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Biological networks are often inferred through Gaussian graphical models (GGMs) using
gene or protein expression data only. GGMs identify conditional dependence by estimating
a precision matrix between genes or proteins. However, conventional GGM approaches
often ignore prior knowledge about protein-protein interactions (PPI). Recently, several
groups have extended GGM to weighted graphical Lasso (wGlasso) and network-based
gene set analysis (Netgsa) and have demonstrated the advantages of incorporating PPI
information. However, these methods are either computationally intractable for large-scale
data, or disregard weights in the PPI networks. To address these shortcomings, we
extended the Netgsa approach and developed an augmented high-dimensional graphical
Lasso (AhGlasso) method to incorporate edge weights in known PPI with omics data for
global network learning. This new method outperforms weighted graphical Lasso-based
algorithms with respect to computational time in simulated large-scale data settings while
achieving better or comparable prediction accuracy of node connections. The total runtime
of AhGlasso is approximately five times faster than weighted Glasso methods when the
graph size ranges from 1,000 to 3,000 with a fixed sample size (n � 300). The runtime
difference between AhGlasso and weighted Glasso increases when the graph size
increases. Using proteomic data from a study on chronic obstructive pulmonary
disease, we demonstrate that AhGlasso improves protein network inference compared
to the Netgsa approach by incorporating PPI information.
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1 INTRODUCTION

Networks are a useful framework for representing relationships in biological and disease pathways
(Zhang et al., 2014). Understanding complex biological networks including protein-protein
interaction (PPI) networks is a fundamental and challenging issue in computational and systems
biology (Kuchaiev et al., 2009). Known protein-protein interactions have been collected from
numerous sources, including experimental data, computational prediction methods, and public text
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collections to form a global network. STRING (Search Tool for
the Retrieval of Interacting Genes/Proteins) is one of the most
comprehensive protein association databases and it includes
direct (physical) and indirect (functional) associations
(Szklarczyk et al., 2016). Although STRING is continually
being updated, the protein-protein interactions are still not
complete and accurate due to potential errors and missing
information in current high-throughput assays (Huttlin et al.,
2017). In addition, protein interactions and pathways associated
with specific diseases in STRINGmay be limited. To build a more
complete and specific protein-protein interaction network related
to diseases of interest, we need to reconstruct networks based on
study-specific co-expression data, in addition to prior knowledge
of protein-protein interactions.

Gene networks are commonly inferred using co-expression
data (Saelens et al., 2018). One popular expression-based network
reconstruction method is weighted gene co-expression network
analysis (WGCNA) (Langfelder and Horvath, 2008). It was
originally designed for microarray expression measurements.
More recently, it has been extended for sequencing expression
data, as well as other data, such as proteomic and metabolomic
(DiLeo et al., 2011; Shirasaki et al., 2012; Zhang et al., 2013;
Langfelder et al., 2016). While WGCNA has gained popularity, it
was originally designed for a single data type but more recently
has been extended for integrating multiple data types (Mamdani
et al., 2015), by first constructing relevant homogeneous networks
in parallel and then combining the separate networks. However, it
is not clear how to best combine networks based on different data
types and how to incorporate known pathways or protein/genetic
interaction information.

Another popular expression-based network reconstruction
approach is modeling gene interactions using a Gaussian
graphical model (GGM) (Dobra et al., 2004). Under the
assumption of multivariate normality of gene expression
data, the GGM uses the inverse of the gene covariance
matrix as a measure for gene associations. For many genes,
the associations are usually very sparse. One popular method
to estimate a sparse network is the graphical Lasso algorithm
(Mamdani et al., 2015). Similar to WGCNA, GGMs are widely
used in biological applications for network graph construction
but often ignore the known protein/genetic interaction.
Recently, this approach was extended to incorporate
partially known information with a weighted graphical
Lasso (Li and Jackson, 2015; Zuo et al., 2017). It has been
demonstrated that weighted Glasso significantly improved the
prediction accuracy of protein-protein interactions. However,
the graphical Lasso can be computationally expensive for a
large-scale feature space and therefore limited for global
network learning using high-dimensional omics data
(Fattahi and Sojoudi, 2019).

In addition to the weighted graphical Lasso, Jing Ma et al.
developed a network-based gene set analysis (Netgsa) approach
for network-based enrichment analysis by incorporating prior
pathway information (Ma et al., 2016). The Netgsa approach
combines the neighborhood selection technique (Meinshausen
and Buhlmann, 2006) with constrained maximum likelihood
estimation using the graphical Lasso algorithm (Friedman et al.,

2008). It exploits the fact that the estimated neighbors of each
node using neighborhood selection coincide with the nonzero
entries of the inverse covariance matrix, resulting in high
accuracy and fast computation. The Netgsa method was
designed to take prior binary node interaction information
in one or a few pathways and estimate the edge strengths
based on the current data. However, the Netgsa approach
does not account for edge weights (e.g., interaction
strengths) of known but incomplete protein-protein
interactions. In addition, whether the hybrid approach of
combining neighborhood selection and maximum likelihood
estimation outperforms conventional weighted Glasso has not
been well studied.

Besides GGM-based network analysis, there are some recent
advances for incorporating prior knowledge in protein or gene
network reconstruction. These newly developed methods
include Multi-Level PPINs reconstruction (MLPR) (Xu et al.,
2018), Diffuse2Direct approach to orient a network (Silverbush
and Sharan, 2019), Ensemble Deep Neural Networks with
Attention Mechanism (EnAmDNN) (Li et al., 2020), and
prior network-dependent gene network inference (pGNI)
(Wang et al., 2021). The MLPR method was designed for
protein complexes detection through a random walk on the
fingerprint similarity networks (Xu et al., 2018). Diffuse2Direct
is a diffusion-based method to incorporate prior knowledge and
orient an undirected or a partially directed network (Silverbush
and Sharan, 2019). The EnAmDNN approach is a deep
ensemble learning method to combine multiple models for
network construction (Li et al., 2020). The pGNI method
was designed to incorporate the modular structures for
protein-protein network reconstruction (Xu et al., 2018).
However, these newly developed methods are not based on
conditional correlation and precision matrix for graph
construction. As standard correlation networks, these
methods do not take into account the conditional
dependencies of proteins, which could lead to potential bias.

In our proposed method, Augmented High-Dimensional
Graphical Lasso model (AhGlasso), we first extend the Netgsa
hybrid approach to incorporate the edge weights of prior known
protein-protein relationships and omics data for global network
learning. Then, we implement a screening based on the standard
Pearson correlation to further speed up computation. We compare
our proposed method with Netgsa and weighted Glasso-based
methods in terms of computation time and accuracy with
simulated data. Of note, we do not compare AhGlasso with
MLPR, Diffuse2Direct, EnAmDNN and pGNIC since these four
methods do not provide conditional correlation outputs. Finally, we
illustrate an application of AhGlasso on protein expression data
from the COPDGene study.

2 MATERIALS AND METHODS

2.1 Graph Structure Learning With
Augmented Graphical Lasso
There are several methods for network structure learning
including correlation networks and Gaussian graphical models
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(GGM). The correlation network method is based on the
covariance matrix Σ. Σi,j � 0 means that Xi and Xj are
marginally independent without observing other
variables. However, this kind of independence is hard to
find in real-world problems. Instead, GGM is more
appropriate since it is based on conditional correlations
and the precision matrix. Compared with the more
standard correlation network, the conditional
independence correlation coefficient is a more
sophisticated dependence measure and may be more
suitable for modeling real-world biological networks.

To obtain the precision matrix, a common assumption is
that the precision matrix Q is sparse. For example, genes are
only assumed to interact with a small subset of other genes.
Based on the above assumption, we could apply a neighbor
selection approach developed by Meinshausen and
Bühlmann to learn the relationship between two nodes
with Lasso regression, which allows zero parameters
through a penalty (Meinshausen and Buhlmann, 2006).
Here we take node i as an example to illustrate how to
identify one node’s neighbors.

β̂nodei � argmin
βnodei

‖Y − Xβnodei‖22 + λ‖βnodei‖1, (1)

where Y is the expression value of nodei, X denotes the
expression values of all the other nodes, β̂nodei is a vector of
estimated coefficients from the Lasso regression, and λ is the
sparsity parameter for the Lasso regression. The Lasso
regression is repeated for each node and determines whether
pairwise nodes are conditionally independent or not
(Meinshausen and Buhlmann, 2006). Although the
neighborhood selection method is remarkably fast, it is an
approximation method for estimating sparse networks.
Friedman et al., developed the Graphical Lasso to address
sparse inverse covariance estimation with constrained
maximum likelihood estimation (Friedman et al., 2008).

GGMs including neighborhood-selection algorithm and
Graphical Lasso are widely used in biological applications
for network graph construction but ignores known protein/
genetic interactions. This approach was recently extended to
incorporate partially known information with a weighted
graphical Lasso (Li and Jackson, 2015; Zuo et al., 2017).
However, it has been known that the Graphical Lasso can be
computationally intractable for high-dimensional
omics data (Zhang et al., 2018; Fattahi and Sojoudi, 2019).
In addition, a Network-Based Gene Set analysis (Netgsa)
approach was developed to incorporate prior
pathway information (Ma et al., 2016). The Netgsa
approach combines the neighborhood selection
technique (Meinshausen and Buhlmann, 2006) with
constrained maximum likelihood estimation (Friedman
et al., 2008). The Netgsa approach was designed to
incorporate known binary interaction information in one
or a few pathways and estimate the edge strengths. However,
it does not take edge weights (e.g., interaction strength) into
account.

In our proposed method, AhGlasso, we first extend the Netgsa
approach and incorporate the edge weights of prior known but
incomplete protein-protein relationships from STRING as shown in
Algorithm 1 to reconstruct the global network. The method
combines the neighborhood selection strategy with constrained
maximum likelihood estimation using Graphical Lasso algorithm
to efficiently reconstruct the global network. We also apply
Ψ-screening as discussed below to speed up computation. The
input for AhGlasso is expression data Dn×p, where n denotes the
number of samples and p denotes the number of nodes (genes or
proteins). In addition, the input is a prior known PPI matrixWp×p �
[wij], where i, j � 1, 2, . . . , p andwij denotes the edge weights, and for
diagonal entrieswii � 0. P is the set of all nodes in the network graph.
J denotes the set of nodes which have at least one connection with
other nodes in the prior known PPI matrix and JR denotes the set of
isolated nodes (JR � P ∖ J). For node i in J, Ji indicates other nodes
which have prior known connections with node i, while JRi denotes
other nodes that are not connected with node i. Of note, both Ji and
JRi do not include the ith node. In the expression data (Dmatrix), Yi

is a column vector (n × 1) of expression data for node i (i.e.,D.,i) and
XJi denotes the expression data for the nodes in Ji, which are
connected to node i. The output of the algorithm is the
conditional correlation matrix between nodes, Êp×p.

2.2 Network Structure Learning With
Ψ-screening and Ψ Partial Correlation
Coefficient
Liang et al. proposed an equivalent measure of partial correlation
coefficients for GGM under the assumption of the Markov
property and adjacency faithfulness (Liang et al., 2015). They
defined the set of nodes v where the edge weight to node i is
greater than c as Êi(c) � {v: |êiv|> c}, where ê is the pair partial
correlation of nodes i and v, and c denotes a threshold value.
Additional sets are defined as Êi,−k(c) � {v: |êiv|> c}\{k}, and
Êk,−i(c) � {v: |êkv|> c}\{i}, where k denotes a node in network
graph not equal to i. The partial correlation coefficient Ψik was
defined by Ψik � [ψik], where ψik � Êi,−k if |Êi,−k|< |Êk,−i| and
ψik � Êk,−i otherwise. With the partial correlation coefficients, the
network structure could be learned with the Ψ algorithm
(Supplement) including correlation screening (Liang et al.,
2015). For correlation screening, we could reduce the size of
the neighborhood by removing the nodes having a lower
correlation (in absolute value). Similar to the huge R library
(Zhao et al., 2012), we adapted the correlation screening step in
the Ψ-algorithm to AhGlasso to reduce the size of potential
neighborhood in Algorithm 1 and speed up the network
estimation. For example, for i ∈ JR, we find

β̂
i � arg min

β∈Ri

1
m‖Yi − Xiβi‖22 + λ‖βi‖. Instead of computing all

potential neighbor nodes β̂
i
with Lasso, we could reduce the

size of the i neighborhood by removing the nodes having a low
Pearson correlation (in absolute value). In other words, we only
need to find the potential neighbor nodes with high Pearson
correlation (absolute value > λ) with node i.
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2.3 Hyper-Parameter Tuning and Model
Selection
Like other Lasso-based optimization procedures, the sparsity
parameter λ is crucial for AhGlasso because it controls the
sparsity of network prediction. If the lambda value is greater than
the optimum, we could get an over-sparse network estimation. If the
lambda value is smaller than the optimum, we could get over-dense
network estimation. There is no consensus on how to select the λ
hyper-parameter, which is an active research area. The λ parameter
could be tuned by log-likelihood, Akaike Information Criteria (AIC),
Bayesian Information Criteria (BIC), or the Extended Bayesian
Information Criteria (EBIC), and with or without cross-validation.
AIC and EBIC often lead to an over-sparse network, while the log-
likelihood may result in a too dense network since there is no penalty
for the number of edges. Although BIC works well in general low-

dimensional scale-free networks, it could lead to under-fitting and
an over-sparse network, especially when the network graph is
large or does not have the scale-free property. Although real-
world networks are often claimed to be scale-free, strongly scale-
free structure is rare even in biological domains (Broido and
Clauset, 2019). Selecting the criteria for model selection is
difficult and depends heavily on uncheckable or difficult-to-
check assumptions on the data generating process. K fold cross-
validation (CV) provides a potential tool to solve this challenge.
In this study, we evaluated different cross-validation options
(AIC, BIC, EBIC) and the standard BIC for parameter
optimization in a scale-free and non-scale-free network. The
model fitting error is AIC, BIC or EBIC for the λ parameter
selection. The one standard error rule was also adapted to
compare models with different numbers of parameters to

Algorithm 1 | Graph structure learning with augmented high-dimensional graphical Lasso.
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select the most parsimonious model with low error (Hastie et al.,
2019). Specifically, the simplest model whose mean error falls
within one standard deviation from the smallest average (e.g.,
minimal mean of BIC in CV) achieved for the respective metric
(e.g., BIC) was chosen (Algorithm 2). Of note, the AIC, BIC, and
EBIC are maximum likelihood estimate driven and penalize free
parameters in an effort to combat overfitting. In Graphical Lasso
model selection, AIC, BIC, and EBIC are often calculated based on
the log Likelihood but with different penalization strategies for the
number of parameters (Li and Jackson, 2015; Ma et al., 2016; Zuo
et al., 2017). Since the Glasso estimates the inverse matrix based on
penalized log Likelihood, we calculate AIC, BIC, and EBIC based
on the penalized log Likelihood instead.

In order to find the optimal regularization parameter, λ,
networks were estimated under a sequence of λ values. The
upper bound (λmax, representing maximum value of λ) of the
regularization parameter whichmakes all estimates equal to 0 was
calculated with the huge package (Zhao et al., 2012). With
predefined λ minimal ratio (such as 0.01), we can calculate
λmin (representing minimal value of λ), which is equal to the λ
minimal ratio × λmax. A sequence of λ candidates with a
predefined number (such as 40) were generated starting from
λmin to λmax in a log scale for a grid search.

2.4 Data Simulation
Scale-free biological networks often have two properties: 1) the
node degree follows a power-law distribution and 2) the
interactions of proteins/genes are sparse. Therefore, we
simulated sparse networks with the scale-free property using
the R packages huge (Zhao et al., 2012) and fastnet (Dong
et al., 2016) to mimic biological networks (Figure 1). The
simulation procedures are detailed in the Figure 1 legend. The
density of the simulated networks ranged from 2 to 4%, which
was similar to observed densities of protein-protein interactions
in the STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) database for many organisms (Szklarczyk et al.,
2016; Ashtiani et al., 2018). For example, when the node number
is 1,000, the number of connected edges in 2% density of the
simulated network � 1000×(1000−1)

2 × 0.02 of connections exist. Of
note, the simulated scale-free graph with huge R package tends to
be very sparse (less than 0.005) when the graph size is larger than
500. We simulated the scale-free graph structure with the
modified “net.barabasi.albert” function in fastnet R package
(Dong et al., 2016). Once the scale-free network is built, huge
creates the true precision matrixΩ and the partial correlation can
be calculated based on the precision matrix. The absolute value of
the partial correlation serves as the prior knowledge (prior PPI)
for upcoming simulations. We use the absolute value since the

Algorithm 2 | λ optimization in augmented high-dimensional graphical Lasso.
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direction of many protein-protein interactions in STRING is not
specified.

We altered network connections by adding random changes
on the precision matrix but keeping the sparsity at a similar
level because the biological network is dynamic. For simplicity,
we assume the total number of newly appearing interactions is
close to the total number of existing interactions that get lost.
The precision matrix controls the magnitude of partial
correlations. The original off-diagonal elements of the
precision matrix range from 0.2 to 1. The symmetric
uniform distributed random values range from −0.5 to 0.5.
Strong node connections were likely kept due to their higher
values in the precision matrix. If the absolute values of altered
elements in the precision matrix were less than 0.2, we reset
them to 0. The altered precision matrix and its corresponding
covariance matrix served as the target network we would infer
and compare to evaluate method performances. We defined
them as “true” precision matrix and covariance matrix for
simplicity. With the altered precision matrix (Ωtrue) and its
corresponding covariance matrix (Σtrue), we could simulate
expression data Xn×p ∼ N (0, Σtrue). Of note, we obtain a
positive definite precision matrix with the Frobenius norm
through the huge R package (Zhao et al., 2012). Specifically, the
smallest eigenvalue of the precision matrixΩtrue, denoted by λ1
is computed. Then we set the precision matrix equal to Ω +
(|λ1| + 0.1)I. The covariance matrix is then computed to
generate multivariate normal data.

We created simulation datasets with various p (graph size)
and n (sample size) as well as different overlapping degree
between the prior known network and the target true network.

The overlapping degree between the prior known network and
the target true network was defined as ρ. The ρ was calculated by
comparing the prior known precision matrix and target
precision matrix in binary format (i.e., non-zero weights
were converted to one for simplified calculation). The range
of ρ between 0 and 100 was explored. Specially, adding random
changes on the precision matrix above leads to a certain degree
of ρ change. To allow for a variety of overlapping percentages,
we randomly replaced some non-zero edges in precision matrix
to become 0 with predefined mutation percentages while the
same number of randomly selected zero edges were replaced to
be non-zero. In other words, a similar sparsity level of the
network was kept. The ρ degree was determined with the altered
network and the prior network at the end. Using the prior PPI
and simulated dataset, we estimated the target network with our
proposed new method. We also estimated the network without
prior PPI information as the baseline control. We implemented
two published weighted graphical Lasso approaches and the
Netgsa method for comparison (Li and Jackson, 2015; Ma et al.,
2016; Zuo et al., 2017). In the Netgsa implementation, non-zero
weights in prior PPI were converted to 1.

We created simulation datasets with various p (graph size,
from 400 to 3000) and n (sample size, from 100 to 1000) for
evaluating different λ tuning criteria and comparing different
methods. In order to systematically evaluate AhGlasso with prior
knowledge, simulations were performed with a variety of
overlapping percentages between prior knowledge and target
true network (ranging from 0 to 100%).

In reality, the prior PPI is often partially-known but not totally
noisy. We also investigated the method performance when the

FIGURE 1 | Flowchart of data simulation andmethod evaluation. Step (A): a scale-free prior network was built by inputting the node number p (graph size). With the
prior scale-free network and its precision matrixΩ, the partial correlation can be calculated. The absolute value of partial correlation serves as prior knowledge (prior PPI)
for upcoming simulations. Step (B): we altered network connections by adding random changes but the sparsity was kept at a similar level unless otherwise specified.
Strong node connections were likely kept due to their higher absolute value in the precision matrix and were less likely to become 0. Step (C): with altered precision
matrix (Ωtrue) and its corresponding covariance matrix (Σtrue), we simulated expression data Xn×p ∼ N (0, Σtrue). Of note, we ensured the covariance matrix to be positive
definite based on the Frobenius norm. Step (D): incorporating prior PPI and simulated dataset, we estimated the target network (i.e., adjacencymatrix) with our proposed
method. Step (E): the prediction performance was evaluated with sensitivity, F1 score, and MCC.
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prior network is a subset of the true network. We randomly
removed the connected edges in the prior network under the
predefined subset percentage (ranging from 10 to 100%) of the
target network. If the subset percentage for the prior network is
100%, the prior network is the same as the target network. If the
subset percentage for prior network is 50%, the density of the
prior network is 50% of the density of the target network.

2.5 Model Evaluation
To measure the accuracy of the estimation and compare the
method performances, we focused on the accuracy of whether an
edge existed in the true graph and was also estimated to be non-
zero. That is, we converted non-zero estimated edges to one in the
edge matrix and counted whether in the true graph this edge
existed (and vice versa) to define negative or positive prediction.
We use several metrics including sensitivity, specificity, F1 score,
and Matthews correlation coefficient (MCC). The F1 score can be
interpreted as a weighted average of the precision and recall and is
a suitable measure for imbalanced datasets like sparse networks.
The sparse network is one of extremely imbalanced datasets since
only a small percent of edges between proteins exist while the
majority of elements in the adjacency matrix are 0. F1 score is
computed as

F1 � 2 p PrecisionpRecall

Precision + Recall
� 2 p TP

2 p TP + FP + FN
, (2)

where Precision � TP
TP+FP, and Recall � TP

TP+FN. TP, TN, FP, and FN
are the number of true positives, true negatives, false positives,
and false negatives, respectively.

MCC is another metric for measuring classification
performance and is widely used in network prediction.
MCC takes into account all four values in the confusion
matrix, and a high value (close to 1) means that both

classes are predicted well. MCC was calculated as follows
based on 2 × 2 contingency table,

MCC � TP × TN − FP × FN
�������������������������������������
TP + FP( ) FP + FN( ) TN + FP( ) TN + FN( )√ , (3)

where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively.

2.6 STRING PPI Database
STRING (http://www.STRING-db.org) is a database of known
and predicted protein-protein interactions. It currently covers
5,214,234 proteins from 1133 organisms (Szklarczyk et al., 2016).
In STRING, protein-protein pair associations (i.e., the “edge
weights” in each network) are represented by confidence
scores. The scores indicate the estimated probability that a
given interaction is biologically meaningful, specific, and
reproducible, given the supporting evidence. There are seven
evidence channels in STRING: 1) experiments; 2) database; 3)
text-mining; 4) coexpression; 5) neighborhood; 6) fusion; and 7)
co-occurrence. The edge scores (weights) between proteins in the
STRING PPI database range from 0 to 1, with 1 being the highest
possible confidence of interaction. In the COPD study, we
retrieved human PPI data from STRING and filtered out the
prior interactions with scores less than 0.2.

2.7 Proteomics Data in COPDGene Study
As an application of the methodology to real data, we used the
proteomics data generated in the COPDGene Study. COPDGene is a
multicenter genetic epidemiology study that enrolled 10,198
participants with and without the chronic obstructive pulmonary
disease (COPD) between 2007 and 2011 (Phase I study) to identify
genetic factors associated with COPD (Ragland et al., 2019). COPD
is a disease characterized by reduced lung function and symptoms

FIGURE 2 | Comparison of Model Selection Criteria. The simulated protein network included 500 (p) nodes. The overlapping between prior information and
target true network is 50%. With the same true network and its corresponding covariance matrix (Σtrue), we created various sizes (n) of multiple normal expression
data for testing. The λwas optimized with regular BIC, cross-validation-based BIC (CV_BIC), cross-validation-based AIC (CV_AIC) and cross-validation-based EBIC
(CV_EBIC). The AhGlasso algorithm with the optimal λs derived from different criteria outputs the predicted network. The F1 score and MCC were calculated
based on the estimated network and true network. For each simulation setting, the simulations were repeated 5 times. The lines represent the mean scores for the
simulated sample size and the error bars represent the standard error of the mean. Of note, similar results were achieved in various p and n simulations (data not
shown).
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such as shortness of breath. Five-year follow-up visits took place
from 2013 to 2017 (Phase II study). Proteomic profiles were
constructed on participants who agreed to participate in the
ancillary study of Phase II COPDGene study. All analyses were
performed on frozen plasma from p100 tubes. After removing
observations that did not pass QC or have no phenotype data,
were duplicates, whose primary pulmonary diagnosis was not
COPD, were a never smoker, and at Phase 2 reported having a
lung transplant or lung volume reduction before Phase 2, there was
1206 subject in Phase 1 and 1010 in Phase 2. The Global Obstructive
Lung Disease (GOLD) system was used to grade the severity of
airflow limitation: GOLD 0 (controls) and GOLD 1–4 (COPD
cases). Our study focuses on the 486 COPD cases (GOLD stage
>0) in the Phase 2 study since the inherent protein networks between
controls and COPD cases might be different (Mastej et al., 2020).

Proteomic profiling was performed using the SomaScan®
platform (Boulder, Colorado) (Candia et al., 2017). The
Human Plasma SomaScan® 1.3k kit (SL Part Number
900–00011) was used following the manufacturer’s

recommended protocol. Data from all samples passed quality-
control criteria and were fit for analysis. To map with the
STRING database, the proteomics expression data without
one-to-one mapping to gene symbols were removed. For
example, if two SomaScan® aptamers map to the same gene
symbol, these two aptamers’ corresponding expression data were
removed. In addition, some aptamers either detect the expression
level of a protein complex or detect the total expression level of
several proteins by targeting a shared subunit. These aptamers
were removed as well for simplicity. Expression data for 1212
proteins were retained for network construction.

2.8 Gene Ontology Enrichment Analysis on
Hub Proteins in COPD Associated Network
Using the prior PPI network retrieved from the STRING
database, we applied AhGlasso and Netgsa to construct
COPD-associated networks. In addition, we also constructed a
COPD-associated network without a prior PPI network for

FIGURE 3 | Prediction accuracy comparison with or without incorporating prior information. All results are based on p � 500 nodes and n � 200. The density of
simulated graph is around 2%. The λ was optimized with cross-validation-based BIC (CV_BIC). The AhGlasso algorithm with the optimal λs output the predicted
networks with or without incorporating prior knowledge. (A–C) The overlapping degree between prior information and the target true network is 80%. The sensitivity (A),
F1 score (B), and MCC (C) were calculated based on the estimated network and true network. For each simulation setting, the simulations were repeated 5 times.
The bars represent the means of corresponding statistics metrics. Pair student’s t-tests were performed to compare the corresponding metrics. All p values <0.0001.
(D), the overlapping degree between prior information and target true network is 50%. A variety of sample sizes of data was simulated as shown in X-axis. The simulation
was repeated 5 times for each simulation setting. Y-axis represents the difference of F1 score between the outputs with or without prior knowledge. The lines represent
the mean scores and the dots represent the results in each simulation. (E), a variety of overlapping degree between prior information and target true network was
simulated as shown in X-axis. Y-axis represents the difference of F1 score between the outputs with or without prior knowledge. The lines represent themean scores and
the dots represent the results in each simulation.
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comparison. Because there is a lack of ground truth to evaluate
the prediction accuracy, we performed Gene Ontology (GO)
enrichment analysis with Fisher’s exact test using the topGO R
package (Alexa and Rahnenführer, 2009) on hub proteins in the
COPD-associated networks. Specifically, we analyzed the top 40
hub proteins to identify significantly enriched molecular
functions in the updated COPD networks. The hub proteins
were defined based on the degree of nodes. Gene Ontology (GO)
is a well-known framework for supporting the computational
representation of biological systems (Ashburner et al., 2000). It
defines a set of concepts used to describe the functions of gene
products, and relationships between these concepts. It contains
three aspects that hold terms defining the basic concepts of
molecular function (MF), biological processes (BP), and
cellular components (CC), respectively. Specifically, a GO
annotation is an association between a specific gene product
and a GO concept. GO was well established and has often been
used to evaluate the quality of newly constructed or
reconstructed protein-protein interaction networks (Xu et al.,
2018; Seyyedsalehi et al., 2021). We focused on BP ontology
enrichment analysis since we are interested in what biological
processes are involved in COPD. The adjusted p values were
calculated with Benjamini-Hochberg Procedure for False
Positive Rate (FDR) correction. The significant level was set
to FDR <0.05.

2.9 Statistical Software
Unless otherwise specified, the data manipulation and data
analyses were performed using RStudio (version 1.2.5019)
(RStudio Team, 2019) and R (version 4.0.3) (R Core Team,
2020). The R packages ggplot2_1.8.6 (Wickham, 2009),
biomaRt_2.44.4 (Durinck et al., 2005), topGO_2.40.0 (Alexa and
Rahnenführer, 2009), plyr_1.8.6 (Wickham, 2011), Netgsa_3.1.0
(Ma et al., 2016), Glasso_1.11 (Friedman et al., 2008) and
huge_1.3.4.1 (Zhao et al., 2012) were used for data preparation
and gene network analysis from differential expression data.

3 RESULTS

3.1 Model Selection Criteria
Since λ controls the sparsity of the output network, selecting
the λ parameter is crucial for Lasso-based approaches like
AhGlasso. The λ parameter can be selected based on a variety
of criteria but there is no consensus on the best criteria. Cross-

validation provides a general tool to solve this kind of
challenge. For p � 500, we found that cross-validation with
BIC provides higher accuracy in terms of F1 score (Figure 2A)
and MCC (Figure 2B) than BIC without cross-validation when
the sample size is between 300 and 600. When the sample size
is larger, BIC with or without cross-validation is similar.
Cross-validation with BIC outperforms cross-validation with
AIC and EBIC. Finally, cross-validation with AIC and EBIC
results in an under-fitting model and over-sparse network,
leading to a lower F1 score and MCC. Therefore, we chose
cross-validation with BIC as model selection criteria to select
the λ parameter henceforth.

3.2 Incorporating Prior Knowledge
Significantly Improves Prediction Accuracy
In different simulation settings, we found that the predicted
networks based on a priori information had significantly
greater performance than estimations without a priori
information (Figure 3). For simulations with p � 500,
density � 2%, overlapping(ρ) � 80%, the mean of sensitivity,
F1 score and MCC in the estimated networks with prior
knowledge are 0.68, 0.81 and 0.82, respectively (Figures
3A–C). However, the corresponding mean of sensitivity, F1
score, and MCC without prior knowledge are only 0.07, 0.12,
and 0.25, respectively. The differences of corresponding
metrics are statistically significant (p < 0.0001, paired student’s
t-test). In addition, with fixed 50% overlapping, we found that the
F1 score difference decreases when the sample size gets larger
(Figure 3D). It is expected that when we have a larger sample size,
the advantages of incorporating prior information are diminished
compared to smaller sample sizes. The F1 score difference is also
sensitive to the amount of overlapping percentage between the
prior knowledge and target network (Figure 3E). When the
overlapping percentage is larger (i.e., the prior information is
more accurate), it provides more useful information for network
reconstruction. In addition, we also performed simulations with
p � 1000, density � 4%, overlapping(ρ) � 50% with similar results
(data not shown).

3.3 AhGlasso Outperforms Conventional
Methods
Recently, several groups have extended GGM to weighted
Graphical Lasso (wGlasso) and network-based gene set

TABLE 1 | Summary of network learning methods to incorporate prior knowledge.

Method Published year Abbreviation Algorithm Weight for
prior knowledge

Model selection Screening

Weighted Glasso (wGlasso) 2015 wGlasso_2015 Weighted Glasso Continuous BICa No
Weighted Glasso(wGlasso) 2017 wGlasso_2017 Weighted Glasso Continuous CV_log likelihood No
Netgsa 2017 Netgsa NB and Glasso Binary BICa No
AhGlasso — AhGlasso NB and Glasso Continuous CV_BICb Yes

Notes: BIC, bayesian information criterion; CV, cross-validation; NB, neighbor selection; AhGlasso, augmented high-dimensional Graphical Lasso;
a, based on log Likelihood;
b, based on penalized log Likelihood.
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FIGURE 4 |Method performance comparisons. The simulated protein network graph included 1000 (p) nodes. The density of the simulated graph is around 4%.
(A–B) The overlapping between prior information and target true network is 50%. A variety of sample sizes of data was simulated as shown in X-axis. With the same true
network and its corresponding covariance matrix (Σtrue), we created various sizes (n) of multiple normal expression data for testing. We estimated the true network
topology by using two weighted graphical Lasso (wGlasso_2015 and wGlasso_2017), Netgsa, and the proposed AhGlasso methods. The sensitivity (A) and F1
score (B) were calculated based on the estimated network and true network. (C–D) A variety of overlapping between prior information and target true network was
simulated as shown in X-axis. The sample size was fixed at n � 300. The sensitivity (C) and F1 score (D) were calculated based on the estimated network and true
network. (E–F) We investigated the effect of different graph sizes (p ranges from 400 to 3000) with a fixed sample size (n � 100) and the overlapping between prior
network and target network (50%). The sensitivity (E) and F1 score (F)were calculated as previously. For each simulation setting, the simulations were repeated 5 times.
The lines represent the mean scores for the simulated sample size and the error bars represent the standard error of the mean for each method.
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analysis (Netgsa) to incorporate prior biological information
(Table 1). These methods incorporate prior knowledge into
graphical model-building procedures as well as gene set
analysis. Recently, Yi et al. and Zuo et al. implemented
weighted Graphical Lasso (Glasso) algorithms to incorporate
prior known network information for network learning and

the key difference between the two methods is how to select
the λ parameter (Li and Jackson, 2015; Zuo et al., 2017). In Yi
et al.’s study, λ was optimized by the BIC criteria (wGlasso_2015)
while it was tuned with likelihood and cross-validation in Zuo et
al.’s research (wGlasso_2017). Besides weighted Graphical Lasso,
Ma et al. developed a Network-Based Gene Set analysis (Netgsa)

FIGURE 5 | Method performance comparisons with partially known prior information. The simulated protein network graph includes 1000 (p) nodes with fixed
sample size (n � 300). The density of the simulated graph is around 4%. The prior information is a subset of the target true network. A variety of subset percentages of the
prior network were simulated as shown in X-axis. We estimated the true network topology by using two weighted graphical Lasso (wGlasso_2015 and wGlasso_2017),
Netgsa, and the proposed AhGlasso methods. The F1 score (A) and MCC (B) were calculated based on the estimated network and true network. For each
simulation setting, the simulations were repeated 5 times. The lines represent the mean scores for the simulated sample size and the error bars represent the standard
error of the mean for each method.

FIGURE 6 | Method runtime comparisons. To compare the computational efficiency of the two weighted graphical Lasso (wGlasso_2015 and wGlasso_2017),
Netgsa, and the proposed AhGlasso method in the high-dimensional setting, we simulated datasets with a fixed sample size (n � 200) and 4% graph density, but various
graph size (p varies from 400 to 3000). We compared the total run time of parameter tuning (CV was removed if involved for fair comparisons) and the final model fitting
with the chosen parameter. The λminimal ratio was set to 0.01 and 40 λ candidates were searched. The simulation was repeated 5 times for each setting. The lines
represent the mean runtime for the simulated graph size and the error bars represent the standard error of the mean for each method.
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approach for network learning and gene-set enrichment analysis
by incorporating prior pathway information (Ma et al., 2016).
The Netgsa approach combines the neighborhood selection
technique (Meinshausen and Buhlmann, 2006) with
constrained maximum likelihood estimation.

We estimated the true network topology using AhGlasso
and the three alternative methods (wGlasso_2015,
wGlasso_2017, Netgsa). To make a fair comparison, we
tuned the regularization parameter in each method with
its designed optimization method. In this comparison
study, we mimicked the high-dimensional setting and
created simulation datasets with large p (1000) and
various sample sizes. We found that our proposed method
achieved higher sensitivity and F1 score than wGlasso_2015
when the sample size is small (Figure 4). They had similar
performances when the sample size is large. These two
methods achieved higher F1 scores and had an overall
higher accuracy than the other two methods. The F1 score
in the wGlasso_2017 method was consistently and extremely
low although it achieved very high sensitivity. The specificity
of wGlasso_2017 is very low (data not shown) since the
weighted Graphical Lasso in Zuo et al.’s study selects the
model based on the log-likelihood only but does not penalize
the number of edges, which leads to overfitting the model
(over-dense output network). Although the Netgsa approach
outperforms wGlasso_2017, its sensitivity and F1 scores are
still substantially lower than our proposed method and
wGlasso_2015. The MCC score patterns were similar to
the F1 scores pattern (data not shown). Of note, the
improvement of the proposed method decreases when
compared with wGlasso_2015 when the sample size
increases as shown in Figure 4B. However, it is not
uncommon to have a limited sample size in high-
throughput omics studies, especially in human studies
using tissue samples but not blood.

We next investigated the effect of overlapping percentages
between the prior network and target network with fixed graph
size (p � 1000) and sample size (n � 300). We found that
AhGlasso achieved higher sensitivity and F1 score than
wGlasso_2015 and the difference increases when the
overlapping percentage increases (Figures 4C,D). AhGlasso
and wGlasso_2015 achieved higher F1 scores and had an
overall higher accuracy than the other two methods.

In addition, we also investigated the effect of different graph
sizes (p ranges from 400 to 3000) with a fixed sample size (n �
100) and the overlapping between prior network and target
network (50%). We found that AhGlasso achieved higher
sensitivity and F1 score than wGlasso_2015 and the
differences increase when the graph size increases (Figures
4E,F). AhGlasso and wGlasso_2015 achieved higher F1 scores
and had an overall higher accuracy than the other two methods
(Figure 4F).

Since strong scale-free networks can be rare in biological
contexts, we also compared the method performance on a
simulated non-scale-free network. We first simulated a
random network with p � 500 and different sample sizes
ranging from 200 to 700. The overlapping percentage between

prior knowledge and target network was set at 88%. We found
that our proposed method has similar sensitivity scores to
wGlasso_2015 and wGlasso_2017 (Supplementary Figure
S1) and it outperforms the other three methods in terms of
F1 scores in our tests (Supplementary Figure S1). In addition,
we simulated with a fixed sample size (n � 300) but different
degrees of overlapping between prior knowledge and target
truth network. We also found that our proposed method
outperforms the other three methods in terms of F1 scores in
our tests (Supplementary Figure S2). Besides random
networks, we also simulated networks with hub or cluster
structures for comparison. We found that AhGlasso achieves
higher F1 scores than wGlasso_2015, wGlasso_2017, and Netgsa
in networks with both cluster network and hub network (data
not shown).

In the real world, the prior PPI is often incomplete rather than
purely noisy. We next investigated the method performance
when the prior is a subset of the true network (i.e., incomplete
prior information). We simulated datasets with a fixed sample
size (n � 300) and graph density (4%). We randomly removed the
connected edges in the prior network under the predefined subset
percentage of the target network (Figure 5). When the subset
percentage of the prior network increases, the F1 score increases
in all the tested methods. Under the same subset percentage, our
proposed AhGlasso method achieves a higher F1 score
(Figure 5A) and MCC (Figure 5B) than the other three
methods. The differences between AhGlasso and
wGlasso_2015 increase when the subset percentage increases
(Figure 5).

3.4 Comparison of Runtimes
To compare the runtimes of the tested methods, we simulated
datasets with a fixed sample size (n � 200) but various graph
sizes (p varies from 400 to 3000). We evaluated the
computation time based on an Intel(R) Xeon(R) Gold 6152
CPU @ 2.10 GHz CentOS Linux 7 (Core) operating system.
Since the regularization parameter tuning in each method is a
critical step, we compare the total run time of parameter
tuning (CV was removed if involved for fair comparisons)
and the final model fitting with the chosen parameter. The
simulation was repeated 5 times for each setting. With p �
1000, the total running time for AhGlasso, wGasso_2015,
wGlasso_2017, and Netgsa was 64 ± 6.64 min, 207.51 ±
36.70 min, 239.97 ± 44.28 min, and 64.34 ± 7.4 min,
respectively (Figure 6). The runtimes of AhGlasso and
Netgsa are comparable and they are around 4 times faster
than the two weighted Graphical Lasso-based algorithms
when p � 1000. The runtimes of wGlasso_2015 and
wGlasso_2017 exponentially increase when the graph size
increases. With p � 3000, the total running time for AhGlasso,
wGasso_2015, wGlasso_2017, and Netgsa was 951.09 ±
173.51 min, 5477.11 ± 815.34 min, 7238.65 ± 523.54 min,
and 1060.65 ± 238.83 min, respectively. The runtime of
AhGlasso is around 7 times faster than the two weighted
Graphical Lasso-based algorithms when p � 3000. The
runtime of AhGlasso is also faster than Netgsa. Of note,
the F1 score patterns in these simulations for tested methods
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were similar to Figure 4B (data not shown). In addition, the
runtimes of weighted Graphical Lasso-based algorithms are
much more sensitive to the λ minimal ratio than AhGlasso
and Netgsa. The runtime differences between AhGlasso and
weighted Graphical Lasso-based algorithms are greater when
decreasing the λ minimal ratio and searching more λ
candidates.

When the feature space is large, the graphical Lasso-based
methods are computationally expensive and even intractable.
AhGlasso preselects the potential neighbor nodes with ψ
screening to narrow down the neighbor node space. In
addition, the Meinshausen-Bühlmann algorithm (Meinshausen
and Buhlmann, 2006) is incorporated in AhGlasso to select
neighbor nodes before maximum likelihood estimation. Due to
the screening and selection steps, AhGlasso is more efficient and
faster than weighted Glasso methods in large-scale graph
construction.

3.5 AhGlasso Improves Network Inference
for COPD
For a real data application, we used proteomics data generated
in the COPDGene Phase II Study. COPD is a disease
characterized by reduced lung function and symptoms such
as shortness of breath. Protein-protein interactions could play
important roles in COPD pathogenesis in COPD development.
We collected a large proteomic data from 1010 subjects from the
COPDgene cohort using the SomaScan® platform (Candia et al.,
2017). We constructed a COPD-associated network on COPD
cases (n � 486) with or without PPI data and identified
important protein-protein interactions contributing to COPD
development.

We incorporated prior known PPI information from
STRING and constructed COPD-associated networks with
the AhGlasso and Netgsa methods. The top 40 hub proteins
were chosen for GO enrichment analysis. In the AhGlasso
analysis with known PPI knowledge, we found 35 molecular
function pathways that were significantly enriched while only
12 pathways were enriched in the analysis without prior PPI
knowledge (Supplementary Table S1 and Supplementary
Table S1), and only 17 pathways were enriched in the Netgsa
analysis (Supplementary Table S1). After multiple testing
corrections with FDR, we found 23 molecular function
pathways that were significantly enriched in AhGlasso
analysis with prior PPI information while only one
pathway was enriched in the analysis without prior PPI
knowledge, and no pathways were enriched in the Netgsa
analysis. AhGlasso also identified six hub genes related to the
cadherin pathway, which has been reported to play important
roles in COPD development (Nelson and Nusse, 2004;
Kneidinger et al., 2011; Eapen and Sohal, 2020), but was
not enriched in the results of the Netgsa method. In addition,
AhGlasso also uniquely enriched cytokine signaling and
chemokine signaling pathways in COPD-associated
networks, which have been reported to be important for
COPD pathogenesis (Bradford et al., 2017; Henrot et al.,
2019).

4 DISCUSSION

In this study, we have developed an augmented high-
dimensional Graphical Lasso model (AhGlasso) to
incorporate edge weights from known protein-protein
interaction networks with omics data for global network
learning. In our proposed method, we first extended the
Netgsa hybrid approach to incorporate the edge weight of
prior known but incomplete protein-protein relation for
network reconstruction. To speed up the computation and
make it feasible for large-scale data, especially when the
number of variables is much larger than the sample size, we
also implemented Ψ-screening based on the standard Pearson
correlation. We compared our proposed method with Netgsa
and two weighted Graphical Lasso approaches in terms of
computation time and accuracy based on simulations where
“ground truth” for the target network is available.

To systematically evaluate the performance of methods and
make fair comparisons, we simulated datasets with a variety of
network graph sizes, sample sizes, and overlapping percentages
between the prior information and the target network for
estimation. For network structure learning with GMM, the λ
parameter controls the sparsity of the output network. Tuning the
λ parameter is a key step for AhGlasso and other Lasso-based
approaches. However, there is no consensus on how to select the λ
regularization parameter. Cross-validation (CV) provides a
general tool to solve this kind of challenge. Our simulation
study suggested that cross-validation with BIC is more stable
and outperforms the other criteria when the sample size is
medium. When the sample size is small (such as n < (0.25 ×
p)), conventional BIC has similar or even better performance than
BIC with cross-validation, which may be explained that the small
sample sizes for the K fold cross-validation lead to large variance.
When the sample size is very large, the performance of
conventional BIC and BIC with cross-validation are similar,
which could be explained that the models with or without
cross-validation converge to the unbiased true model when
data is sufficient. In addition, we also found that cross-
validation with AIC and EBIC often results in the under-
fitting of the model and over-sparse networks, leading to
lower F1 score and MCC.

Our simulation study found that the AhGlasso output
estimated networks with a priori information had a
significantly greater sensitivity, F1 score, MCC than the
estimations without a priori information. The F1 score
difference decreases for larger sample sizes because the
impact of incorporating prior information decreases with
more data. The F1 score difference is also sensitive to the
amount of overlapping percentage between the prior
knowledge and the target network. As expected, when the
prior information is less accurate, it provides less useful
information for network reconstruction. However, when the
overlapping percentage between prior information and the
target network is low, we did not observe an increase in the
false-positive rate.

The key difference between the two weighted Glasso
methods that incorporate prior known network information
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for network graph learning is how they select the λ parameter
(Li and Jackson, 2015; Zuo et al., 2017). In wGlasso_2015, the λ
was optimized with the BIC criteria while it was tuned with
likelihood and cross-validation in wGlasso_2017 (Li and
Jackson, 2015; Zuo et al., 2017). The wGlasso_2017
approach often resulted in high sensitivity but extremely
low specificity, which leads to a low F1 score. This could be
explained that wGlasso_2017 tunes the λ parameter based on
likelihood with a lack of penalty for the number of edges,
which leads to an over-dense network estimation. Our study
also demonstrated AhGlasso generally outperforms Netgsa in
terms of F1 scores, which suggests the advantages of taking
edge weights into account. Although wGlasso_2015 could
achieve comparable accuracy to AhGlasso, its computation
is intractable for large-scale data. It took days when the
network graph size is bigger than 1000. Compared with
wGlasso_2015, our proposed method, AhGlasso, is
computationally scalable and much more efficient than the
weighted Glasso based methods when the sample size is large.
In summary, the new method, AhGlasso, outperforms
wGlasso-based algorithms with respect to computational
time in simulated large-scale data settings, while achieving
better or comparable prediction accuracy of node connections.

In the COPDgene study, AhGlasso with prior PPI found more
enriched GO terms than the estimated network without PPI on
the top 40 hub proteins in the resultant networks (23 vs. 1 after
multiple testing correction with FDR). We also found AhGlasso
discovered more enriched GO terms than Netgsa on the top 40
hub proteins in the resultant networks (23 vs. 0 after FDR
correction). After FDR correction, we found significantly
enriched cadherin, chemokine signaling, cytokine signaling
pathways in AhGlasso, but not with the Netgsa analysis or the
analysis without PPI. These three pathways have been
demonstrated to play important roles in COPD. Several
studies reported that the cadherin/WNT/catenin pathway
could be a novel therapeutic target for attenuating airway
remodeling in COPD (Nelson and Nusse, 2004; Kneidinger
et al., 2011; Eapen and Sohal, 2020). This real data study
suggests that AhGlasso improves COPD-related network
inference compared to the Netgsa approach in integrating a
proteomics dataset and prior PPI with edge weights.

Although we only focused on analyzing single omics data in
this study, the partial correlation coefficient derived in AhGlasso
can be transformed to a Z score via Fisher’s transformation for
multiple omics data integration. The Z scores from different
single omics data can be easily combined using Stouffer’s meta-
analysis method (Stouffer et al., 1949).

Although AhGlasso outperforms wGlasso-based
algorithms and Netgsa in our simulations and COPD case
study, there are some limitations in the method. One
limitation is that AhGlasso can be computationally
intensive when the graph size is large, but still faster than
the alternatives compared. Another limitation is that the
optional K-fold cross-validation step can significantly increase
the computation burden. Furthermore, K-fold cross-validation is
not recommended if the sample size is small. Although we
compared AhGlasso with wGlasso_2017 and Netgsa, the latter

were not designed for global network learning. The wGlasso_2017
approach is designed for network-based differential gene
expression analysis using differentially weighted graphical Lasso
on pre-selected differentially expressed genes. TheNetgsa approach
is designed for network-based pathway enrichment analysis and
focused on protein-protein interaction changes in known
pathways. Furthermore, to implement Netgsa non-zero weights
in the prior PPI were converted to 1, which could cause potential
biases.

5 CONCLUSION

We present an augmented method, called AhGlasso, for
incorporating prior information in biological network
reconstruction. Our study suggests that cross-validation with
BIC generally performs better than regular BIC, cross-
validation AIC, or EBIC. This new method outperforms
wGlasso-based algorithms with respect to computational time
in large-scale data settings while achieving better or comparable
prediction accuracy of edges. Our method also improves COPD-
associated network inference compared to the Netgsa approach.
Although demonstrated on one -omics data and prior PPI, our
method could be generalized to multi-omics data.
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