 2, participants initially per-
formed 18 practice trials, followed by seven blocks of 72 trials
in which self-now, self-day, self-month, stranger, and re-
paired stimuli occurred equally often in a random order. In
total, across all the blocks, there were 63 trials in each condi-
tion. On completion of the task, participants were debriefed
and dismissed.

Results and discussion
Perceptual matching

Responses faster than 200 ms were excluded from the analy-
sis, eliminating less than 1% of the overall number of trials.
One participant failed to follow the instructions, thus was ex-
cluded from the analysis. Table 4 shows the accuracy and
response time (RT) data. As in Experiments 1 and 2, a
bootstrapping procedure was adopted to examine the distribu-
tion characteristic of perceptual-matching judgments in each
condition, combining accuracy and RT performance. The re-
sultant distributions across the different shape-category judg-
ments are displayed in Fig. 6. Whereas the bootstrapped sam-
ple mean observations for self-now matching judgments fell
in the lower right corner of the figure, all other matching

Table 4 Mean reaction times and accuracy as a function of shape
category and trial type (Experiment 3)

Trial type Shape category Mean RT (ms) Accuracy (%)

Matching Self-now 628 (84) 87 (11)
Self-day 715 (76) 65 (18)
Self-month 723 (66) 72 (18)
Stranger 684 (62) 73 (19)

Nonmatching Self-now 761 (70) 63 (14)
Self-day 745 (65) 67 (13)
Self-month 739 (66) 66 (13)
Stranger 752 (66) 70 (15)

Note. RT = reaction time. Standard deviations appear within parentheses
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judgments fell in an upper middle location (see Fig. 6a). In
contrast, an overlapping distribution of observations emerged
for responses to nonmatching shape-category pairs (see
Fig. 6b).

As previously, a signal detection approach was adopted
to explore the accuracy of participants’ responses. For
each shape, performance in the matching and non-
matching conditions were combined to calculate a mea-
sure of sensitivity (d') and submitted to a single factor
(shape category: self-now vs. self-day vs. self-month vs.
stranger) repeated-measures ANOVA (see Fig. 6¢). This
revealed an effect of shape category, F(3, 42) =5.79, p =
.002, npz = .29, such that d' was larger for self-now than
for self-day, #(14) = 3.87, p = .001, d = 1.03; self-month,
t(14) = 2.98, p = .012, d = .87; but not for stranger, #(14)
=1.50, p =.21.

A 4 (shape category: self-now vs. self-day vs. self-month
vs. stranger) x 2 (trial type: matching or nonmatching)
repeated-measures ANOVA on RTs revealed main effects of
shape category, F(3, 42) = 6.95, p < .001, np2 =.33; trial type,
F(1, 14) = 86.48, p < .001, np2 = .86; and a significant Shape
Category % Trial Type interaction, F(3, 42) = 15.17, p < .001,
npz =.52. Further analyses yielded a significant simple effect
of shape category on matching trials, F(3, 42) = 14.22, p <
.001, np2 = .50, such that RTs were faster for self-now than
self-day, #(14) =-5.38, p <.001, d = 1.60; self-month, #(14) = -
5.88,p<.001,d=1.21; and stranger, #(14) =-3.45, p =.003, d
= .81. No other significant differences were observed.

Replicating Experiments 1 and 2, these results demonstrate
a self-prioritization effect on perceptual matching
(Humphreys & Sui, 2015; Sui & Humphreys, 2015). As pre-
viously, however, prioritized processing only emerged when
geometric shapes were associated with the current self (i.e.,
self-now prioritization effect). Even for characterizations of
the self in the immediate past (i.e., yesterday) self-relevance
did not facilitate performance. Thus, extended to representa-
tions in the past (Trope & Liberman, 2003, 2010), this self-
now prioritization effect corroborates the contention that

temporal influences on self-construal influence perceptual
matching.

Diffusion modeling

To identify the processes underlying task performance, data
were submitted to a HDDM analysis (Wiecki et al., 2013). To
determine the adequacy of this model, five additional models
were tested for comparison. As can be seen in Table 2, the
model that included all three parameters yielded the best fit
(i.e., smallest DIC value). Interrogation of the posterior distri-
butions revealed evidence of both stimulus and response
biases during perceptual matching (see Fig. 7). Specifically,
on matching trials, drift rates (v) were higher (i.e., evidence
accumulation was faster) for self-now than all other shape-
category pairings [ppayes(self-now > self-day & self-month
& stranger) = 1.0]. This was not the case on nonmatching trials
[PBayes(self-now > self-day & self-month & stranger) = .202].
In addition, comparison of the observed starting value (z =
.62) with no bias (i.e., z=0.5) revealed an a priori bias towards
matching responses [ppaycs(bias > 0.5) = 1.0]. Finally,
nondecisional processes (#) yielded no difference between
matching and non-matching trials [pgayes(matching < non-
matching) = .790].

Extended to representations of the self in the past,
these results further explicate the basis of the self-
prioritization effect on perceptual matching (Sui et al.,
2012). Compared to all other shape-category pairings
(i.e., self-day, self-month, stranger), self-now was char-
acterized by a higher drift rate (v). This supports the
contention that self-relevance enhances information up-
take during perceptual matching (Humphreys & Sui,
2015; Sui & Humphreys, 2015). In addition, a bias in
decisional processes relating to the position of the
starting point (z) was also observed, indicating that par-
ticipants favored matching over non-matching responses.
Thus, replicating Experiments 1 and 2, the self-
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prioritization effect during perceptual matching was
underpinned by a bias in stimulus processing.

General discussion

A rapidly emerging literature has revealed a pervasive self-
related bias in perceptual matching (Humphreys & Sui, 2015;
Sui et al., 2012; Sui & Humphreys, 2015; Sui, Liu, et al.,
2013; Sui et al., 2014). Specifically, association with the self
(vs. friend and stranger) facilitates the processing of otherwise
meaningless geometric shapes. Developing this line of inqui-
ry, here we considered the extent and basis of this self-
prioritization effect. Across three experiments, a consistent
pattern of results was observed.” First, prioritized processing
was sensitive to temporal influences on self-construal (Pronin
et al., 2008; Pronin & Ross, 2006; Trope & Liberman, 2003,
2010), such that self-prioritization only emerged when stimuli
were associated with the current self (i.e., self-now prioritiza-
tion effect). This effect, moreover, was insensitive to the

3 It has been suggested that females report more vivid imaginary experiences
than males (Richardson, 1991). As participants in the current research used
imagery to associate shapes with the self at different points in time, it is
possible that the effects observed were amplified by the preponderance of
females in each experiment. Future research should consider this possibility.

@ Springer

direction of temporal construal. A prioritization effect was
observed when current self was compared to representations
of the self in both the future (i.e., Expts. 1 & 2) and past (i.e.,
Expt. 3). Second, a HDDM analysis revealed that task perfor-
mance was underpinned by both stimulus and response biases.
While participants favored matching over nonmatching re-
sponses in all three experiments—more critically, self-
prioritization was underpinned by differences in the rate of
information uptake (v). Specifically, self-now was character-
ized by a higher drift rate than all other shape-category
pairings. These findings are noteworthy in the current aca-
demic climate as they demonstrate the replicability of the
self-prioritization effect during perceptual matching across
different temporal directions and timescales.

In showing that temporal influences on self-construal mod-
erate the emergence of the self-prioritization effect
(Humphreys & Sui, 2015; Sui & Humphreys 2015), the cur-
rent work resonates closely with almost 2 decades of research
exploring the effects of psychological construal on social-
cognitive functioning (Trope & Liberman, 2003, 2010). The
gist of construal-level theory is quite straightforward. Scaled
egocentrically, psychological distance is anchored in one’s
experience of the self in the here and now. What this means
is that as objects and events—including the self—increase in
distance (temporal & spatial) from this reference point,



Mem Cogn (2017) 45:1223-1239

1235

representations decrease in perceptual detail, specificity, and
self-relevance. Indeed, on occasion, future selves are charac-
terized and treated like other people (Hershfield, 2011;
Mitchell et al., 2011; Parfit, 1971, 1987; Pronin et al., 2008;
Pronin & Ross, 2006; Wakslak et al., 2008). At least in the
context of perceptual matching, this self-becomes-other effect
was observed only a single day into the future (and past),
thereby revealing the primacy of the current self during sen-
sorimotor processing (Conway, 2005).

That the self-prioritization effect was restricted to geomet-
rical shapes associated with the current self underscores the
nuanced character of self-referential processing (McConnell,
2011). A basic function of the self is to guide people’s inter-
actions with the world (Higgins, 1996). This can best be
achieved not through the deployment of a rigid, unitary entity
(Humphreys & Sui, 2015; Sui & Humphreys, 2015), but rath-
er through the application of context-dependent representa-
tions (i.e., multiple selves) that are sensitive to the demands
of the immediate situation (Ainslie, 1992; Kurzban & Aktipis,
2007; H. R. Markus & Nurius, 1986; McConnell, 2011; Parfit,
1971; Schelling, 1984; Thaler & Shefrin, 1981). From this
perspective, it is unsurprising that temporal factors influence
stimulus prioritization. By necessity, the version of the self
that is called upon in immediate task contexts serves a quite
distinct function to the one that simulates future events and
experiences (Gilbert & Wilson, 2007, 2009; Smallwood &
Schooler, 2006). In particular, in the here and now, greater
emphasis is placed on the construction of perceptually rich
event (and self) representations (Trope & Liberman, 2003,
2010). Echoing this viewpoint, Conway and Pleydell-Pearce
(2000) characterize the current self as a complex set of active
goals and associated self-constructs in working memory that
guide cognition flexibility and adaptively from one moment to
the next (see also Conway, 2005). As demonstrated herein, the
outputs of the current self also extend to perceptual process-
ing. Consistent with the tenets of construal-level theory (Trope
& Liberman, 2003, 2010), the self-prioritization effect in per-
ceptual matching was confined to stimuli associated with the
current self.

In the available research to date, the self-prioritization ef-
fect is considered to be a perceptual phenomenon. Noting how
perception can seemingly be modified by characteristics of the
observer—including desires, values, and expectancies (e.g.,
Collins & Olson, 2014; Dunning & Balcetis, 2013; Lupyan,
2015; Vetter & Newen, 2014)—self-relevance is believed to
exert a comparable influence on stimulus processing
(Humphreys & Sui, 2015; Sui et al., 2012; Sui &
Humphreys, 2015). A primary purpose of the current investi-
gation was therefore to explore the processes underpinning
task performance during perceptual matching using a
HDDM approach (Wiecki et al., 2013). This confirmed that
decisional evidence was accumulated most rapidly when geo-
metric shapes were associated with self-now than all other

shape-label pairings. What this reveals is that, at least in the
context of perceptual matching, self-relevance influences
stimulus processing (i.e., the rate of information uptake) dur-
ing decision making (Humphreys & Sui, 2015; Sui &
Humphreys, 2015). What remains to be seen, however, is
whether self-relevance operates in a comparable way in other
judgmental settings (e.g., Macrae, Visokomogilski,
Golubickis, Cunningham, & Sahraie, 2017). Future research
should explore this issue.

Here, we have shown when and how temporal influences
on self-construal moderate the emergence of the self-
prioritization effect during a shape-label matching task (Sui
et al., 2012). Of course, the effects of self-relevance likely
extend well beyond such a laboratory-based activity. Take,
for example, object classification. Continual interaction with
a complex and demanding environment necessitate that a fun-
damental function of the self is to classify objects based on
their personal significance and meaning (e.g., mine vs. not
mine, goal-relevant vs. goal-irrelevant; Berlad & Pratt, 1995;
Constable, Kritilos, & Bayliss, 2011; Constable, Kritikos,
Lipp, & Bayliss, 2014; Fischler, Jin, Boaz, Perry, &
Childers, 1987; Folmer & Yingling, 1997; Gray, Ambady,
Lowenthal, & Deldin, 2004; Miyakoshi, Nomura, & Ohira,
2007; Miiller & Kutas, 1996). One’s possessions are an obvi-
ous case in point, as evidenced by the fact that even young
children understand the concept of ownership and afford it
social significance (Fasig, 2000; Furby, 1980; Hay, 2000).
When the perils of misappropriating other people’s effects
(e.g., pint of beer) can be substantial (e.g., an indecorous al-
tercation in the pub), the ability to discriminate items that one
owns from items that one does not is an invaluable skill
(Constable et al., 2011; Constable et al., 2014). As such, one
might expect ownership to enhance object classification.

In considering the wider implications of the current
findings, other core facets of self-construal likely play a
prominent role in determining the products of self-
referential processing. As noted, each person’s self com-
prises a collection of multiple, context-dependent iden-
tities (e.g., humanitarian, golfer, curry lover) that vary
in both centrality and significance (Higgins, 1987; H. R.
Markus & Nurius, 1986; McConnell, 2011; Roberts &
Donahue, 1994). Acknowledging this representational
complexity, theories of identity-based motivation con-
tend that when a specific component of the self is acti-
vated (i.e., a person’s working self), processing re-
sources are preferentially allocated to stimuli that bolster
and enhance that identity if it is important to the indi-
vidual (Oyserman, 2007, 2009). Thus, attention is di-
rected toward identity-consistent stimuli, while inconsis-
tent information is neglected or downplayed (Berger &
Heath, 2007; Coleman & Williams, 2015). The utility of
this account lies in the flexibility it affords perceptual
processing in complex settings. If stimulus relevance is
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identity-dependent, then a specific object (e.g., cheese-
cake) has the potential to modulate perceptual process-
ing depending on which of an individual’s multiple
identities has been activated (e.g., dieter vs. dessert lov-
er). A useful task for future research will therefore be to
investigate the effects of identity activation and identity
strength on the associations forged between the self and
meaningful objects (cf. geometric shapes) in consequen-
tial task contexts. In addition, extending the age range
of participants to include older adults may be revealing,
especially for retrospective representations of the self
that may be shaped by identity-relevant knowledge.

Beyond shape-label associations, recent work has demon-
strated that the self-prioritization effect in perceptual matching
extends to action planning. Modifying Sui et al.’s (2012) par-
adigm, Frings and Wentura (2014) initially required partici-
pants to associate labels (i.e., self, mother, stranger, no label)
with arbitrarily assigned movements (i.e., up, down, left,
right). During the subsequent testing phase, following execu-
tion of a cued movement, one of the four labels appeared and
participants had to indicate whether the action and label
matched their earlier learning experience. Extending Sui
et al. (2012), a self-prioritization effect emerged such that
performance was better for self-relevant actions than all other
label-action pairings. As in the current investigation, it is pos-
sible that temporal influences on event construal may moder-
ate the elicitation of this self-action prioritization effect (Frings
& Wentura, 2014). Supported by an extensive literature, ac-
tion planning is shaped by the timing of an event (Fujita,
Henderson, Eng, Trope, & Liberman, 2006; Liberman &
Trope, 1998; Liviatan, Trope, & Liberman, 2008; Trope &
Liberman, 2003, 2010; Vallacher & Wegner, 1989; Wakslak,
Trope, Liberman, & Alony, 2006). Consider, for example, the
act of traveling into town to purchase an expensive single malt
whisky. If the event is about to happen in the here and now,
low-level construal will generate details of how one’s objec-
tive can best be accomplished (e.g., getting into the car,
parking at the liquor store, locating malts from Speyside). In
contrast, the same activity in the future will tend to be charac-
terized in a decontextualized way (i.e., high-level construal)
that emphasizes only the overall meaning of the episode (e.g.,
purchasing a birthday gift). By implication, one might expect
these temporal differences in the specificity of action planning
to influence the emergence of self-prioritization effects (Frings
& Wentura, 2014)

Conclusion
In sum, here we demonstrated a critical determinant of the
self-prioritization effect during perceptual matching (Sui

et al., 2012) and identified the cognitive process through
which this phenomenon arises. Specifically, stimulus

@ Springer

prioritization was sensitive to temporal influences in self-
construal (Trope & Liberman, 2003, 2010), such that only
the association of geometric shapes with one’s current (vs.
future/past) self facilitated task performance. In addition, drift
diffusion modeling revealed that self-prioritization was
underpinned by a stimulus bias (White & Poldrack, 2014).
What has yet to be established, however, is whether compa-
rable effects emerge in other task contexts in which stimuli
vary in self-relevance.
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