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This theme issue explores how and why behavioural innovation occurs, and

the consequences of innovation for individuals, groups and populations.

A vast literature on human innovation exists, from the development of

problem-solving in children, to the evolution of technology, to the cultural

systems supporting innovation. A more recent development is a growing lit-

erature on animal innovation, which has demonstrated links between

innovation and personality traits, cognitive traits, neural measures, changing

conditions, and the current state of the social and physical environment.

Here, we introduce these fields, define key terms and discuss the potential

for fruitful exchange between the diverse fields researching innovation. Com-

parisons of innovation between human and non-human animals provide

opportunities, but also pitfalls. We also summarize some key findings specify-

ing the circumstances in which innovation occurs, discussing factors such as

the intrinsic nature of innovative individuals and the environmental and

socio-ecological conditions that promote innovation, such as necessity, oppor-

tunity and free resources. We also highlight key controversies, including the

relationship between innovation and intelligence, and the notion of innova-

tiveness as an individual-level trait. Finally, we discuss current research

methods and suggest some novel approaches that could fruitfully be

deployed.
1. Introduction
Innovation is a key characteristic of human life and of the success of our species.

Culturally transmitted innovations allow humans to survive and prosper in the

toughest environments, we have extended lifespan through the creation of medi-

cines, vaccines and improved sanitation, and our very societies and social

networks are themselves constructed by social and technological innovations

[1,2]. Such innovation has also had costs and raised new challenges, from techno-

logical competition in business, to exposure to novel pathogens, and to literal arms

races. The importance of innovation to human life is reflected in the numerous insti-

tutions and programmes devoted to promoting innovation, and it is not surprising

that human innovation has a rich history of research, with contributions from fields

as diverse as anthropology, archaeology, economics, psychology, philosophy and

sociology [2–8].

Innovation is also widespread in non-human animals (henceforth, ‘animals’),

and evidence is mounting for its adaptive importance [9,10]. Innovation is

thought to play important roles in animal ecology and evolution, for instance

facilitating range expansion and subspecies diversification, and is a vital first

step of social learning and cultural diversification. Animal innovations appear

in both the social domain (e.g. new song variants, novel mating and dominance

displays, some instances of tactical deception) and the non-social domain

(e.g. novel tool use, diets or foraging techniques) [9,10]. Like human innovation,

research on innovation in non-human animals has a rich history (for review, see

[11]). Key in the development of interest in animal innovation were early papers
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identifying the appearance and spread of novel behaviour

patterns in wild populations, particularly in birds, primates

and cetaceans (e.g. [12–16]), as well as suggestions that inno-

vation could shape evolutionary processes (e.g. [17,18]).

Large-scale surveys taking advantage of the rich ornithological

literature established that innovations were taxonomically

widespread, rather than performed by a few select individuals

or species, setting the stage for investigations of evolutionary

patterns and how innovative propensities evolved [19,20].

Also relevant was work on tactical deception in primates,

which identified many novel behaviour patterns [21,22]. How-

ever, research on animal innovation has been more limited in

scope than that on human innovation, and it is only relatively

recently that animal innovation has been identified as a field

of research [9], although many related fields of work touch on

behavioural innovation, such as research on phenotypic plas-

ticity and social learning [23,24]. Interest in animal innovation

has grown rapidly, as evidenced by edited volumes, reviews,

models and commentaries [9,10,25–28], as well as numerous

empirical articles (see e.g. [29–31] for review).

However, at first sight, there is a vast gulf between the fora-

ging innovations of birds and primates and the incredible

complexity of human creativity, as exemplified by our compu-

ters, satellites and particle accelerators. Yet, the capacity for

human innovation must itself have evolved. Why and how

were human innovative capabilities favoured by selection?

Did these capacities develop and evolve independently, or as

part of a suite of traits, or even as an emergent property of

other traits? This theme issue explores both human and

animal innovation to examine whether useful links can be

made between these domains of research. We bring together

authorities on human innovation, childhood creativity and

animal innovation, to promote an up-to-date interdisciplinary

dialogue. By inviting experts in philosophy of science, anthro-

pology, developmental psychology, behavioural biology and

evolutionary biology, we provide a forum for the exchange

of methods, theory and paradigms. Yet with this cross-

disciplinary dialogue comes misalignment and disagreement.

In this brief introduction, we highlight points of consensus

and disparity and make links to the wider field.

Cross-disciplinary dialogue is important, because a deeper

understanding of innovation, in terms of its antecedents, devel-

opment, transmission and consequences, has clear practical

and social implications. Economic growth and scientific progress

both demand constant innovation. Rapidly changing environ-

ments (derived from, for instance, climatic change, economic

crises or depleting resources) mean that humans, and often

other species too, must be adaptable. However, innovation

carries risks, and findings in humans and animals suggest that

innovation can have significant costs [6,32–34]. For example, a

bias towards innovation means that companies frequently over-

invest in innovation, risking bankruptcy, when circumstances

dictate that maintaining the status quo or imitating other firms

would be a more effective strategy [35]. Establishing what under-

pins successful innovation, and isolating which processes and

conditions facilitate and which impede it, has wide-reaching

implications for issues such as the development of new technol-

ogies, tracking change effectively and the avoidance of

maladaptive behaviour by endangered species. A current con-

cern, for example, is that modern childhood may curtail the

development of creative thinking through over-instruction,

pressure to follow social norms and a lack of free time to explore,

and thus potentially undermine innovation [36]. Isolating the
contexts in which innovation occurs potentially allows society

to promote innovation by facilitating the processes that underpin

an individual’s, or group’s, ability to design and evaluate alterna-

tives (e.g. this issue: [37]). These issues are equally important for

other animals. There is now comparative evidence that innova-

tive species are more likely to survive in new locations

compared to less innovative species, and within-species evidence

linking innovation to fitness measures [38–41]. This theme issue

provides a valuable step towards the longer term possibility of

constructing environments and designing interventions to facili-

tate innovation where appropriate, and, indeed, establishing

when and what kind of innovation is appropriate.
2. Categorizing and defining innovation
A recurring controversy within and between fields is how to

adequately define innovation (for extensive discussion see

[11,25,42,43] and accompanying commentaries). Indeed,

some authors have raised the concern that the attempt to

over-define innovation can stifle, rather than increase pro-

gress [44]. We certainly agree that definitional arguments

can provide more heat than light, particularly in the absence

of knowledge about the processes that underlie innovation or

the functional consequences of different types of innovation.

Nonetheless, some agreement over definitions is important to

effective dialogue, both within and between subfields, and to

allow those outside the field to grasp the phenomenon under

investigation. Agreement over definitions is particularly pro-

blematic given the comparative nature of our enterprise and

the range of behaviour under investigation: what definition

can sensibly capture a novel scientific theory, a 5-year-old

child struggling to solve a new task easily mastered by

8-year-olds, and an animal shifting to a new food, host or

foraging technique?

Building on previous treatments (e.g. [15,17,45]), Reader &

Laland [11] proposed two definitions, distinguishing between

innovation as a product and a process. An innovation (sensu
product) is ‘a new or modified learned behaviour not previously

found in the population’, while innovation (sensu process) is ‘a

process that results in new or modified learned behaviour and

that introduces novel behavioural variants into a population’s

repertoire’ (p. 14). These definitions were explicitly operational

and designed to identify innovations in natural, free-living

populations, rather than novel behaviour evoked by experimen-

tal testing. Innovations were defined as ‘learned’ to eliminate

accidental occurrences and to focus on behavioural variants

likely to be functionally important to the individual (since unim-

portant behaviours would presumably not be retained in the

innovator’s repertoire). While two individuals clearly can inde-

pendently invent the same behaviour, only the first instance

would count as innovation under the current definition. This

stance thereby distinguishes innovation from other learned be-

haviour. The ‘not previously found in the population’

criterion is an attempt to operationalize the difficult question

of what is sufficiently novel to ‘count’ as innovation [46,47],

although ‘not previously found’ is still open to interpretation

and possible bias. Comparative studies of innovation that rely

on spontaneous innovations have thus implemented methods

to address such possible biases (see below). The population-

level focus is crucial for such studies since counting repeated

cases of an innovation would lead to inflated innovation rates

in taxa where the social learning of innovations is frequent.
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However, it should be noted that different definitions may be

appropriate when using an experimental approach [42,43]

where individuals or groups are presented with novel

problem-solving tasks (see §3).

When considering innovation, authors in this theme

issue [18,34,48–50] and beyond [25,43,51–55] have highlighted

the possibility for further delineation. Sub-categorizing inno-

vation can facilitate a deeper understanding of the behaviour

under investigation. For example, some innovation may

occur through chance, such as learning as a result of accidental

acts, copying error or natural occurrences. These have been

labelled passive [56], type II [57] or low level [43], while

other innovations seemingly occur through causal inference

and deliberate action, sometimes called complex [58], type I

[57] or active [56]. Equally, researchers such as Mesoudi et al.
[55] have looked at the many forms of innovation possible

through individual or group endeavour, including novel

invention (produced by trial and error, insight or exploration),

refinement (modification or improvement of existing variants),

recombination (combining existing elements to form a new var-

iant) and exaptation (reuse beyond the original context). Such

subdivision raises the questions of which species demonstrate

which forms of innovation, which abilities are necessary for

each type of innovation, and whether specific forms of inno-

vation rely on similar underlying mechanisms across species.

The value of such subdivision will depend upon their bonds

to underlying mechanisms and/or to functional consequences.

Moreover, for categories to be useful when studying the evol-

ution of innovativeness, it is important to use criteria that can

be objectively measured in a wide range of taxa.
3. Approaches to the study of innovation
Innovation is often conceptualized as rare, although rates of

innovation vary between species, with humans being unusually

innovative [8]. Certainly innovation may be rarely observed

among many animals, and this rarity can present a problem

for studying innovation, since repeated occurrences allow pat-

terns and processes to be elucidated. Broadly, animal research

has addressed this issue in two ways: through observational

studies of spontaneous innovations (‘innovation counts’) or

through the study of innovations prompted by the presentation

of novel problems or situations by the researcher (‘innovative

problem-solving’). Parallel approaches are found in human

research. Both animal and human research can be conducted

under controlled, laboratory conditions or in field settings,

which in humans often means within schools or businesses.

In animals, the spontaneous innovation count approach

involves intense surveys of behaviour, either based on pub-

lished literatures within taxa where there is a tradition of

reporting innovations (e.g. birds and primates; this issue:

[20,49,50]), or long-term direct observational surveys of behav-

iour in free-ranging or semi-captive populations (e.g. this

issue: [34]; see also [59]). These approaches have been combined

with comparative methodologies, comparing populations,

species or higher taxonomic levels, as well as used to compare

rates of innovations across classes of individuals (e.g.

[19,51,53,60,61]). Comparative analyses of published innovation

reports have examined how innovation co-evolves with brain

structure, behaviour, life-history and other traits, with path ana-

lyses now being employed to explore possible causal pathways

[49,50]. The direct observational approach, closely linked to
investigations of animal culture [62–64], has examined popu-

lation differences in innovation rates in both wild and wild

versus captive groups, also addressing environmental and

social influences on innovation (this issue: [34]). Note that

these methods count the number of different innovations, and

thus provide an index of the variety of innovation observed,

rather than the reliance on or complexity of innovation. While

informative, these observational methodologies are open to

the possibility of reporting or other subjective biases, although

measures can be taken to account for such problems

[29,61,65]. Another problem is that the number of innovations

documented is often relatively low, even with extensive surveys.

For example, over 2500 avian innovations and over 500 primate

innovations have been compiled from published literature

[20,49,53,61], an impressive amount, but subdividing inno-

vations by category or taxonomic group reduces the numbers

per division considerably, compromising fine-grained analyses

[49]. Furthermore, in comparative surveys of innovation in pri-

mates [61], relatively few species are recorded as innovators.

This could reflect innovation being taxonomically restricted or

could be a by-product of the survey method, which may be

biased towards recording those innovations most salient to

human observers, with those reported being in reality only the

‘peak’ of the innovations performed. In humans, there are par-

allels to both the database and direct observational

methodologies for studying spontaneous innovations, for

example comparing innovation rates using patents, or observa-

tional case studies within particular businesses [35]. While these

observational studies in animals and humans allow real-world

innovations to be investigated, providing external validity, the

reliance on observational methods and spontaneous inno-

vations that may only rarely be expressed or detected can

compromise the power to determine underlying processes.

In contrast, presentations of novel problems by exper-

imenters enable repeated instances of innovation to be

observed in a short time span. This approach, now often

termed ‘innovative problem-solving’ [31], has a long history

in comparative psychology. A typical evoked-innovation

study involves introducing a new problem to an individual,

or, less often, to a group, allowing study of psychological

processes, the adaptive consequences of innovation, and

social transmission. The method also allows experimental

manipulation of factors hypothesized to impact innovation,

although this is still relatively uncommon in animal work at

least [66]. In animal work and much research with children,

the task often involves extraction of a reward from a puzzle.

This method has been applied to numerous animal species in

both captivity and the field, including fish, birds and mammals

(review: [31]), and appears in several studies within this theme

issue [20,37,67–70]. A particularly interesting subset of studies

attempts to uncover the processes underlying spontaneously

observed innovations with presentations of analogue tasks in

the wild or captivity, such as monkey potato washing [13,71],

tit milk-bottle opening [12,72–74], rats diving for molluscs

[75] or finches opening sugar packets ([76,77]; issue cover

image). Evoked-innovation studies bring their own problems,

particularly in ensuring that the task has relevance to ‘real-

world’ innovation in natural environments while still being

novel, that the task captures general propensities rather than

idiosyncratic performance on one particular problem, and in

ensuring that the task is fair to the motivation, perceptual

and motor capacities of different individuals or taxa. These

are familiar problems to comparative psychologists broadly



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150182

4
and within our fields too, but they do not always receive the

attention they deserve (see e.g. [78] and commentaries

thereon). Like studies of spontaneous innovation, there are

measures to address such problems [79], and several additional

measures are suggested in papers within this issue (see

[18,37,66,80]). For example, presentation of a variety of tasks

that differ in difficulty can ensure a reasonable number of sol-

utions are observed and that the consistency of innovativeness

across tasks and contexts is established. Using task presenta-

tions allows innovation to be easily observed and recorded.

A major challenge is to establish the correspondence between

innovations produced in the presentation of novel tasks and

innovations noted during observational analyses of monitored

populations. For example, in captive studies hunger and food

rewards may force goal-directed innovation, with the problem

and solution pre-defined by the task presented (this issue: [18]).

In the wild, animals may have many behavioural alternatives

available to them besides innovation. However, similar pro-

cesses have been claimed to underlie innovativeness in novel

problem-solving tests and in comparative analyses, leading

to the conclusion that the problem-solving approach is

indeed a useful paradigm for studying innovation [31].

Studies of innovative problem-solving provide an illus-

tration of the growing cross-fertilization between animal

and human literatures (e.g. [2,9,10]). Developmental psychol-

ogists have adopted paradigms used by animal behaviour

researchers to examine innovation. Two clear examples

appear in this theme issue [67,69]. Beck et al. [67] use a task

originally presented to New Caledonian crows Corvus mone-
duloides (the hook task; [81]) to investigate children’s

innovative abilities in the same domain (the ‘floating

peanut’ task has been used in a similar way: [82,83]). The

hook task requires an individual to manipulate available

resources (bend a piece of wire such as a pipe cleaner) in

order to manufacture a tool to retrieve a bucket from a tall

narrow tube. Variance in performance shows that the task

is challenging, but not impossible for young children and

crows, leading to questions about the differences that under-

pin this individual variation. Surprisingly, even children

approaching 8 years of age have difficulty inventing the sol-

ution themselves, but young children readily solve the task

by watching an experienced model, showing that the motor

acts can easily be performed. Such results have led to the

proposition that children are poor tool innovators [43], with

social learning masking this deficit (for a similar conclusion

in animals, see [34]). A second paradigm, ‘artificial fruits’

[69], has proved valuable across the fields of developmental

psychology and animal behaviour and has allowed compara-

tive study of chimpanzees and children (e.g. [84]). Artificial

fruits are extractive foraging problems, aiming to replicate

fruits with defences such as a husk that must be removed

to reach a reward. The fruits can be designed with multiple

solutions to reach the food, and also so that cumulative

actions (such as creating new tools) can lead to better

rewards. Such manipulations allow researchers to discover

if similar intrinsic or contextual factors underpin the

innovation seen in different species.
4. Social aspects of innovation
The aforementioned work on innovative problem-solving, and

indeed much of the work on spontaneous innovation counts,
has focused on what Sterelny (this issue: [80]) calls ‘games

against nature’: solving ecological, not social problems.

Sterelny [80] makes the important points that innovation

also occurs in the social domain, that these social innova-

tions may be particularly important, and even ‘ecological’

innovations occur in a social setting and have social conse-

quences. As examples, competition may dampen the benefits

of innovating if individuals cannot protect the pay-offs of

their innovation, or observing others achieve rewards may pro-

mote extended exploration despite no immediate personal

rewards. Thus ‘social’ and ‘ecological’ problems may not be

separable [85]. Muthukrishna & Henrich (this issue: [48])

make an even stronger claim: that human sociality and social

learning have driven our innovativeness and IQ, criticizing

the view that innovations are the products of unusually inven-

tive individuals or require causal understanding. Their

emphasis on the importance of a diversity of experiences in

recognizing and facilitating innovation (‘prepared minds’) is

also found within the animal innovation literature [86].

Animal and human work does illustrate that groups and

social settings are major influences on novel problem-solving

[15,37,87,88]. For instance, the impact of group size and compo-

sition on novel problem-solving efficiency and innovation has

been modelled and studied in human groups, with member-

ship diversity playing an important role in generating

innovations [48]. Interestingly, well-connected networks can

hamper independent exploration and the solution of difficult

problems [89], because lower quality solutions propagate

readily, although Muthukrishna & Henrich [48] doubt

human social networks are currently sufficiently well con-

nected for this to be an issue. In animals, research on captive

and wild groups of birds has reported both facilitatory and

inhibitory effects of conspecific presence on novel problem-

solving efficiency [90–93], and a recent model suggests that

the precise effect of diversity in group composition on animal

innovation will be complex [94].

Perhaps the closest contact between animal and human

work related to innovation has been in studies of social learn-

ing, culture and the spread of information through groups.

One observation that has promoted interest in animal inno-

vation has been the limited spread of apparently beneficial

innovations in groups [95], a phenomenon also noted in

humans [6]. One idea is that innovator identity determines

this spread. For example, if peripheral individuals are forced

to innovate [51], much innovation may go unnoted by group

members. Recent years have seen a surge of interest in the

transmission of information through social networks, bringing

a range of novel tools to track the identity of innovators and

the cultural transmission of innovations in large populations

(e.g. humans: [96–98], cetaceans: [99] and birds: [100]). Such

demonstrations of the diffusion of innovations are also impor-

tant because they illustrate that new behaviours can be

attended to and are relevant to individuals within the popu-

lation. Moreover, as Tebbich et al. (this issue: [18]) note,

innovations are thought to have the greatest evolutionary

consequences when they spread.

Appropriate innovation is also thought to be key to cumulat-

ive cultural evolution, another defining human characteristic,

where a careful balance must be struck between faithful social

transmission (to minimize loss of previous innovations)

and innovation (to minimize stagnation and allow adaptive

change; [101,102]). Lane (this issue: [88]) emphasizes how

human innovation is caught in a positive feedback dynamic in
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which new artefacts are designed, and social organizations and

novel patterns of human interaction are established to exploit

and proliferate the use of these artefacts, which leads to the gen-

eration of new functionalities to the artefacts, leading to further

new products. Similar auto-catalytic loops have been suggested

with respect to human brain enlargement [48] and the evolution

of innovativeness in animals [17]. Thus social learning and

innovation are closely linked fields.

Many of the contributions in this issue reflect on the

balance between social learning and innovation ([18,37,49,

66–68,80], for further discussion of the relationship see also

[103]). For example, Caldwell et al. [68] use laboratory studies

of human cultural evolution to examine the rate, type and effi-

cacy of innovation, manipulating task demands and finding a

shift between the relative reliance on social versus asocial

learning. Flynn et al. [69] examine the prevalence, effect and

development of young children’s preferences for using social

or asocial learning. Three-quarters of children and adults

chose to learn socially, when presented with an option to

learn either socially or asocially. Such a preference could be

one of the fundamental differences between the innovation

demonstrated by humans and animals, with humans wishing

to build on the behaviour of others (which may result in faithful

copying, or novel modification), while animals’ innovation

usually occurs through individual endeavour. As humans, we

may have different demands on us—related to following

social norms—which impinge on our motivation to innovate,

not on our capacity. However, 5-year-old children who selected

asocial learning were found to be highly efficient at the task,

showing that by 5 years children are selective in choosing a

learning strategy that is effective for them. Such findings

inform the growing interest in strategies or biases that individ-

uals can use to identify and acquire beneficial innovations [104].
5. Innovativeness, cognition and intelligence
Innovation has frequently been regarded as a marker of human

and animal intelligence, and to depend on domain-general cog-

nitive abilities [7]. Indeed, the ability to solve novel problems

and to innovate appears in definitions of intelligence [48,105–

107], which means that, for some, innovativeness is a defining

feature of intelligence. Perhaps because of these expected links

to intelligence, combined with the assumed rarity of inno-

vation, human inventors have received celebrity status, as

Muthukrishna & Henrich discuss [48]. Animal innovators

have also been celebrated, such as Imo, the Japanese macaque

first observed sweet potato and wheat washing [13], described

as a ‘monkey genius’ [108] and, more recently, Betty the New

Caledonian crow [81]. Thus the term ‘innovation’ can carry

an expectation of sophisticated cognitive processes. However,

several authors in this issue, as well as elsewhere, note that

simple cognitive processes as well as non-cognitive processes

have been neglected as relevant in our understanding of inno-

vation [18,48,66,78,109,110]. Here, we briefly review these

disagreements and present our own view.

Our working hypotheses are as follows: (a) Multiple pro-

cesses underlie innovation. These processes include cognitive

processes (such as associative learning) and non-cognitive pro-

cesses (such as perception). Different processes are likely to be

involved in different instances of innovation, while some general

conserved processes may underpin almost all innovations. The

processes demonstrated or suggested to impact innovation are
very numerous, including neophilia, neophobia, exploration,

stimulus generalization, motor diversity, inhibitory control, per-

sistence, individual learning, curiosity, insight, creativity, causal

reasoning, analogical reasoning, divergent thinking, conserva-

tism, functional fixedness and the endowment effect, as well

as numerous social and environmental influences (e.g.

[11,18,26,28,31,46,66,111]). Some of these processes overlap or

have definitional difficulties [43], and several authors in this

issue discuss their relative role [18,34,68]. (b) Simple processes

[112] are likely to be common and important, even in human

innovation. That is, cognitive sophistication is not a necessary

condition for all innovation. However, complex processes may

be essential in some instances of innovation or particularly

important in some taxa. (c) Differences in innovative perform-

ance do not necessarily reflect differences in innovative ability.

The social and physical environment, as well as individual phe-

notype, will shape the costs, benefits and constraints on

innovation, and thus its performance. For this reason, rarity of

innovative performance will depend on many factors and

need not indicate exceptional abilities or that the innovation is

beyond the abilities of an individual [113]. (d) Innovativeness

is relevant to fitness and has macroevolutionary consequences

[23]. Given this, it is likely that selection will shape processes

that determine innovation. Selection could shape novel, derived

cognitive processes, but equally may act elsewhere, such as by

increasing neophilia, tolerance to unrewarded acts, motor flexi-

bility, or by changes in motivational responses or perception.

(e) While many innovations may have direct functional and

evolutionary effects [18], innovativeness may be an indicator

of underlying propensities, and it is these propensities that are

under selection. That is, some innovative acts may be by-

products that indicate underlying propensities but the acts are

not themselves of functional importance. In sum, empirical evi-

dence is required to determine the degree to which simple or

complex cognitive abilities underlie different cases of animal

and even human innovation, and cannot be assumed on the

basis of the assumed or apparent complexity of a task.

A complete understanding of the relationship between

innovation and cognitive abilities requires that certain major

questions be addressed: (1) is there a trait [114] of ‘innovative-

ness’, for example do species and individuals consistently

differ in their propensity to innovate? If so, (2) is innovativeness

a marker of general cognitive ability, or are its underpinnings

found in other individual-level traits, or even group-level or

cultural traits? (3) Is innovativeness an adaptation, such that

the traits that underpin innovation evolved specifically to pro-

mote it? Conversely, is innovativeness a by-product of selection

for other characters, and, if so, is it adaptive? Griffin [66] and

Sol et al. [50] make the case in this issue that innovativeness

is an emergent phenomenon, while Sol [115] also argues that

innovativeness is an exaptation. No one answer will be entirely

correct, since different cases or classes of innovations may have

different underlying causes and consequences, and because,

even if innovativeness is an adaptation, all forms of innovation

will nonetheless likely draw on other capabilities too.

A great deal of data speak to the first two questions.

Within-species and across-species analyses suggest consistent

differences in innovativeness. Within-species, consistent indi-

vidual differences in problem-solving ability are reported in

guppies and great tits, for example [116,117], and multiple

studies find that individual characteristics, such as neophilia

or exploratory behaviour, predict innovativeness [31,70,111].

However, several studies in the current issue indicate the
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difficulty of reliably identifying individual differences in

innovativeness [48,67,70]. Consistent individual differences

can result from many sources, including genetic predis-

positions, developmental environment and life-history traits

[118]. In this issue, Quinn et al. [70] present the first heritability

estimates for innovative problem-solving in a wild animal

population (great tits) and find very little if any additive genetic

variance. Instead individual differences were partly explained

by the quality of the developmental environment and by

cohort effects, suggesting an important role of plasticity in

determining problem-solving performance. The generality of

these effects will only become clear when many more studies

repeat this approach across different tasks, other populations

of great tits, and for different species. Across-species, taxa

differ in innovation rates [19,53,60, 61,111]. An excellent

example is provided by Lefebvre et al. (this issue: [20]), who

show using comparative phylogenetic methods that a particu-

lar group of birds, the Darwin’s finches, renowned for their

innovation, are part of a larger clade of unusually flexible

birds that all exhibit high rates of innovation compared with

other neotropical clades. These same birds are characterized

by high rates of speciation, and Lefebvre et al. argue that vari-

ation in innovativeness may explain variation in speciosity,

such that adaptive radiations are favoured when the ancestral

stem species were flexible. Again, multiple factors may influ-

ence taxonomic differences in innovativeness, and teasing

apart these contributions and the relations between within-

and across-species correlations are important open questions

[109,111].

Regarding the second question, a growing set of correla-

tional data link innovativeness and various cognitive abilities.

In humans, the link between innovation and intelligence is

regarded as long established [5,119], although Muthukrishna

& Henrich (this issue: [48]) make an important case to reconsi-

der the direction of causality. A particularly relevant paper in

the current issue is that of Beck et al. [67] who demonstrate

that, while divergent thinking, inhibition, working memory,

attentional flexibility and ill-structured problem-solving do

not predict tool invention in the hook task in mid-childhood,

it was predicted by a proxy for general intelligence (receptive

vocabulary scores). It remains unclear whether the link

highlighted by Beck and colleagues transfers across other inno-

vative contexts, or across species. In animals, within-species

analyses have documented correlations between innova-

tive problem-solving and measures such as learning speed

[54,66,120,121]. Across-species analyses have documented cor-

relations between innovation counts and laboratory tests of

learning in birds and primates [122], with composite measures

of cognitive performance in the laboratory [61], and with exper-

imental inhibitory-control tasks [123]. Within primates,

innovation counts covary with counts of social learning, tool

use, extractive foraging and tactical deception, while avian

tool use and innovation counts covary [49,61,122]. These results

suggest that a suite of traits have evolved together, and, to the

extent that these counts can be regarded as indicators of general

cognitive abilities, are consistent with a general intelligence

account. Social learning, tool use, extractive foraging and tacti-

cal deception have all been proposed as indicators of general

cognitive abilities, although again this is debated [124]. Our

view is that a particularly interesting aspect of innovation

counts is that they provide an indicator of the variety of behav-

iour, and thus can be considered an estimate of behavioural

flexibility. Innovative taxa have been found to be more likely
to become established when translocated to new environments

with novel challenges [38], again possibly owing to their

greater behavioural flexibility. Thus although the evidence is

correlational, there is wide support for the idea that cognitive

performance may underlie differences in innovation counts.

Animal innovation counts have also been found to covary

with measures of brain enlargement, again with parallel results

in birds and primates, increasing confidence that these relation-

ships are robust [49,122]. This could potentially be taken as

further evidence for a link between innovation and cognitive

traits, but this rests upon the assumption that large brains facili-

tate enhancements in cognitive performance. Instead, we see

these data as supporting the view that brain enlargement has

functional consequences for behaviour. Although this view

has been questioned [125], the large number of correlations

between brain volume and behavioural measures require

explanation, especially given the significant costs of brain

enlargement [61]. Moreover, we note that linking innovation

and cognitive performance does not rely on demonstrating cor-

relations with brain size: instead, most relevant are the

aforementioned relationships between innovation, learning

and other cognitive measures. In humans, a substantial literature

has examined links between neural measures and measures

allied to innovation [106,107]. Striedter [126] notes that changes

in brain anatomy over recent human evolution support a

relationship between innovation and cognitive performance,

although in this issue Sterelny [80] presents an opposing view,

and Muthukrishna & Henrich [48] argue that the exceptionally

large human brain is partly a result of feedback processes

between sociality and culturally transmitted cumulative

innovations.

We concur with others that simple explanations and mech-

anisms are often overlooked in studies of animal and human

innovation [18,66], just as they often are in studies of cognition

in general [112]. Moreover, simple explanations are exciting

since they extend the possible breadth to which work on inno-

vation applies. For example, we are pleased that concepts from

the animal innovation literature have been used to inform

work on host selection in insects [47]. However, complex mech-

anisms need not be neglected, particularly in human

technological innovation, and empirical investigation is required

to determine the mechanisms underlying innovation, and

indeed what constitutes a simple or complex mechanism. Var-

ious means can be used to establish underlying mechanisms,

and several contributions to this theme issue argue for new or

improved methodological approaches [18,66,68,70]. Experimen-

tal task manipulations can determine the cognitive processes

operating and eliminate others, as well as address other possible

determinants of innovation, such as individual state, experience,

competitive regime, environmental variability or other environ-

mental variables. For example, Taylor et al. [127] found

evidence that perceptual-feedback-based operant learning

underpinned birds’ solving of a string-pulling task, a task once

thought to involve ‘insight’. The techniques of behavioural

neuroscience can also be applied, measuring or manipulating

proposed substrates of innovation. Another possibility is to

manipulate innovative propensities [128–130] or the cognitive

processes thought to underlie innovation [18] using training, psy-

chopharmacological, or other procedures. The subdivision of

innovation into constituent processes may help here [18]. For

example, groups of individuals could be trained in differing con-

ditions, such as training their inhibitory control, or a stronger

confidence to reject the social norm, to establish the resulting
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effect on their innovation. There is already evidence that animals

can ‘learn to innovate’ [130], and extensions of this approach to

controlled, large-sample studies would bewelcome. Such studies

would not only allow investigation of psychological processes,

but by experimentally impairing innovation or its underlying

processes the functional impact of these manipulations could

also be measured.

Finally, we note that the sophistication of the cognitive pro-

cesses involved need not predict the adaptive value of the

related behaviour, and both ‘simple’ and ‘complex’ processes

may underlie ecologically and evolutionarily significant inno-

vations, although certain processes may have particularly

significant eco-evolutionary impact (this issue: [18]). Sterelny

[80] makes a similarobservation when comparing the experimen-

tal work on human innovation in this issue with the theoretical

work in archaeology. Clearly, many avenues are open to address

these questions.

6. Promoters of innovation and innovativeness
An issue of great interest is how best to promote innovation

and innovativeness. Resource availability has been a major

area of interest in both human and animal research, with a

focus on the contrasting roles of necessity, opportunity and

free resources. For example, in business both an excess

(‘slack’) or limited resources can promote innovation, and

may have different effects on different kinds of innovation

[131]. Within the creative arts too, the role of financial need

has been contrasted with that of spare resources or advan-

tage, and both have been noted to drive or limit creativity

and innovation [132]. In animals, Kummer & Goodall [15]

suggested that ‘free time’ (spare energy or time) may promote

innovation, while also pointing to innovation driven by need,

such as low social rank or changing environments.

While ‘necessity is the mother of innovation’ has been sup-

ported in several animal studies [11,31], overall evidence is

mixed for the ‘necessity hypothesis’ (i.e. that lack of access to

or scarcity of resources prompts innovation; review: [31]).

Koops et al. [133] examined data from capuchins, orang-utans

and chimpanzees and found no support for the idea that neces-

sity (here, shortage of preferred foods) drove tool use rates, but

did find support for an alternative ‘opportunity’ hypothesis, i.e.

that encounter rates with resources increase tool use. Koops et al.
use this data to argue that opportunity availability will also

shape tool invention, given the appropriate social setting and

cognitive capacities. Similarly, the necessity hypothesis was

not supported in captive orang-utans in comparison to wild

orang-utans [34,134]. van Schaik et al. (this issue: [34]) argue

that the orang-utan data support a variant of Kummer &

Goodall’s [15] ‘free-time’ hypothesis, namely that the lack of

predation in captivity allows long undisturbed periods of inde-

pendent exploration. Modelling the net pay-offs of innovative

behaviour in various contexts according to the time, effort or

risk invested may help to define more precisely the predictions

of these various hypotheses [28]. Relatively subtle influences

may also shape innovation [68]. For children, a more informal

environment appears to facilitate exploration and as a result

tool invention. Sheridan et al. (this issue: [37]) show that infor-

mal learning environments, such as museums, facilitate tool

exploration and invention. Further, conveying ownership over

materials may encourage successful tool selection at earlier

ages than has previously been demonstrated. We thus foresee

no reason to expect innovation to be caused by a single factor.
The proverb ‘necessity is the mother of invention’ was first

coined for humans, but clearly not all human innovation is

driven by necessity [88]. Rather, much innovation arises when

people see new ways of exploiting existing technology and

thereby instantiate new functionalities. The same is likely to

be the case for other species.

Griffin (this issue: [66]) discusses the usefulness of categoriz-

ing innovations and making specific predictions on relevant

individual-level predictors of innovativeness, for instance based

on the novelty of the context. Indeed, neophilia should be a stron-

ger predictor of innovations involving a novel situation

compared with those stemming from motor adjustments in a

known context, or to use van Schaik et al’s categories [34], neophi-

lia should predict the frequency of ‘novelty-induced’ innovations

but not ‘failure-induced’ or ‘accidental’ ones. The observed incon-

sistencies regarding the relations between individual

characteristics and innovativeness may imply that some individ-

ual-level characteristics exert a probabilistic influence on the

likelihood of innovation, rather than being necessary for inno-

vation. These findings are equally consistent with the

‘emergent property’ view of innovation [50,66,70], whereby

innovativeness is not an evolved trait itself but rather emerges

from a set of underlying traits (e.g. boldness, neophilia, high

propensity to learn, etc.). Possessing only one trait associated

with innovation might not always be enough to facilitate inno-

vation [18], potentially leading to inconsistent relationships

between the variables depending on the presence or absence

of other traits. Under this scenario, phylogenetic lineages

where the expression of innovations has consistently led to

fitness benefits could have experienced selection for several

traits simultaneously.

7. Concluding remarks
The differences of opinion that we have outlined above may

have arisen owing to the conceptual approach taken by differ-

ent disciplines. For example, psychologists have tended to

focus on evoked innovations produced through the presen-

tation of novel tasks, with investigation of potential

facilitators or inhibiting factors, as their primary focus has

been on the cognitive mechanisms and contextual factors

underpinning innovation. In comparison, anthropologists

have examined the cultural factors related to innovation at the

group level, including the social network of differing commu-

nities and how this has influenced technological change.

Behavioural ecologists tend to focus on the evolutionary

causes and consequences of innovation, and thus on innovation

as a functional product rather than its underlying processes.

However, this theme issue, as well as work elsewhere (e.g.

[10]), shows that the questions asked regarding innovation

have begun to cross disciplinary boundaries, and the utility of

these approaches. For example, knowledge about the cognitive

processes underlying innovation, their costs and their interde-

pendence with other traits, allows a behavioural ecologist to

consider what must evolve for innovation to happen. This cross-

ing of field boundaries is demonstrated by the fact that

a number of the papers in this issue are co-authored by

multi-disciplinary teams (e.g. [67,69]).

We believe that such collaborations will benefit the field both

in terms of direct findings from their endeavours, but also in

terms of fertilizing ideas across disciplines. This may result in

consensus regarding definitions, terminology, experimental

techniques and analytical protocols, and the commentators on
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the current theme issue point to some important gaps [66,80].

However, equally, different protocols and foci are appropriate

for different questions. These synergies further our understand-

ing of innovation, such as the role of curiosity or necessity.

This cross-disciplinary dialogue also allows comparisons of

where theories may diverge along taxonomic lines. For example,

humans build on the innovations of others to produce sophisti-

cated behaviours and technologies through incremental

modification, sometimes within long-term planned initiatives,

while such cumulative innovations are non-existent in the

animal kingdom. All the papers in this issue highlight areas of

future exploration. Compilation of anecdotal reports, extensive

observation of groups, experiments in natural locations and

experiments in laboratories will all have a place in our under-

standing. We look forward to new research and new findings

in the coming years.
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