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Abstract: The dissemination of false messages in Internet of Vehicles (IoV) has a negative impact
on road safety and traffic efficiency. Therefore, it is critical to quickly detect fake news considering
news timeliness in IoV. We propose a network computing framework Quick Fake News Detection
(QcFND) in this paper, which exploits the technologies from Software-Defined Networking (SDN),
edge computing, blockchain, and Bayesian networks. QcFND consists of two tiers: edge and
vehicles. The edge is composed of Software-Defined Road Side Units (SDRSUs), which is extended
from traditional Road Side Units (RSUs) and hosts virtual machines such as SDN controllers and
blockchain servers. The SDN controllers help to implement the load balancing on IoV. The blockchain
servers accommodate the reports submitted by vehicles and calculate the probability of the presence
of a traffic event, providing time-sensitive services to the passing vehicles. Specifically, we exploit
Bayesian Network to infer whether to trust the received traffic reports. We test the performance of
QcFND with three platforms, i.e., Veins, Hyperledger Fabric, and Netica. Extensive simulations and
experiments show that QcFND achieves good performance compared with other solutions.

Keywords: fake news detection; edge computing; permissioned blockchain; Bayesian networks;
Internet of vehicles

1. Introduction

The message exchanges in Vehicular Ad hoc Network (VANET) help drivers perceive the traffic
conditions, adapt driving routes, and avoid potential road hazard scenarios [1]. It seems that the road
safety and the traffic efficiency can be easily achieved in VANET. However, there may exist malicious
drivers and fake news [2], which can make VANET fail to fulfill our expectation. For example, malicious
vehicles would transmit false Decentralized Environmental Notification Messages (DENMs) [3] to their
advantage. Therefore, it is important to detect the fake news or false messages in vehicular networks
for the good of drivers and the healthy operation of VANET.

Many data-centric trust management mechanisms have been proposed to address the credibility
of messages in VANET. According to some decision logics, the combined trust level to an event is
derived from multiple pieces of evidence such as reports from vehicles. The common approaches
include majority voting, weighted voting, and Bayesian inference. In [4], the number of positive
messages about an event indicates the trust level, for example, five for the event. In [2], the credibility
of messages is calculated via the weighted sum, considering objective and subjective trust metrics.
The opinions on an event from different nodes are aggregated by means of weighted majority voting [5].
The trust level to an event is denoted by the posterior probability of the event after receiving multiple
pieces of evidence [6].

Nevertheless, these mechanisms are designed without considering the essential characteristics
of VANET: random topology, self-organization, and dynamic connections. For example, we cannot
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guarantee that messages reach their destinations timely and finally. This brings about two possible
problems. First, trust models may take a long time to infer the credibility of messages, generating
outdated results. Second, trust models may not collect enough evidence for the decision logic, leading
to inaccurate results. In addition, these mechanisms do not take the prior probability and the duration
of a traffic event into account.

The development of edge computing [7,8] and blockchain [9,10] provides us with an opportunity
to deal with the aforementioned problems. Both technologies complement each other’s advantages.
Edge computing can be taken as cloud computing that is executed at the network edge and near
data sources (such as vehicles). The Edge Computing Nodes (ECNs) host various resources (such
as network, computing, and storage) and they can provide edge smart services with the help of
virtualization technologies [7]. If we extend the functionality of Road Side Units (RSUs), convert them
into ECNs, and implement the decision logics on them, all RSUs can collaborate on fake news detection.
Specifically, false messages can be quickly identified with the help of load balancing. Hence, the first
problem is solved. Moreover, this solution does not involve the communication with the remote cloud
server, so the response time is further improved [11,12].

The blockchain is actually a distributed database containing transaction history, which is shared
among peer nodes and regarded as the evidence that cannot be tampered with or forged [13]. If we
further extend the functionality of RSUs, turn them into blockchain nodes, and put the evidence
(i.e., reports or messages from multiple vehicles) for an event in the blockchain, every RSU in the
network then has a complete copy of the up-to-date evidence, from which the accurate evaluation of
the event can be derived. Hence, the second problem is solved.

In this paper, we propose a network computing framework named Quick Fake News Detection
(QcFND) for Internet of Vehicles (IoV), which is the extended version of traditional VANET and
supports more communication technologies and computing models [14]. IoV gives RSUs the ability to
provide cloud data service to vehicles, which is exactly what this paper discusses. In general, QcFND
achieves the features as follows. First, it can deal with the traffic burst due to the load balancing.
When an event (such as traffic jam or icy road) happens, the vehicles in the proximity report the event
with outgoing messages to the nearest RSU simultaneously, possibly resulting in RSU overload. Second,
it features low transaction time because of Proof-of-Authority (PoA) [15]. To ensure the freshness of
the evidence, the submitted reports on an event need to be recorded on the blockchain quickly. Third,
it establishes a Bayesian network to handle the dynamics of the event and the evidence. From one
moment to another, the state of the event can change and the evidence may become outdated.

Specifically, the main contributions of this paper are fourfold.

• A network computing framework named QcFND is proposed to quickly detect fake news in IoV.
QcFND is the first trust management framework that comprehensively utilizes the technologies
from Software-Defined Networking (SDN), edge computing, blockchain, and Bayesian networks.
The storage and processing of the reports on traffic events are deployed on the network edge
instead of on the cloud.

• An architecture of Software-Defined Road Side Units (SDRSUs) is designed for QcFND. Additional
hardware and software components are integrated into traditional RSUs to support server
virtualization and Software-Defined Networking (SDN). Moreover, distributed load balancer
monitors the load of each SDRSU and redirects incoming messages accordingly.

• QcFND uses the permissioned blockchain as its distributed database for storing and disseminating
evidence on events. Moreover, it adopts PoA as the consensus mechanism since PoA is fast and
energy efficient. The peer nodes and orderer nodes that constitute the blockchain are created
via server virtualization.

• QcFND exploits Bayesian network as its decision logic. We establish a causal network representing
the probabilistic relationships among involved variables for fake news detection. Once the reports
are submitted at different moment by different drivers with different trust levels, the probability
of the presence of an traffic event is computed.



Sensors 2020, 20, 4360 3 of 24

The rest of this paper is structured as follows. Related works are introduced in Section 2. Section 3
presents the overview of the system. Section 4 describes how the load balancing is achieved through
SDN. Section 5 explains how the evidence is stored and disseminated through blockchain. Section 6
demonstrates the decision logic behind the fake news detection. The simulation and experiments are
given in Section 7. Finally, Section 8 concludes the paper and outlines future work.

2. Related Works

This section presents related works from several fields, which inspire the design of our trust
management framework QcFND.

2.1. Edge Computing

An RSU cloud is established and taken as vehicular cloud for the computational and communication
infrastructure providing services to vehicles [16]. The RSU cloud includes traditional RSUs and
specialized RSUs, and the latter is the former with additional components for SDN. To perform
real-time tasks, an architecture for edge computing nodes is designed [17]. The architecture allows
an edge server to decide whether the requested task should be transferred to the cloud or to another
server. To address the problem of high estimation error and high communication cost in traffic sensing
system, a mobile edge computing based service architecture is proposed to conduct the analysis on
the network edge [18]. A scenario of Software-Defined VANET with 5G cellular network is presented,
and the controller and the vehicles take optimizing forwarding strategies to balance the latency and
the cost [19]. The best decisions are achieved via building a two-stage Stackelberg game and analyzing
the game equilibrium. To decrease the delay of the computation off-loading, a cloud-based Mobile
Edge Computing (MEC) mechanism in vehicular networks is given and a game approach is proposed
to find the optimal strategies [11]. In addition, the arrival and the execution of the tasks on an MEC
server are modeled via queuing theory.

2.2. Delay Models

While the blockchain technology is applied to the scenarios of vehicle networking, the performance
analysis model is proposed to evaluate the average delay considering the retransmission [20]. That is, the
total time is obtained when a transmission process makes several attempts before the transmission
is successful. Under the assumption of the instantaneous transmission within the communication
range, the end-to-end packet propagation delay in VANET is related to the number of catch-up times
between disconnected vehicles. The Cumulative Distribution Function (CDF) of the time for a message
to travel along a fixed length of highway is derived in [21]. Assuming that the information propagation
process consists of the catch-up process and the forwarding process, analytical models are developed
to estimate the information propagation process in a vehicular network [22]. The models show that
various traffic conditions have a significant impact on the information delay.

2.3. Blockchain

The blockchain technology has been researched since Bitcoin emerged [23]. All the direct
historical interactions and indirect opinions about vehicles are recorded on the blockchain as persistent
evidence to evaluate the trustworthiness [24]. An energy blockchain for secure charging in smart
community enables electric vehicles to publicly audit and share transaction records [25]. The blockchain
adopts a reputation-based Delegated Byzantine Fault Tolerance (DBFT) consensus algorithm, i.e.,
the nodes must receive enough amount of confirm messages to verify the validity of the received
block. Three major challenges hinder data sharing and storage in VANET, i.e., centralization, high cost
for maintenance, and security threat. Therefore, a consortium blockchain is constructed to address
the challenges and it exploits techniques such as the digital signature, the Practical Byzantine Fault
Tolerance (PBFT), and the smart contract [26]. As payment records in vehicle-to-grid networks are
exploited to analyze user behaviors and make decisions for the power supply, a blockchain-based
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payment mechanism is presented to realize the trade-off between privacy protection and information
sharing [27].

2.4. Data-Centric Trust Models

Dempster–Shafer evidence theory is exploited to collect evidence on the trustworthiness of data
and nodes and combine reports from different nodes [28]. A data-centric trust model calculates
data trustworthiness according to an empirical formula, which takes the trustworthiness of vehicles,
the correlative trustworthiness of events and vehicles, the Proximity in geographic location, and the
proximity in time as input [2]. A blockchain based reputation system is presented for data credibility
assessment [29]. The receiver decides to believe the broadcast message based on the sender’s reputation,
which is updated according to the ratings from the vehicles in vehicular networks. A trust management
scheme is proposed for vehicles to evaluate the credibility of received event messages in either objective
or subjective manner [5]. The former is related to the validity of beacon messages and the subsequent
movement of the sender; the latter is connected with the entity reputations of the senders. The peers in
the network decide whether to believe a message according to the collected verdicts on the message [30].
That is, when the majority of the vehicles trust the message, the message is regarded as trustworthy.
The incorrect traffic information is misleading and may put drivers in danger. Hence, Proof-of-Event
consensus mechanism is proposed, it determines the validation for an event through a set of warning
rules [31]. To differentiate between genuine and dubious messages, the receiver can calculate the
trust levels by counting the popularity of the warning messages [4]. Drivers trust the message
only if a predefined threshold is reached. The aggregated credibility and corresponding ratings of
received messages from neighboring vehicles can be validated using Bayesian inference [32]. However,
these schemes are heuristic and subjective, not considering the probability of traffic events and the
relationship among events, vehicles, and reports.

Table 1 compares the works mentioned above to our approach in terms of the method used,
defense against Sybil attack, and basis for judgement.

Table 1. Comparison of the proposed trust model with the existing schemes.

Reference Method Used Defense against Sybil Attack Basis for Trust Decision

[28] Dempster–Shafer theory Partly Data sensed and collected by vehicles
[2] Empirical formula Partly Trustworthiness of vehicles, relation between events and vehicles,

and proximity in location and time
[29] Reputation-determined Yes Observation of traffic environment
[5] Weighted voting Yes Observation of traffic environment

[30] Majority voting Yes Observation of traffic environment
[31] Proof-of-Event Yes Threshold-based event validation algorithm
[4] Counting Yes Observation of traffic environment

[32] Bayesian inference Partly Observation of traffic environment and proximity in location
Proposed scheme Bayesian network Yes Trustworthiness of vehicles, characteristics of events,

and causal relationship among events, vehicles, and reports

Note that this paper exploits Bayesian network to reason out the probability of traffic events.
According to the best of our knowledge, there is no data-centric trust model for VANET that is
developed with this approach. In our opinion, it is promising to evaluate the credibility of traffic
reports via this more systematic and objective method.

There are mainly two ways to defend against Sybil attack: based on digital signature and based
on reputation of entities. The former assigns public-private key pairs for vehicles to sign each message
and authenticate themselves. The latter derives the trustworthiness of vehicles based on the history of
behavior. In Table 1, “Yes” means that defense against Sybil attack is fully supported, the corresponding
schemes, including ours, adopt the combination of both ways. “Partly” means that the feature is
supported to some extent since the corresponding schemes use only the reputation-based approach,
which sometimes cannot correctly identify malicious nodes.
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3. Overview of QcFND

This section introduces the target, the network computing framework, and the work flow
of QcFND.

3.1. Target

QcFND aims to detect fake news in IoV correctly and in a timely fashion. A traffic event happens
at one moment and it may end up at another moment. Nearby vehicles perceive and report the event
one after another, generating time-series messages. The vehicles are with different trust levels, i.e.,
honest vehicles submit genuine messages but dishonest ones may submit fake news to their advantage.
Inferring the probability of the presence of the event at the current moment is the task of this paper.

3.2. Background

This section briefly introduces the major technologies involved in the work, i.e., SDN, edge
computing, blockchain, and Bayesian networks.

In traditional networks, each network device has its own control plane and forwarding plane.
Each device is configured or programed individually. With SDN, the original control planes are pulled
out of the network devices and placed in a centralized controller used to program flows for the entire
network. Consequently, we can make quick adjustments across the entire network.

In cloud computing, the devices at the edge of the network generate a massive amount of data
that needs to be stored and computed at cloud data centers. This consumes much network bandwidth
and results in the response latency. With edge computing, the computation and storage services
are deployed close to where the data is generated, i.e., the edge devices, to save bandwidth and
reduce latency.

A blockchain is defined as an immutable distributed database for recording transactions. A bunch
of transactions are packaged into a block, which also includes the cryptographic hash of the prior block.
This iterative process results in linked blocks, hence the name blockchain. The consensus algorithms
dictate how to append blocks to the chain and have a significant impact on transaction time.

Bayesian network is a probabilistic graphical model that includes a set of state variables and
a set of directed edges between variables. It is denoted by a directed acyclic graph; the strength of
directed edges is represented as conditional probabilities. Bayesian networks take events that occurred
as evidence and estimate the certainties for events that are not directly observable.

3.3. Framework

The scenario is demonstrated in Figure 1a. There are two kinds of involved elements, i.e., SDRSU
and vehicle. Among these elements, there are four types of connectivity, i.e., vehicle-to-SDRSU
(V2S), SDRSU-to-vehicle (S2V), vehicle-to-vehicle (V2V), and SDRSU-to-SDRSU (S2S). Vehicles are
responsible to report an event, and SDRSUs are responsible to collect these reports and find the truth
from them. The SDRSUs are deployed on the road side and work together to provide services to the
passing vehicles. Hence, QcFND can be taken as an instance of edge computing.

The proposed framework of QcFND is illustrated in Figure 1b. From a high-level point of view,
SDRSUs communicate and collaborate with each other, and they constitute the main body of QcFND,
a Software-Defined IoV (SDIoV). Each SDRSU contains two modules, i.e., SDN and blockchain.

The SDN module acts as an integral part in regulating the data flow in IoV and it implements the
functionality of load balancing. It can acquire and analyze the information about the workload for all
SDRSUs, and perform dynamic rerouting by sending corrective commands to SDN switch. On the
contrary, it takes some while for the traditional network to converge before correctly rerouting the
network traffic.

The blockchain module stores the evidence of events and calculates the possibility of the events.
By putting the resources such as the storage and the computing at the network edge (SDRSU) and
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near the data source (vehicles), QcFND provides rapid responses for the traffic events, which are
time-sensitive. On the contrary, the data has to travel back and forth between data sources and remote
servers under the scenario of cloud computing.

(a)

(b)

Figure 1. Quick Fake News Detection (QcFND) deployed in Internet of Vehicles (IoV). (a) A scenario
where a traffic event happens. (b) Network computing framework.

3.4. Work Flow

Figure 2 demonstrates the work flow of QcFND and how its modules interact with each other.
When a vehicle observes a traffic event, it submits a report about the traffic event to a nearby SDRSU.
However, the nearby SDRSU may redirect the report to another SDRSU due to load balancing,
not processing the report itself. The load balancer is implemented by SDN, and further details are
given in Section 4. Once the report is delivered to blockchain nodes in an SDRSU, it will eventually be
written to the blockchain on all SDRSUs. The transaction process is elaborated in Section 5. Whenever
a new block is committed, the smart contract infers the possibility of the presence of the traffic event
based on the algorithm of Bayesian network. The calculation process is presented in Section 6. Finally,
SDRSUs broadcast the warning message on the event occurrence possibility.

Figure 2. Work flow of QcFND.
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4. Software-Defined RSU

In this section, we present the detailed architecture of SDRSU, on which edge computing and
blockchain are implemented. The data structure of extended MAC table and the communication
protocol among load balancer, SDN controller, and SDN switch are also introduced. Finally, we analyze
the response time of QcFND using queuing theory and demonstrate the delay model.

4.1. Architecture of SDRSU

The components of SDRSU are shown in Figure 3. The SDRSU hardware consists of SDN switch
and standard x86 server. The former represents the infrastructure layer of a network device in
SDN and focuses on the data forwarding functionality. The latter represents the hardware layer
during the server virtualization and is a collection of hardware resources for computing, storage,
and networking. The SDRSU software is packaged as five virtual machines (VMs), including
vSDNController, vLoadBalancer, vPeerNode, vSmartContractNode, and vOrdererNode. The server
hypervisor is the virtualization layer sitting on the physical server and abstracts hardware resources
into these VMs.

Figure 3. The architecture of Software-Defined Road Side Unit (SDRSU).

From the function view, SDRSU comprises two modules SDN and blockchain, denoted as two
dotted box in Figure 3. The two modules are also illustrated in Figure 1b. In SDN module, SDN switch
is decoupled from related software counterparts, vSDNController and vLoadBalancer, which represent
the control layer and the application layer of network devices respectively. The vSDNController
implements the centralized control of the network rather than having each network device make
its own decisions [16]. The vLoadBalancer gathers the statistical information on SDN switch, and evenly
distributes the workload throughout the network via the vSDNController.

After being redirected to an SDRSU, the traffic reports are processed by blockchain nodes. In the
blockchain module, blockchain is implemented via three VMs, i.e., vPeerNode, vSmartContractNode,
and vOrdererNode. The further explanation about them is given in Section 5.

4.2. Protocol

The protocol dictates the communication procedure among SDN switch, vSDNController,
and vLoadBalancer. It specifies how to implement SDN network and how to achieve load balancing
in IoV.
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4.2.1. Extended MAC Table and Messages

We use the extended MAC table to record the state information of SDRSUs. It helps us determine
which SDRSU incoming reports should be best forwarded to. We assume that there is a waiting
queue in SDN switch, which accommodates the reports that cannot be processed immediately [33].
When SDRSU gets more reports than it can handle, some reports have to enter into the waiting queue.
We can choose the size of the waiting queue as an indicator of workload.

The extended MAC table is located in vSDNController and contains a set of state entries where
each entry contains three fields, i.e., MAC address, ingress port, and queue size. The first field indicates
the MAC address of vPeerNode, the second field denotes the port via which the vPeerNode can be
reached, and the third field is the size of the waiting queue of SDN switch located in the same SDRSU
with the vPeerNode. An example of state table is illustrated in Table 2.

Table 2. Extended MAC table.

MAC Address Ingress Port Queue Size

12-34-56-78-90-AB b 3
12-34-56-78-90-AC c 1
12-34-56-78-90-AD d 2

The messages of the communication protocol are listed in Table 3. They are used during the
extended MAC table preparation and the workload distribution, which are explained in Sections 4.2.2
and 4.2.3 respectively.

Table 3. Messages used by communication protocol.

Message Name Direction Description

SDNP_Queue_Size switch-to-controller The SDN switch broadcasts the size of its waiting queue to the network whenever the size changes.
SDNP_Packet_In switch-to-controller The SDN switch asks the vSDNController how to deal with its just received message.
SDNP_Balance_In controller-to-balancer The vSDNController asks the vLoadBalancer how to deal with the message considering load balancing.
SDNP_Balance_Out balancer-to-controller The vLoadBalancer tells the vSDNController to forward the message

via a specified port considering load balancing.
SDNP_Packet_Out controller-to-switch The vSDNController tells the SDN switch to forward the message via a specified port.

4.2.2. Update the Extended MAC Table

The extended MAC table in vSDNController reflects the dynamic state of SDN switches. When the
workload on a switch changes, the controllers in all SDRSUs have to be notified. In Figure 4a, the size of
the waiting queue in the left switch changes, and it broadcasts the SDNP_Queue_Size message to every
controller. All arrows represent SDNP_Queue_Size message, illustrating the propagation of the message
on the control plane. While the arrows labeled 1, 3, and 5 indicate the internal communication in the
SDRSU, those labeled 2 and 4 represent the communication between different SDRSUs. After each
vSDNController receives this message, it updates its extended MAC table.

4.2.3. Distribute the Workload

When an SDN switch receives a report, the local vSDNController and vLoadBalancer decide
how to handle the message. It is forwarded either to the local blockchain nodes within the same
SDRSU or to the remote blockchain nodes within another SDRSU. On average, the workload is evenly
distributed among SDRSUs in the network.
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(a)

(b)

Figure 4. Communication protocol. (a) How to update the extended MAC Table. (b) How to distribute
the workload.

In Figure 4b, we denote the control plane and the date plane with two types of arrows. The process
of workload distribution is explained as follows. First, the red vehicle submits the report of a traffic
event to the nearby SDRSU. Second, the local SDN controller is informed about the arrival of the report
via the SDNP_Packet_In message. Third, the load balancer is asked which SDRSU the report needs
to be forwarded to with SDNP_Balance_In, taking the load balancing into consideration. Fourth, the
load balancer queries the extended MAC table and tells the SDN controller to redirect the report to the
targeted port via SDNP_Balance_Out. Fifth, the SDN controller tells the SDN switch to forward the
report to the targeted port with SDNP_Packet_Out. Sixth, the report is forwarded from the local SDRSU
to the targeted SDRSU. Seventh, the SDN switch in the targeted SDRSU directly forwards the report to
the local blockchain nodes. Note that we explain how the report is further processed in Section 5 and 6.

4.3. Delay Model

Since one of the main goals for QcFND is to quickly detect fake news in IoV, we present the
delay model and compare the performance between the traditional network and our SDN network.
In this paper, the total delay refers to the time between when a report on a traffic event is submitted by
a vehicle and when the message on the event occurrence possibility is broadcast to all vehicles.



Sensors 2020, 20, 4360 10 of 24

We make three assumptions for the simplicity. First, all types of connectivity have the same
network latency Tn, and there is one connection per type of connectivity in the both networks. Second,
all reports are redirected to another SDRSU in the SDN network, but they are forwarded to the cloud
server in the traditional network. Third, the network delay in the same SDRSU is negligible.

In the traditional network, there are four types of connectivity, i.e., vehicle-to-RSU, RSU-to-cloud,
cloud-to-RSU, and RSU-to-vehicle. Therefore, the total delay Ttra is given by

Ttra = 4Tn + Ttra
r (1)

where Tn is the network delay on a connection and Ttra
r is the response time for a report to be

processed by blockchain nodes in the traditional network. In the SDN network, there are three types of
connectivity involved, i.e., V2S, S2S, and S2V. Therefore, the total delay Tsdn is given by

Tsdn = 3Tn + Tsdn
r (2)

where Tsdn
r is the response time in the SDN network.

The response time Ttra
r and Tsdn

r are different since the SDN network evenly distributes the
workload throughout the network. Intuitively, a report does not have to wait for a long time before
being processed in the SDN network. In the following, we utilize queuing theory to derive Ttra

r
and Tsdn

r .
In Figure 5a, reports are processed by an SDRSU in the traditional network, which is abstracted as

an M/M/1/K queue. The interarrival times between two messages are assumed to be independent
of each other and drawn from the exponential distribution with the parameter λ. The service times
for each report are assumed to be independent of each other and exponentially distributed with the
parameter µ. There is a single server and the system can only accommodate K reports. The reports are
served in First in, First out (FIFO). If a new report arrives when there are already K messages in the
SDRSU, the new report is dropped. According to [34], when ρ = λ

µ 6= 1, Ttra
r is obtained via

Ttra
r =

1
λ

ρ

1− ρ

1− ρK+1

1− ρK − 1
λ

(K + 1)ρK+1

1− ρK (3)

where Ttra
r represents the mean time a report takes in the system, including waiting time and service

time. Furthermore, the partial derivative of Ttra
r with respect to λ is given by

∂Ttra
r

∂λ
=

1
(λ− µ)2 +

K(1− ρ)2ρK−1

[(λ− µ)(1− ρK)]2
+

K(K + 1)ρ−(K+1)

[µ(1− ρ−K)]2
(4)

It can be easily seen that ∂Ttra
r

∂λ > 0 for λ > 0 and µ > 0.
When ρ = 1, Ttra

r is obtained via

Ttra
r =

K + 1
2λ

(5)

which is the exact limit of the right side of Equation (3) at ρ = 1, as proved via

lim
ρ→1

(
1
λ

ρ

1− ρ

1− ρK+1

1− ρK − 1
λ

(K + 1)ρK+1

1− ρK ) =
K + 1

2λ
(6)

According to Equations (3)–(6), we conclude that the response time Ttra
r strictly monotonically

increases with the increase of the arrival rate λ. This conclusion helps us analyze the performance of
our SDN network.

In Figure 5b, the messages are evenly distributed among n SDRSUs in the SDN network, which is
abstracted as n M/M/1/K queues. Each queue has exponential interarrival time distribution with
the parameter λ

n and exponential service time distribution with the parameter µ. For n > 1, obviously
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we have λ > λ
n . According to the above conclusion about the monotonicity, the comparison of the

response times is denoted as
Ttra

r > Tsdn
r (7)

Considering Equations (1) and (2), we eventually obtain

Ttra > Tsdn (8)

which indicates the improvement in the total delay after the adoption of our framework.

(a)

(b)

Figure 5. Delay model based on queuing theory. (a) Traditional network. (b) Software-Defined
Networking (SDN) network.

5. Blockchain

In Section 3, we mention that there are three blockchain nodes running on the same physical
server. In this section, we explain how these VMs work together to implement the blockchain facility
and provide fast data storage and computing services. Note that we utilize the technologies from
Hyperledger Fabric [35] to build the blockchain and implement the consensus mechanism PoA.

5.1. Data Structures

The reports are submitted as the evidence on traffic events. When they are stored and processed
on the blockchain, there are several data structures involved, such as reports, transactions and blocks,
which are shown in Figure 6.

Detailed information about traffic events is given in a report, most of whose fields are self-explanatory.
The assessment field has two possible values: positive and negative, denoting the occurrence and
nonoccurrence of events from the view of drivers. Every report is included in a report request, which is
sent to any vPeerNode for endorsement. The vPeerNode then generates a report response containing
the execution results from vSmartContractNode, such as returned value, read set, and write set.

A fully endorsed transaction consists of six parts: transaction ID, smart contract name, report
request, report response, and signatures of a vehicle and a vPeerNode. A block is composed of three
parts: header, data, and metadata. The header includes block number, previous block hash, and current
block hash. The data consists of a list of report transactions, which are invoked by vehicles. Timestamp
as well as certificate and signature of a vOrdererNode constitute metadata.

The blocks are interlinked in a way that the previous hash of block n + 1 is equal to the current
hash of block n. The big feature of our blockchain is that blocks do not include a nonce field to satisfy



Sensors 2020, 20, 4360 12 of 24

the requirement of proof of work (PoW) [36]. By contrast, the validity of the blocks is guaranteed
through the certificate and the signature field since PoA is adopted as the consensus protocol.

Figure 6. Data structures involved in blockchain.

5.2. Transaction Processing

PoA dictates the whole process during which the submitted reports are eventually distributed
across the network. That is, only authorized participants, i.e., vehicles and blockchain nodes,
are eligible to take part in the process. These clients and servers are identified via certificates, which
are used in the lifecycle of transactions.

The report request includes the certificate of a vehicle; the report response contains the certificate
of an endorsing vPeerNode. When enforcing the access control, vSmartContractNode extracts the
certificate from the report request, acquires the identity of the vehicle, and queries whether the access
is allowed. As committing peers, vPeerNodes check the identity of who executes the report request
and the identity of who assembles report transactions into a block.

All reports have the same lifecycle [35], which is demonstrated in Figure 7. First, the client application
submits a report request to any vPeerNode when a vehicle wants to report a traffic event. Note that
this is where the vLoadBalancer comes into play, and any vPeerNode can do the same thing. Second,
the vPeerNode checks the validity of the incoming request: format, signature, and access permission.
Then the request is formatted as a remote procedure call and is processed by the vSmartContractNode.
Third, the vSmartContractNode generates a report response. Fourth, vPeerNode returns the report
response to the client. Fifth, the client checks the signature of the incoming response, packages the
response and the signature into a report transaction, and sends the transaction to the vOrdererNode.
Sixth, the vOrdererNode simply collects transactions from all clients, orders them chronologically,
produces blocks of transactions, and delivers these blocks to all vPeerNodes in the network. Finally,
every vPeerNode checks the validity of the incoming blocks, including signature and version number,
and commits them to the blockchain.

5.3. Performance Analysis

The consensus protocol contributes significantly to the performance of our blockchain. PoA is fast
and energy efficient because blocks can be generated immediately by designated orderers. By contrast,
PoW is slow and energy-intensive because all peers are busy solving the hash problem, and it is
accepted by cryptocurrencies like Bitcoin and Ethereum [23,37].

Moreover, two parameters of Hyperledger Fabric affect the performance seriously, i.e., batch
timeout and batch size. The former denotes the maximum time to wait before creating a block, and the
latter is the maximum number of report transactions into a block. The block is generated whichever is
satisfied first. We experiment on the blockchain with the parameters varying, as shown in Section 7.
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Figure 7. How to disseminate a report via blockchain.

6. Bayesian Network

This section concentrates on how to use Bayesian network in fake news detection. To be specific,
we investigate how the submitted reports on the traffic event affect our judgement about the presence of
the event. The vSmartContractNode, a component of the blockchain module in an SDRSU, implements
the algorithm of Bayesian network, and probability updating is performed whenever a new block
is committed.

6.1. Network Structure

While more reports on a traffic event are committed on the blockchain over time, SDRSUs take
these reports as evidence and calculate the probability of the presence of the event via our Bayesian
network, which is shown in Figure 8.

Figure 8. Bayesian network for fake news detection.

There are two kinds of nodes in the figure. We establish the hypothesis variables with states
present and absent, denoting the traffic states every minute. For example, E[t] denotes the traffic state at
time t. Note that t is the time when the first report on the traffic event is submitted. For demonstration
purpose, the Bayesian network in Figure 8 only describes the traffic states in three minutes. We establish
the information variables with states positive and negative, denoting the assessments in the gathered
reports, whose data structure is illustrated in Figure 6. For instance, R[t][1] denotes the report that is
submitted by vehicle v1 at time t.

There are two types of links in the figure. The links between hypothesis variables and information
variables indicate that the state of events has an impact on the state of reports. For example,
three reports R[t][1], R[t][2], and R[t][3] are submitted in a minute due to the traffic state E[t]. The links
between two hypothesis variables indicate the assumption that the traffic state of the previous minute
has influence on the traffic state of the current minute, which in turn has influence on the traffic state
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of the next minute. That is, our network assumes the Markov property. For instance, the knowledge of
E[t] can be used to infer E[t + 1].

6.2. Conditional Probabilities

To estimate the conditional probabilities or the parameters for Bayesian network in Figure 8,
we make three assumptions here. First, the traffic event happens with a Poisson distribution at
an average of n per month. Second, the traffic event lasts with an exponential distribution at an
average duration t minutes. Third, the trustworthiness of vehicles is known. By the way, our previous
work focuses on deriving the global trust of vehicles [38].

The conditional probability of node E[t] reduces to the prior probability P(E[t]) since it has no
parents. An estimate of the prior probability relates to the arrival rate of the traffic event. The mean
number of the traffic events that appear in a minute is given by

λ =
n

30× 24× 60
=

n
43200

(9)

where we assume that there are 30 days in a month. P(E[t]) is equivalent to the probability that at least
one event happens in a minute, denoted by

P(E[t]) = P(X ≥ 1) = 1− P(X = 0) = 1− e−λ (10)

where X is the number of traffic events in a minute.
We consider P(E[t + 1]|E[t]) under two scenarios. When E[t] = present, the conditional

probability relates to the duration of the traffic event. The mean number of the traffic events that
disappear in a minute is given by

µ =
1
t

(11)

Then P(E[t + 1]|E[t]) is equivalent to the probability that the traffic event lasts at least 2 min due to the
memoryless property of our network, denoted by

P(E[t + 1]|E[t] = present) = P(T ≥ 2)

=
∫ ∞

2
µe−µTdT = e−2µ (12)

where T is the duration of traffic events. When E[t] = absent, the conditional probability is identical to
Equation (10), given by

P(E[t + 1]|E[t] = absent) = 1− e−λ (13)

Note that Equations (12) and (13) are irrelevant to time t. That is, all links between two hypothesis
variables have the same strength.

When we compare E[t] with R[t][1], there are four possible results, i.e., true positive, true negative,
false positive, and false negative. We use the trustworthiness to reflect the extent to which vehicles
correctly report the traffic events. It is drawn from long-term observation and normalized between 0
and 1. For vehicle v1, the conditional probabilities can be given by

P(R[t][1] = positive|E[t] = present) = w1 (14)

P(R[t][1] = negative|E[t] = absent) = w1 (15)

P(R[t][1] = positive|E[t] = absent) = 1− w1 (16)

P(R[t][1] = negative|E[t] = present) = 1− w1 (17)

where w1 is the trustworthiness of v1. For other vehicles, we can easily obtain similar formulas.
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6.3. Probability Updating

This section introduces the basic idea for probability updating. We take the Bayesian network
in Figure 8 as an example and calculate the posterior probability P(E[t + 2]|x). The evidence x is
accumulated until time t + 2 and given by

x = {R[t][1] = r[t][1], R[t][2] = r[t][2], R[t + 1][3] = r[t + 1][3], R[t + 1][4] = r[t + 1][4],

R[t + 1][5] = r[t + 1][5], R[t + 2][6] = r[t + 2][6]} (18)

where r[t][1], r[t][2], r[t + 1][3], r[t + 1][4], r[t + 1][5], r[t + 2][6] ∈ {positive, negative} represent the
traffic reports submitted by six vehicles at different time periods.

The unique joint probability distribution P(U) of our network is given by the product of all
conditional probabilities specified in Section 6.2. Based on the chain rule for Bayesian network,
we have

P(U) = P(E[t], E[t + 1], E[t + 2], R[t][1], R[t][2], R[t + 1][3], R[t + 1][4], R[t + 1][5], R[t + 2][6])

= P(E[t])P(E[t + 1]|E[t])P(E[t + 2]|E[t + 1])P(R[t][1]|E[t])P(R[t][2]|E[t])P(R[t + 1][3]|E[t + 1])

P(R[t + 1][4]|E[t + 1])P(R[t + 1][5]|E[t + 1])P(R[t + 2][6]|E[t + 2]) (19)

After inserting the evidence x, we obtain

P(U, x) = P(E[t], E[t + 1], E[t + 2], r[t][1], r[t][2], r[t + 1][3], r[t + 1][4], r[t + 1][5], r[t + 2][6])

= P(E[t])P(E[t + 1]|E[t])P(E[t + 2]|E[t + 1])P(r[t][1]|E[t])P(r[t][2]|E[t])P(r[t + 1][3]|E[t + 1])

P(r[t + 1][4]|E[t + 1])P(r[t + 1][5]|E[t + 1])P(r[t + 2][6]|E[t + 2]) (20)

According to Bayes’ theorem, P(E[t + 2]|x) is calculated via

P(E[t + 2]|x) = P(E[t + 2], x)
P(x)

=
∑{E[t],E[t+1]} P(U, x)

∑{E[t],E[t+1],E[t+2]} P(U, x)
(21)

where P(E[t + 2], x) and P(x) are derived from P(U, x) via marginalization [39].

7. Simulations and Experiments

This section evaluates the performance of QcFND from three aspects, waiting time, transaction
time, and accuracy. The waiting time refers to the time between when traffic reports arrive at the
ports of SDRSUs and when they can be actually processed by blockchain nodes. The transaction time
refers the time we need to write the reports on the blockchain. The waiting time and transaction time
constitute the main part of response time Ttra

r or Tsdn
r . The accuracy relates to how well the truth can

be discovered from the received reports.
We utilize three experimental platforms to carry out the evaluations respectively, i.e., Veins [40],

Hyperledger Fabric [35], and Netica [41]. Veins is an open-source framework for running vehicular
network simulations, and it is based on two simulators: OMNeT++ [42] and SUMO [43]. Hyperledger
Fabric is an enterprise-grade permissioned distributed ledger platform. Netica is a comprehensive
program for working with Bayesian networks.

Figure 9 illustrates how to generate the simulated reports when we assume that a traffic event
happens. For each vehicle, we draw a random number from [0, 1], which is compared with the
trustworthiness of the vehicles. If the random number is less than the trustworthiness, the vehicle
submits a positive report; otherwise, it submits a negative report. For instance, it is likely that fake
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news is submitted when the trustworthiness is low. While the three experimental platforms experiment
with these reports, the performance of QcFND is tested and the results are analyzed.

Figure 9. How to simulate traffic reports.

7.1. Waiting Time

The waiting time is measured under two scenarios, with and without the load balancer.
We implement the load balancing of SDN network in OMNeT++.

7.1.1. Traffic Network

We simulate road traffic using a real map of the German city of Erlangen, which is shipped with
Veins and shown in Figure 10a. The study area is about 2000 m long and 2700 m wide. It consists of
a set of urban roads, intersections and obstacles. There is an accident near the crossroad at the center of
the figure. Red polygons indicate buildings, which are obstacles in wireless communication. The traffic
demand consists of 250 vehicles, each of which is going to pass the accident spot. Once they observe
the accident, they submit the reports on the accident to the nearest SDRSU.

7.1.2. Communication Network

Vehicles and SDRSUs implement the Intelligent Transport System (ITS) protocol stack, which uses
IEEE 802.11p and IEEE 1609.4. Vehicles are represented by small blue boxes in Figure 10b. There are
five SDRSUs in the figure, represented by red circles. The SDRSU denoted by the small red circle
is connected with other four SDRSUs denoted by the big red circles, and there is a 0.1 s delay on
the connections. The communications between vehicles and SDRSUs are denoted by blue lines in
Figure 10b. We adopt default configurations in Veins. The path loss and shadowing models are enabled,
as they have influence on the wireless communication.

SDRSUs implement the functionality of load balancing, as described in Section 4. Due to the
accident, vehicles may generate more reports than an SDRSU can handle. Hence, a simple load
balancing policy is enforced. We choose the SDRSU with the shortest waiting queue when forwarding
the incoming reports. Note that the maximum size of the buffer queue in SDRSU is set to 10.

7.1.3. Results

Table 4 demonstrates the simulation results, which are obtained in the duration of each simulation
cycle, 240 s. Two settings have a significant impact on the waiting time and the report loss,
i.e., processing time and load balancing. The former ranges from 0.5 s to 3 s, and the latter indicates
whether the load balancer is enabled. This paper tests the performance of network with these
parameters varying.
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(a)

(b)

Figure 10. The load balancing implemented in IoV. (a) Traffic network in Erlangen. (b) SDN network.

Table 4. The waiting time and the report loss.

Processing Time (s) Load Balancing Received (#) Arrival Time (s) Served (#) Leave Time (s) Waiting Time (s) Dropped (#)

0.5 No 166 148.355 166 148.953 0.098 0
0.5 Yes 166 148.355 166 148.934 0.079 0
1 No 166 148.355 164 153.110 n/a 2
1 Yes 166 148.355 166 149.434 0.079 0
2 No 166 148.355 96 143.956 n/a 61
2 Yes 166 148.355 166 150.434 0.079 0
3 No 166 148.355 66 142.704 n/a 91
3 Yes 166 148.355 166 151.439 0.084 0

The first row indicates the case where it takes 0.5 s to process a report and the load balancer is
not implemented. There are 166 reports submitted by vehicles, and the mean arrival time of these
reports is at t = 148.355 s. There are 166 reports served by traditional RSUs, and the mean leave time
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of these reports is at t = 148.953 s. Therefore, we obtain the waiting time 0.098 s, which is calculated
via 148.953− 148.355− 0.5. In addition, the number of dropped reports is 0. In the second row, the load
balancer is implemented in SDRSUs and the mean leave time is at t = 148.934 s.

In the third row, there are 164 served reports and the mean leave time of these reports is at
t = 153.110 s. Since there are two dropped reports due to the overloads, the mean waiting time of
166 reports is unavailable. In contrast, there is no dropped report due to the load balancer, and the
waiting time is 0.079 s.

We can see that the number of dropped reports increases with the increase of processing time when
the load balancer is not enabled. However, when the load balancer is enabled, there is no dropped
report and the waiting time increases a little with the increase of processing time. In conclusion,
the performance of IoV is greatly improved because of the introduction of SDRSUs.

7.2. Transaction Time

The transaction time is measured with two parameters varying. The blockchain adopts PoA as
its consensus mechanism to quickly share the submitted reports across IoV.

7.2.1. Experimental Environment

Our blockchain is deployed on a machine with Intel Xeon E5-26xx v4 2.4 GHz CPU and 2 GB
RAM running Ubuntu 16.04.1 LTS. All virtual servers are built with Docker 18.06.1-ce, that is, they are
virtualized into containers sharing the hardware and the operating system kernel [44]. We create five
vPeerNodes and one vOrdererNode. A certificate authority (CA) dispenses X.509 certificates used to
identify servers and clients. X.509 certificates are used in the lifecycle of transactions. The blockchain
network is created by Docker Compose, which is a tool for defining and running multi-container
Docker applications.

7.2.2. Results

Table 5 demonstrates the transaction time in three cases. The results are averages and obtained
through running the write transactions three times. Note that CA–CE indicate the commitments on
five vPeerNodes.

Table 5. The transaction time of a report.

Batch Size (#) Batch Timeout (s) Endorsement (s) Ordering (s) CA (s) CB (s) CC (s) CD (s) CE (s) Transaction Time (s)

1000 20 0 20.042 20.230 20.206 20.246 20.241 20.220 20.246
1 20 0 0.048 0.290 0.278 0.273 0.282 0.289 0.290

10 2 0 2.038 2.184 2.191 2.180 2.193 2.194 2.194

The table shows the timing of write transactions under the condition of the parameters batch
size and batch timeout, including the time of endorsement on an endorsing peer, block generation
on the orderer, and commitment on all peers. It can be seen that the transaction time depends on the
two parameters. For example, the first row shows the process as follows. A vPeerNode accepts a
report on a traffic event at t = 0 s, and it then endorses the report. The vOrdererNode generates a
block containing the report transaction at t = 20.042 s. Subsequently, five vPeerNodes commit the
block to the blockchain at t = 20.230, 20.206, 20.246, 20.241, 20.220 s, respectively. Therefore, the report
transaction is available on all peers at the latest time, namely t = 20.246 s. Consequently, the transaction
time of 20.246 s is obtained with batch timeout equal to 20 s and batch size equal to 1000. The second
and third rows are with the transaction time 0.290 and 2.194 s, respectively.

We can explain the transaction latency in Table 5. In the first and third row, the vOrdererNode
has to wait 20 s and 2 s respectively before creating a block because there is only one incoming report
transaction that needs to be packaged into the block and the batch timeout occurs first. In the second
row, the batch size is 1 and there happens to be one report transaction, so the batch size is satisfied
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first and the vOrdererNode does not have to wait 20 s before creating a block. In conclusion, we can
configure the batch size and the batch timeout to adjust the transaction time as acquired.

7.2.3. Comparison to Existent Works

The consensus mechanisms adopted by different blockchain networks contribute significantly to
the performance difference. QcFND chooses PoA, which is fast and energy efficient because blocks can
be generated immediately by designated orderers. Bitcoin and Ethereum adopt PoW, which is slow
and energy-intensive because all peers are busy solving the hash problem. Bitcoin and Ethereum have
to take 600 s and 10 s respectively to write a transaction on the blockchain [27]. The scheme from [24]
uses PoW as well, and its write latency is 600 s. The scheme of [31] adopts PoE, and it takes 22.4 s
for 16 events in an hour to be synchronized across 160 nodes. A joint PoW and PoS is used in [32],
resulting in the adaptive block generation time.

7.3. Accuracy

In Section 6, we calculate the posterior probability of traffic events given submitted reports.
Actually, the accuracy and the posterior probability are equal in amount as they both denote the
coherence between the truth and the guess. This section investigates how the accuracy changes with
the accumulation of evidence.

7.3.1. Simulation Settings

Figure 11 demonstrates the Bayesian network that we create with Netica. Traffic events 1–4 represent
the traffic state in four consecutive minutes; reports 1–40 denote the traffic reports submitted by
40 vehicles with different trust levels in the same time period.

It is assumed that a kind of traffic event happens 10 times a month and the average duration
of the traffic event is 20 min. According to Equations (9) and (11), we have λ = 0.000231 and
µ = 0.05. Therefore, the probability that the traffic event happens in a minute is P(E[t]) = 0.000231
via Equation (10), and the probability that the traffic event will persist for the next minute is P(E[t +
1]|E[t]) = 0.904837 via Equation (12). The trustworthiness of vehicles is drawn from a truncated
normal distribution. The mean of the distribution ranges from 0.1 to 0.9, in step of 0.1, the standard
deviation is set to 0.1 and the domain is restricted to [0, 1]. Hence, we get the conditional probability in
Equations (14)–(17). It is also assumed that there are 10 reports gathered in a minute.

Figure 11. Screenshot of Bayesian network for QcFND.



Sensors 2020, 20, 4360 20 of 24

Figure 12 illustrates how to obtain the accuracy. First, we assume a traffic event happens. Second,
vehicles submit reports on the event based on their trust levels. Third, the posterior probability is
updated via Bayesian network whenever a report is received. Fourth, the derived posterior probability
is taken as the accuracy since it estimates the probability of a traffic event that is assumed to be present.

Figure 12. How to obtain the accuracy.

7.3.2. Results

The results are shown in Figure 13. In each simulation cycle, there is a total of 40 reports received
in four minutes. We experiment with the population of vehicles whose trustworthiness is drawn from
different normal distributions, and the posterior probability may rise and fall over time as more and
more reports are collected.

In Figure 13a, it can be observed that QcFND reaches high level of accuracy even if vehicles
are with low levels of trust. When the trustworthiness is drawn from normal(0.1, 0.12), we get the
results close to 1 since the 5th report, which accurately represents the truth. That is, QcFND gives the
correct results quickly. Most results are greater than 0.9 since t = 2 min when the trust levels obey
normal(0.2, 0.12), which is good enough to reflect the truth. In other words, we achieve the correct
results one minutes after the presence of the traffic event.

When the trustworthiness comes from normal(0.3, 0.12) or normal(0.4, 0.12), most results at
t = 4 min are greater than 0.8, which is good enough to reflect the truth. That is, we achieve
the satisfactory accuracy four minutes after the traffic event happens, although there are some
vibrations beforehand.

In Figure 13b, we can see that QcFND reaches high level of accuracy when vehicles are with
high levels of trust. When the trustworthiness is drawn from normal(0.9, 0.12), we get results close
to 1 from the 3rd report, which accurately represents the truth. That is, the system almost gives the
correct results immediately. Most results are greater than 0.9 since t = 2 min when the trust levels obey
normal(0.8, 0.12), which is good enough to reflect the truth. In other words, we achieve the correct
results one minute after the presence of the traffic event.

When the trustworthiness comes from normal(0.7, 0.12), most results at t = 4 min are greater
than 0.9, which is good enough to reflect the truth. That is, we achieve the satisfactory accuracy
four minutes after the traffic event happens, although there are sharp vibrations beforehand. When
the trustworthiness obeys a normal distribution normal(0.5, 0.12) or normal(0.6, 0.12), the accuracy
remains very low. The results cannot reflect the truth at all since it says the probability of the traffic
event is negligible. In other words, vehicles with the mean 0.5 or 0.6 cannot provide useful information
to support the estimation of traffic events.

In conclusion, the trustworthiness of vehicles has a significant impact on the timeliness and
accuracy of QcFND in Bayesian network. If the trust levels are far away from the intermediate value
0.5, QcFND needs less time and less evidence to find the truth.

7.3.3. Comparison to Existent Works

Here we compare the performance of QcFND with a few works introduced in Section 2.4 based
on the experimental results.

In [4], the minimum counting threshold is 5, which means that at least 5 traffic reports from the
vehicles that detect the warning accident are needed to evaluate the credibility of the warning event.
In contrast, QcFND only needs 3 traffic reports to estimate the probability of the warning event if these
reports are from vehicles with high trust levels. Therefore, QcFND can obtain accurate results via less
evidence, resulting in faster response time.
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(a)

(b)

Figure 13. The accuracy or posterior probability of QcFND. (a) Vehicles with low level of trust.
(b) Vehicles with high or middle level of trust.

In [5], the decision accuracy decreases with the number of vehicles with low trust levels, which
give wrong opinions on the traffic accident. However, it is not the case for QcFND since we can still
obtain accurate results even if traffic reports are from untrustworthy vehicles, as shown in Figure 13a.
For instance, if a vehicle with a low trust level submits a negative traffic report, it is reasonable to draw
the conclusion that the traffic accident has very likely happened.

In [29], the message detection accuracy never reaches 1, which means there is always an
opportunity that we make wrong judgement about traffic events. Besides, the accuracy drops rapidly
with the growing capacity of untrusted vehicles. In contrast, QcFND achieves totally correct results
when the reports are from vehicles with high or low trust levels.

In [31], the event success rate is affected seriously by the threshold of the 2nd pass, which is not
easy to configure. Moreover, the accuracy also drops dramatically when the percentage of untrusted
vehicles increases. By contrast, QcFND has no parameters that need to be preset based on trial and
error, and obtains accurate results even when untrusted vehicles are present.

8. Conclusions

This paper aimed to address the problem of how to quickly detect the fake news in IoV. Hence,
we proposed a network computing framework QcFND to achieve the goal, which utilizes the
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technologies from SDN, edge computing, blockchain, and Bayesian networks. First, we designed an
SDIoV, which is composed of interconnected SDRSUs and implements the load balancing to speed up
the processing of reports. Second, we designed a blockchain, which was deployed on the SDRSUs and
adopts PoA as its consensus mechanism to share the reports quickly and securely. Third, the algorithm
of Bayesian network was also deployed on the SDRSUs, which calculates the posterior probability of a
traffic event considering the prior probability and the duration of the traffic event, the trustworthiness
of vehicles, and the collected reports. The simulation results demonstrate the improvement in the
performance of QcFND from three aspects, i.e., waiting time, transaction time, and accuracy.

Despite the work done in this paper, there is still further research ahead. First, a complicated
load balance algorithm needs to be considered. For example, the geographical distance between
SDRSUs can be taken into consideration. Second, we need a method to determine which SDRSU hosts
the vOrdererNode. Third, we can explore more appropriate ways to acquire the parameters of our
Bayesian network. Fourth, QcFND needs to be tested based on real-world cases to further validate
its effectiveness. Fifth, we can deploy QcFND in a production environment to further investigate
its performance.
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