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Abstract: Rheumatoid arthritis (RA) is characterized by inflammation of one or more joints,
and affects ~1% of the adult population worldwide. Sulforaphane (SFN) is a natural compound that
has been suggested as an antioxidant. Here, SFN’s effects were evaluated in a murine mono-arthritis
model. Mono-arthritis was induced in mice by a single intra-articular injection of Complete Freund’s
Adjuvant (CFA-10 µg/joint, in 10 µL) into the ipsilateral joint. The contralateral joint received an
equal volume of PBS. On the 4th day post-joint inflammation induction, animals received either
SFN (10 mg/kg) or vehicle (3% DMSO in saline), intraperitoneally (i.p.), twice a day for 3 days.
Joint swelling and secondary mechanical allodynia and hyperalgesia were evaluated over 7 days
post-CFA. After this period, animals were culled and their blood and synovial fluid samples were
collected for analysis of cell populations, cytokine release and thioredoxin reductase (TrxR) activity.
Knee joint samples were also collected for histology. SFN reduced joint swelling and damage whilst
increasing the recruitment of Ly6C+ and Ly6G+ cells to CFA-injected joints. SFN-treated animals
presented down-regulation of CD11b and CD62L on synovial fluid Ly6G+ cells. Synovial fluid
samples obtained from CFA-injected joints and plasma samples of SFN-treated mice presented higher
levels of IL-6 and increased activity of TrxR, in comparison with controls. These results indicate
that SFN reduces knee joint damage by modulating cell activation/migration to the joints, cytokine
production and increasing the activity of TrxR, and therefore, may represent an alternative treatment
to joint inflammation.
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1. Introduction

Rheumatoid arthritis (RA) affects ~1% of the adult population, with a female to male ratio of 3:1.
It is defined as the inflammation of one or more joints, with the presence of pain, swelling, erythema,
an increase in the temperature of the affected areas [1]. Importantly, RA can cause loss of function or
stiffness of the affected joints diminishing life quality. The inflammatory process in RA includes the
presence of autoantibodies [2], synovial hyperplasia, angiogenesis and bone loss [3]. Although these
inflammatory changes have been extensively investigated, their trigger mechanisms are not fully
understood [4]. During RA, there is an ongoing infiltration in to the synovial space [5,6], and a timely
and intense release of pro-inflammatory cytokines such as IL-1, IL-6, TNF-α and chemokines [7].
Increased oxidative stress also occurs, culminating with the generation of reactive oxygen (ROS)
and nitrogen (RNS) species [8]. All these events contribute to cartilage damage [9] and intensify the
joint inflammation and sensitization of neuronal afferents leading to a chronic state of inflammatory
pain [10]. Although current therapies have substantially improved patient’s life quality by attenuating
pain and inflammation [11–13], they do not recover the joints from previous damage made and are
note always effective in stopping disease progress [14–16].

Sulforaphane (SFN) is a natural isothiocyanate found in plant species belonging to the Brassicaceae
family such as broccoli, cabbage and brussel sprouts [17]. SFN’s protective therapeutic actions were
previously investigated in renal fibrosis [18], cancer [19,20], renal and intestinal damage caused by
ischemia-reperfusion [21,22] and angiogenesis [23]. These effects have been associated with SFN
ability to activate antioxidant pathways including the thioredoxin reductase (TrxR) system and to
induce the production of cytoprotective proteins [24–26]. Indeed, SFN is a potent activator of Nrf2 [27],
a transcription factor involved in the expression of a range of genes associated with the cellular
antioxidant and anti-inflammatory defence [28]. Also, a role for SFN as a scavenger of superoxide was
recently described; however, this effect is not yet completely understood [29]. SFN was previously
shown to inhibit synovial hyperplasia and T cell proliferation, and to decrease IL-17 and TNFα
production by T cells [30]. The same study also demonstrated that SFN attenuates the severity of
experimental RA and the production of auto-antibodies. However, little is known of SFN ability to
reduce pain and neither of its ability to regulate cytokine and oxidative stress generation in joint
inflammation. Here, we investigated the effects of SFN in a mouse model of Complete Freund’s
Adjuvant (CFA)-induced mono-arthritis. We found that SFN attenuates joint damage by modulating
antioxidant pathways, cytokine production and cell activation/migration to the joints.

2. Results

2.1. SFN Reduces Knee Joint Swelling but Not Nociception in Animals with CFA-Induced Joint Inflammation

Joint inflammation is characterized by increased diameter (indicative of joint oedema) and
nociception. Here, CFA was used to trigger joint inflammation in the ipsilateral joint whilst the
contralateral side was used as a control within the same animal. As expected, CFA injection caused
a marked oedema in the ipsilateral joint which remained present over 3 days. Following 4 days of
SFN treatment, mice exhibited reduction in knee swelling in their CFA-injected joints in comparison
with the measurements taken on day 3 and also with the knee diameter of vehicle-treated animals
(Figure 1A). The swelling in PBS (contralateral)-injected joints was similar in vehicle- and SFN-treated
mice, ranging from 0.1 to 0.2 mm over the observation period (Figure 1A).

CFA induced bilateral secondary hyperalgesia and allodynia as mice presented increased reactivity
in both ipsilateral and the contralateral paws. Both nociceptive responses remained elevated through
the 7-day time course (Figure 1B,C). Treatment with SFN did not alter this response as reactivity in this
group was found to be similar to that observed in vehicle-treated mice (Figure 1B,C).



Molecules 2018, 23, 988 3 of 12

Figure 1. Effects of sulforaphane in the mechanical nociception and knee joint thickness of mice with
mono-arthritis. Injection of CFA (10 µL ipsilateral knee) and PBS (10 µL in the contralateral knee) was
performed at day 0. (A) Variation (mm) of knee diameter (joint oedema) was measured at days 0 (prior
to injection), 1, 3 and 7. Secondary allodynia (B) and mechanical hyperalgesia (C) were measured
by percentage of paw withdrawal reflex relative to stimulation with Von Frey filaments 0.4 and 0.6 g,
respectively. Six consecutive doses of SFN or DMSO were injected i.p. every 12 h starting at 7:00 a.m.
on 4th day. Data are expressed as mean± SEM. Experiments were performed in four different occasions
(n = 14 animals per group). * # p < 0.05.
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2.2. SFN Attenuates the Joint Inflammation/Damage Caused by Intra Articular CFA-Injection

Figure 2 depicts the results obtained in the histologic analysis of knee joints collected from vehicle-
and SFN-treated animals (n = 5/group). Panels A–D indicate the morphological changes observed for
saline and CFA-injected joints of both groups.

Molecules 2018, 23, x 4 of 13 

 

2.2. SFN Attenuates the Joint Inflammation/Damage Caused by Intra Articular CFA-Injection 

Figure 2 depicts the results obtained in the histologic analysis of knee joints collected from 

vehicle- and SFN-treated animals (n = 5/group). Panels A–D indicate the morphological changes 

observed for saline and CFA-injected joints of both groups.  

 

Figure 2. Effects of sulforaphane in attenuation of joint inflammation/damage caused by intra 

articular CFA-injection. Representative histologic sections of knee joints collected from animals with 

CFA-induced mono-arthritis (n = 5/group). Panels: (A) morphological aspect of saline-injected joints 

treated with vehicle (DMSO), (B) morphological aspect of CFA-injected joints treated with vehicle 

(DMSO), (C) morphological aspect of saline-injected joints treated with SFN and (D) morphological 

aspect of CFA-injected joints treated with SFN. Arrows indicate the presence of cellular infiltrates in 

the synovial space of CFA joints. Sections were stained with hematoxylin and eosin. (E) Represents the 

sum of a 0–3-point score of knee joint inflammation scale used for each parameter: Synovial 

hypertrophy, cellular infiltration, cartilage destruction, bone erosion (0-normal, 1-mild, 2-moderate, 

3-severe). The score of joint inflammation was denoted by the median (minimum-maximum) values. 

Experiments were performed with 5 animals per group. * p < 0.05. 

The arrows indicate the presence of cellular infiltrates in the synovial space of CFA joints, which 

was more intense in those obtained from animals administered with vehicle in comparison with the 

SFN group (Panels B and D, respectively). Similarly, the CFA joints of animals treated with SFN 

A 

D 

B 

C 

Figure 2. Effects of sulforaphane in attenuation of joint inflammation/damage caused by intra
articular CFA-injection. Representative histologic sections of knee joints collected from animals with
CFA-induced mono-arthritis (n = 5/group). Panels: (A) morphological aspect of saline-injected joints
treated with vehicle (DMSO), (B) morphological aspect of CFA-injected joints treated with vehicle
(DMSO), (C) morphological aspect of saline-injected joints treated with SFN and (D) morphological
aspect of CFA-injected joints treated with SFN. Arrows indicate the presence of cellular infiltrates in
the synovial space of CFA joints. Sections were stained with hematoxylin and eosin. (E) Represents
the sum of a 0–3-point score of knee joint inflammation scale used for each parameter: Synovial
hypertrophy, cellular infiltration, cartilage destruction, bone erosion (0-normal, 1-mild, 2-moderate,
3-severe). The score of joint inflammation was denoted by the median (minimum-maximum) values.
Experiments were performed with 5 animals per group. * p < 0.05.
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The arrows indicate the presence of cellular infiltrates in the synovial space of CFA joints,
which was more intense in those obtained from animals administered with vehicle in comparison with
the SFN group (Panels B and D, respectively). Similarly, the CFA joints of animals treated with SFN
exhibited less synovial hypertrophy, absence or lower intensity of cartilage damage and bone erosion
in their tibiofemoral joints in comparison with the vehicle group. Overall, the CFA-injected joints of
SFN-treated mice presented with a smaller score of joint inflammation (Figure 2E) as denoted by the
median (minimum-maximum) values, than those of vehicle-treated animals: 6.0 (4.0–7.0) for vehicle
CFA and 3.0 (1.0–9.0) for sulforaphane CFA. No differences were observed between saline-treated
joints of vehicle- and SFN-administered mice. Registered values for vehicle saline and SFN saline
joints were 1.0 (0.0.–2.0) and 1.0 (0.0–3.0), respectively.

2.3. Increased Numbers of Ly6G+ and Ly6C+ Cells Are Observed in the Ipsilateral Joints of SFN-Treated Mice

Treatment with SFN promoted the influx of neutrophils (Ly6G+) and macrophages (Ly6C+) to
the ipsilateral (CFA-injected) but not contralateral (PBS-injected) knee joints (Figure 3A). Both the
frequency (2-fold increase; Figure 3B) and numbers of Ly6G+ (33-fold increase; Figure 3C) cells were
raised in the ipsilateral joints of SFN-treated in comparison with vehicle-treated mice. On the other
hand, although SFN did not alter the frequency of Ly6C+ cells (Figure 3D) in the ipsilateral joint,
this compound induced an increase in total number of infiltrating Ly6C+ cells (6.8-fold increase in
comparison with vehicle group; Figure 3E).

Figure 3. Phenotypic characterization of infiltrating cells in the knee joint of mice with mono-arthritis.
Representative two-colour dot-plots for (A) Ly6G+ (neutrophils) and Ly6C+ (monocytes/macrophages)
cells; relative (B) and absolute (C) numbers of Ly6G+ cells; and relative (D) and absolute (E) numbers
of Ly6C+ cells in synovial fluid samples obtained from ipsilateral (CFA-injected) and contralateral
(PBS-injected) joints of vehicle- (open bars) and SFN- (closed bars) treated mice. Data are mean ± SEM.
Experiments were performed in four different occasions (n = 14 animals per group). * p < 0.05.

2.4. SFN Decreases the Expression of CD11b and CD62L on Synovial Fluid Ly6G+ cells

The administration of SFN down-regulated the expression of both CD11b (27%, Figure 4A)
and CD62L (42%, Figure 4B) on synovial fluid Ly6G+ leukocytes in comparison with those of
vehicle controls. However, SFN did not affect the expression of either CD11b or CD62L on
monocytes/macrophages (Ly6C+) (Figure 4C,D, respectively).
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Figure 4. Expression of CD11b and CD62L on synovial fluid monocytes/macrophages and neutrophils.
Expression of CD11b (A) and CD62L (B) on synovial fluid Ly6G+ cells. Expression of CD11b (C) and
CD62L (D) on synovial fluid Ly6C+ cells. Samples were obtained from ipsilateral (CFA-injected) and
contralateral (PBS-injected) joints of vehicle- (open bars) and SFN- (closed bars) treated mice. Data are
mean ± SEM. Experiments were performed in four different occasions (n = 14 animals per group).
* p < 0.05.

2.5. SFN Increases the Levels of IL-6 in Plasma and Synovial Fluid Samples

Despite the seven cytokines tested, only IL-6 was detected. The plasma levels of IL-6 were
significantly raised in animals treated with SFN in comparison with those that received vehicle
(31.5-fold, Figure 5A).

Figure 5. Circulating and synovial fluid levels of IL-6 in mice with mono-arthritis. Plasma (A) and
synovial fluid (B) concentrations of IL-6 in samples obtained from vehicle- (open bars) and SFN- (closed
bars) treated mice. Data are mean ± SEM. Experiments were performed in four different occasions
(n = 14 animals per group). * p < 0.05.

The same animals exhibited higher levels of this cytokine in synovial fluid samples obtained from
their ipsilateral joints (CFA-injected; 4.5-fold increase). Interestingly, the levels of IL-6 in contralateral
knees joints (injected with PBS) of animals treated with SFN were significantly higher (7-fold increase
compared to vehicle-treated), at levels similar to those found in ipsilateral joints (CFA-injected) of
vehicle-treated mice (Figure 5B).
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2.6. TrxR Activity is Raised in Plasma and Synovial Fluid Samples of Mice with Joint Inflammation

TrxR activity was found to be increased in plasma samples obtained from mice treated with
SFN (1.7-fold increase) in comparison with those treated with vehicle (Figure 6A). Likewise, SFN
markedly augmented the activity of TrxR in the synovial fluid samples obtained from the ipsilateral
(3.6-fold increase) and contralateral (1.6-fold increase) joints in comparison with those of vehicle-treated
mice (Figure 6B).

Figure 6. TrxR activity in plasma and synovial fluid samples of mice with mono-arthritis.
Plasma (A) and synovial fluid (B) TrxR activity levels in samples obtained from vehicle- (open bars)
and SFN- (closed bars) treated mice. Data are mean ± SEM. Experiments were performed in four
different occasions (n = 14 animals per group). * p < 0.05.

3. Discussion

Sulforaphane (1-isothiocyanato-4-(methylsulfinyl) butane, SFN) is one the most extensively
studied isothiocyanates, and is found in cruciferous vegetables such as broccoli and brussel sprouts;
it has been reported to regulate chronic diseases, nephropathy, cancer and to reduce angiogenesis,
oxidative stress and inflammation [18–23,31–35]. Here, to the best of our knowledge, we show for the
first time that this compound increases neutrophil influx in to CFA-treated joints and down-regulates
the expression of CD11b and CD62L on these cells. Furthermore, these effects are associated with
increased production of IL-6 and enhanced activity of TrxR.

We found that the repeated treatment with SFN reduces knee joint inflammation/damage
(denoted by data on knee joint thickness and histology) in animals with CFA-induced mono-arthritis,
without affecting their nociceptive thresholds. On the other hand previous studies reported an
anti-oedematogenic and anti-nociceptive effect of SFN [10,30,35], as demonstrated in a neuropathic
pain model [36], where SFN was shown to reduce oedema, and mechanical allodynia and hyperalgesia.
Differences between our data and the ones presented by these studies may be due to differences in the
route of administration of the compound (intraperitoneal versus intrathecal), dose of the compound
and/or length of treatment. These evidences suggest that SFN differently regulates peripheral and
central events of joint inflammation.

The initial events of joint inflammation such as the associated with RA include an intense influx
of inflammatory cells such as neutrophils and monocytes to the joints [5,6]. In this context, these cells
have been linked to the aggravation of RA due to their ability to release cytotoxic molecules and
ROS, causing exacerbation of inflammation [8]. We found that the repeated administration of SFN
post-CFA injection increases the accumulation of Ly6C+ and Ly6G+ cells (indicative of neutrophils and
mononuclear cells) in the synovial fluid [37]. Interestingly, Ly6G+ but not Ly6C+ cells exhibited less
CD11b and CD62L on their surface. Whilst CD11b is a marker of leukocyte activation, loss of CD62L
by shedding, down-regulates cell migration and activation during declining of inflammation [38]. It is



Molecules 2018, 23, 988 8 of 12

is possible thus, that the inflammatory cell populations detected in the synovial fluid of the CFA-joints
of SFN-treated animals are less activated than those of the vehicle group, positively impacting joint
inflammation, by reducing knee joint thickness and intra-articular damage [39].

Oxidative stress normally occurs during inflammation and the thioredoxin system plays an
important role in the control of excessive tissue injury. TrxR reduces oxidized thioredoxin (Trx),
which in turn acts as an important removal tool of hydrogen peroxide and peroxynitrite, therefore
protecting cells from damage and apoptosis [40,41]. Inhibition of TrxR activity results in accumulation
of oxidized Trx triggering apoptosis [41,42]. Our data shows that SFN increases TrxR activity,
suggesting a potential for this compound to attenuate cell damage in joint inflammation.

The same animals also presented with increased levels of IL-6 in their plasma and synovial fluid
obtained from CFA joints. Released by both inflammatory and fibroblast-like synovial cells, IL-6 has a
well-established role in the transition to chronicity and maintenance of joint inflammation, contributing
to joint damage [43]. As mice treated with SFN exhibited higher levels of IL-6 but a smaller degree
of joint inflammation, it is possible this cytokine was generated at a time point earlier than the one
addressed herein and remained elevated, by mechanisms we could not yet determine. We suggest that
the deleterious effects of the increased levels of IL-6 in SFN-treated mice may be overcomed by the
increased activity of TrxR and attenuated activation of leukocytes in their CFA-joints. Of note, we were
not able to detect other cytokines such as IL-2, IL-10, TNFα and IL-17 in plasma and synovial fluid
samples in the time-point used herein. We cannot overrule possible effects of SFN in other time-points
in which these cytokines are relevant for nociception and joint inflammation in the mono-arthritis
induced by CFA.

4. Material and Methods

4.1. Animals

Non-fasted male C57BL/6 mice (6–8 weeks old) were used. Mice were obtained from the animal
facility of the Uniceuma University (Sao Luis, Brazil) and were kept in a climatically controlled
environment (room temperature of 22 ± 2 ◦C and humidity of around 60%) under a 12:12 h light-dark
cycle (lights on at 7:00 a.m.). All procedures were approved by the Ethics Committee (protocol # 635072)
of Uniceuma University and were carried out in accordance with the guidelines of the Society for
Animal Welfare (SBCAL).

4.2. Complete Freund’s Adjuvant (CFA)-Induced Mono-Arthritis

For the induction of (CFA)-Induced Mono-Arthritis, the mouse knees were injected
intra-articularly with 10 µg of CFA (10 µL in to the ipsilateral joint) and saline (0.9% sodium chloride,
10 µL in to the contralateral joint) [44]. Knee joint thickness and nociception were registered prior to and
on the days 1, 3 and 7 post-CFA injection. Mechanical allodynia and hyperalgesia thresholds in the hind
paws were determined using Von Frey filaments, as previously described [45,46]. Mice were placed in
clear cages with a wire mesh floor and allowed to acclimatize for 30 min before the readings were taken.
Measurements were obtained by repeated application (10 times on each paw) of 0.4 and 0.6 g force.
The frequency of paw withdrawal was taken as indicative of allodynia and hyperalgesia, respectively.
Results are expressed in percentage of paw withdrawal. Knee joint diameter was measured by calipers
(Starrett, Sao Paulo, Brazil) and taken as an index of knee joint swelling. Results are expressed as the
difference (∆ in mm) in knee joint thickness before and after the administration of CFA or vehicle.

4.3. Treatment with SFN

After induction of mono-arthritis by injection of CFA, six doses of SFN (10 mg/kg, Sigma
Aldrich, Sao Paulo, Brazil, 10 mL/kg, n = 19) or vehicle (3% DMSO in saline, 10 mL/kg, n = 19)
were administered intraperitoneally in each animal, one every 12 h, starting at 7:00 p.m. on the day
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4 post-CFA injection. The last injection occurred at 7:00 a.m. on the 7th day, one hour before the
measurements (allodynia, hyperalgesia and knee joint thickness) were taken.

4.4. Collection of Samples

On day 7 post-CFA induced mono-arthritis, animals received an overdose of a mixture of ketamine
(75 mg/kg) and xylazine (1 mg/kg). Blood samples were then collected in heparinized tubes by cardiac
puncture. Plasma was then separated by centrifugation and used for further analysis. Synovial fluid
samples (n = 14/group) were collected with 0.5 mL micro-thin insulin syringes (BD, Sao Paulo, Brazil),
by washing the intra-articular space 4 times with 25 µL of ice-cold PBS, resulting in 0.1 mL of sample.
In a separate series of experiment, the knee joint samples (n = 5/group) were collected for histology on
the day 7 post-CFA, just after the recording of nociceptive thresholds and knee joint thickness.

4.5. Cell Phenotype Characterization by Flow Cytometry

After lysis of red blood cells, total synovial fluid leukocytes were counted in a Neubauer chamber
under microscopy (×10 objective). Single-cell suspensions were prepared, washed and resuspended in
flow cytometry buffer ((2% foetal calf serum (Invitrogen, Sao Paulo, Brazil) in PBS (Sigma-Aldrich,
Sao Paulo, Brazil), and stained with different monoclonal antibodies conjugated to fluorochromes,
for 30 min: Ly6C and CD19 (FITC); Ly6G and CD3 (PE); CD11b and CD4 (PerCP); CD62L, CD14 and
CD3 (APC), all from eBiosciences (Sao Paulo, Brazil). Data was collected in a BD Accuri C6 Flow
Cytometer (BD Biosciences-Immunocytometry Systems, San Jose, CA, USA). The events were analysed
with FlowJo 7.6.1 software (TreeStar-Ashland, OR, USA). Results are expressed as absolute cell counts
or relative numbers; excepting those of CD62L and CD11b which were expressed as mean fluorescence.

4.6. Measurement of Cytokines

The levels of different cytokines (IL-2, IL-4, IL-6, IL-10, TNF-alpha, IFN-gamma and IL-17) were
assessed in plasma and synovial fluid samples by cytometric bead array (CBA) with a Th1/Th2/Th17
kit (BD Biosciences, Sao Paulo, Brazil); according with the manufacturer’s instructions. Data collection
and analysis were performed in a BD Accuri C6 flow cytometer. Results were calculated in CBA FCAP
Array software (BD Biosciences, Sao Paulo, Brazil) and are expressed as picograms of cytokine per
millilitre (pg/mL).

4.7. Thioredoxin Reductase (TrxR) Activity Levels

The activity levels of TrxR were evaluated in plasma and synovial fluid samples, by the reduction
of 5′5-ditiobis 2-nitrobenzoic acid (DTNB). Briefly, 10 µL of each sample were incubated with 900 µL of
a solution containing 0.24 mM NADPH, 10 mM EDTA, 100 mM potassium phosphate in ultrapure
water; in the presence and absence of a specific trioredoxin reductase inhibitor, according with the
manufacturer’s instructions (Sigma-Aldrich, Sao Paulo, Brazil). Thirty µL of DTNB (39.6 mg/mL)
were added to each sample. TrxR (10 µg inTris-HCl 50 mM, pH 7.4, EDTA 1 mM) was used as control.
Samples were incubated for 40 min and the reaction was then read at 405 nm. Results are expressed in
units per millilitre (U/mL) as the difference in absorbance in the presence and absence of TrxR inhibitor.

4.8. Knee Joint Histology

The knee joint samples were collected, washed in PBS, infused with 10% formalin in PBS and
then, processed for histology. Samples were decalcified by immersion in EDTA solution (4 ◦C for
14 days) and then were embedded in paraffin for cutting. Tissue samples were deparaffinized in
xylene followed by dehydration in a graded series of ethanol/water. Serial 10 µm sagittal sections
of the entire joint were cut on a microtome. Samples were stained with hematoxylin and eosin for
observation of tissue morphology. A blinded observer (J.C.d.S.) then scored all sections for synovial
hypertrophy, cell infiltration, cartilage destruction and bone erosion as previously described [44].
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A 0–3-point scale was used for each parameter: synovial hypertrophy, cellular infiltration, cartilage
destruction, bone erosion (0-normal, 1-mild, 2-moderate, 3-severe). The summation of the scores of
each joint from each animal was used as index of joint inflammation/damage. Results are expressed
as the median (minimum/maximum) of each group.

4.9. Statistical Analysis

The results are presented as the mean ± SEM. The percentages of inhibition are reported as
mean ± SEM relative to the control samples. Samples were assessed for normal distribution by the
Shapiro-Wilki’s test. Statistical comparisons of the data were performed by two-way analysis of
variance (ANOVA) followed by Bonferroni’s test and unpaired t test when appropriate; except for
histology. The results of the histologic evaluation are expressed as the median (minimum–maximum)
in box plot graphs and were analyzed using Kruskal-Wallis followed by the Dunns test. p values < 0.05
were considered significant.

5. Conclusions

Overall, our data shows that the repeated administration of SFN protects against joint damage
and inflammation caused by CFA, by increasing TrxR activity and regulating leukocyte activation and
migration to the inflamed joint.
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