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Kidney transplant is the optimal treatment for end-stage kidney disease as it offers

significant survival and quality of life advantages over dialysis. While recent advances

have significantly improved early graft outcomes, long-term overall graft survival has

remained largely unchanged for the last 20 years. Due to the young age at which

children receive their first transplant, most children will require multiple transplants

during their lifetime. Each subsequent transplant becomes more difficult because of the

development of de novo donor specific HLA antibodies (dnDSA), thereby limiting the

donor pool and increasing mortality and morbidity due to longer time on dialysis awaiting

re-transplantation. Secondary prevention of dnDSA through increased post-transplant

immunosuppression in children is constrained by a significant risk for viral and oncologic

complications. There are currently no FDA-approved therapies that can meaningfully

reduce dnDSA burden or improve long-term allograft outcomes. Therefore, primary

prevention strategies aimed at reducing the risk of dnDSA formation would allow for

the best possible long-term allograft outcomes without the adverse complications

associated with over-immunosuppression. Epitope matching, which provides a more

nuanced assessment of immunological compatibility between donor and recipient, offers

the potential for improved donor selection. Although epitope matching is promising,

it has not yet been readily applied in the clinical setting. Our review will describe

current strengths and limitations of epitope matching software, the evidence for and

against improved outcomes with epitope matching, discussion of eplet load vs. variable

immunogenicity, and conclude with a discussion of the delicate balance of improving

matching without disadvantaging certain populations.
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KEY POINTS

• Epitope matching between donor and recipients provides
additional benefit over antigen-level matching.

• Numerous software programs are available for comparison but
require high-resolution tissue typing for accurate results.

• Enumeration of mismatch does not account for variable
immunogenicity of epitopes.

INTRODUCTION

Kidney transplant (KT) is the optimal treatment for end-
stage kidney disease (ESKD) as it offers significant mortality
and quality of life advantages over dialysis. While advances
in immunosuppressive pharmacology and surgical techniques
have significantly improved early graft outcomes, long-term graft
survival has remained largely unchanged for the last 20 years. Due
to the young age at which children receive their first transplant
and additional 40–60 year life expectancy, children will require
multiple transplants during their lifetime. Development of de
novo donor specific antibodies (dnDSA) is associated with
shortened graft survival making each subsequent transplantmore
difficult by limiting the donor pool and increasing mortality due
to longer time on dialysis awaiting re-transplantation (1, 2).

Reducing the formation of dnDSA can be achieved
through secondary prevention by increasing post-transplant
immunosuppression. However, this approach is limited in
children by a significantly increased risk for viral and oncologic
complications (3–5). Additionally, there is evidence showing
improvement in cardiovascular risk factors (blood pressure and
lipids) and improved growth, with comparable rates of acute
rejection and graft survival, for children on steroid-free and
reduced intensity immunosuppression protocols (6–8). There
are currently no FDA-approved therapies that have been shown
to meaningfully reduce dnDSA burden or improve long-term
allograft outcomes (9–11). Primary prevention strategies aimed
at reducing the risk of dnDSA formation would allow for the
best possible long-term allograft outcomes without the adverse
complications from over-immunosuppression. One mechanism
by which this can be achieved is by increasing precision of
immunological matching at the time of transplant.

Traditional immunological matching has been done with
a comparison of whole molecule HLA characterization at
3 loci (A, B, and DR). As the methods of accurate HLA
characterization improved, it became clear that different HLA
alleles had variable number of amino acid differences ranging
from one to many, depending on the compared alleles.
Simply enumerating HLA allele mismatches was insufficient
to account for structural differences with immunological
significance. Eventually, NGS (Next Generation Sequencing),
a method that produces accurate genotyping at the molecular
level, enabled improved characterization of HLA molecules by
identifying the amino acid differences among multiple HLA
alleles/molecules. The term “high-resolution tissue typing” or
two-field (HR-2F) typing has been used to describe the level
of characterization that enables identification of all 11 HLA

antigens at the protein/molecular level, and thereby allows
an epitope compatibility comparison between the donor and
recipient (12). It should be clarified that the term “epitope” is
used to describe any amino acid differences between two HLA
molecules, whether recognizable by an antibody (Ab) or not,
while the term “eplet” was coined by Rene Duquesnoy to indicate
the structural elements (clusters of 2-5 polymorphic amino
acids), linear or conformational on an HLA molecule recognized
by an anti-HLA antibody (Figure 1) (13, 14). Comparison
of eplets/epitopes, rather than whole HLA molecules, enables
assessment of immunological compatibility with significantly
more detail. Previous epitope/eplet mismatch (EMM) studies
have reported an association of epitope/eplet load with allograft
outcomes, rejection, and the formation of dnDSA (15, 16).
Compared to low-resolution HLA matching, EMM predicted
an incremental risk of HLA sensitization for increasing number
of mismatches and offers additional value in predicting dnDSA
formation (17, 18).

This review describes the different software tools currently
available for comparison of high-resolution tissue typing, their
predictive capability and clinical applicability, and discusses the
nuances of variable immunogenicity. Practice applications of this
technology, limitations and remaining knowledge gaps will also
be also addressed.

Strengths/Limitations of Available
Software
To support informed clinical decision making, the comparison
of donor and recipient HLA types relies on various software
applications to identify immunological similarities and
differences between pairs. While each has their own approach,
the general principle employed by all is that a stronger recipient
T/B-cell response is more likely to occur the more different
a donor is from the recipient, and therefore the software
generates a score to quantify the dissimilarity between the
donor and recipient (19). There are currently three commonly
internationally used software programs: HLAMatchmaker,
single amino acid MM (AMS), and PIRCHE. Each program is
described here with emphasis on advantages and disadvantages.
The programs are compared in Table 1.

HLAMatchmaker
HLAMatchmaker, the first developed and most common
software, was developed by Rene Duquesnoy in 2002 (20). It is a
structurally basedmatching program based on the understanding
that only a portion of the HLA antigen is recognized by HLA
antibodies. HLAMatchmaker uses donor/recipient amino acid
sequences to determine continuous and discontinuous eplets
that are likely part of the area recognized by an antibody’s
complementary-determining region. HLAMatchmaker focuses
only on polymorphic regions and provides information regarding
“verified” and “non-verified” by antibody reactivity epitopes.
All mismatched eplets are assigned the same value for a sum
of eplet mismatch load (19, 21). The number of eplets that
are mismatched between donor and recipients are calculated
by the software either at each HLA locus by class (I or II),
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FIGURE 1 | Model of HLA binding groove. The yellow shows a single polymorphic amino acid change. The red shows an antibody-verified eplet. The green shows the

entire antibody interaction area which can contain the surface area for antibody-epitope interaction.

TABLE 1 | Comparison of the three commonly utilized software packages utilized for comparison of donor and recipient HLA types in solid organ transplantation.

Analysis Results Limitations

HLAMatchmaker Comparison of continuous and

discontinuous eplets.

Eplet load Software will categorize mismatched

eplets as “verified” or “unverified”,

however this can be misleading as

many were not tested. Treats both

recipient and donor alleles as single

entities.

Amino acid sequence

comparison

Direct comparison of the number of

mismatches between donor and

recipient HLA allele amino acid

sequences.

Amino acid mismatch score Considers all mismatches equally

important. Standard method doesn’t

account for physicochemical

parameters.

PIRCHE Prediction of which donor-derived

peptides can be presented to T-cells

in the context of recipient HLA-DR

molecule.

PIRCHE score The algorithm does not consider

mismatched epitopes presented by

HLA-DQ, DP and DR3/4/5.

or as a cumulative number. The HLAMatchmaker software
has been well validated and has been shown to predict both
dnDSA formation, rejection, and graft failure rates (20, 22–24).
Given the nature of the software, the “non-verified” epitopes
represent mismatched elements that may potentially produce
antibodies but have not been proven to do so; therefore, the
need for the broader term “epitope” which does not need Ab
reactivity verification. Thus, two donor/recipient pairs may have
similar absolute numbers of epitope mismatches, but may vary
substantially in their impact on antibody production (21). In
addition, the HLAMatchmaker site must be continually updated
as more epitopes become antibody verified. The last update of the
program at the time of this publication was July 2020.

Amino Acid Sequence Comparison
The simplest method is comparison of donor and recipient
amino acid sequences, enumerating the number of mismatches
generating an amino acid mismatch score (AMS). Akin to

eplet mismatch in the HLAMatchmaker program, this method
assigns an equal weight to all mismatches but does not make
any assumptions about which areas of the molecule may be
more relevant for antibody recognition (19). In multivariable
models, the odds ratio for developing DSA increased for
every 10 amino acid mismatches, with a larger effect size for
Class II than Class I DSA, however both were statistically
significant (17).

The assessment of various physicochemical parameters may
augment the AMS metric, and there have been numerous
approaches including Grantham’s distance or Epstein coefficient
of difference (25, 26). These measures are calculations of amino
acid (aa) properties that seek to provide a quantitative measure
of the physicochemical change associated with specific aa
substitutions in proteins. Even though these are rather simplified
models, they are most likely more informative than simple aa
mismatch enumeration. More specifically assessing protein to
protein differences using physicochemical characteristics have
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been adopted with some degree of success showing some benefit
over simple enumeration (13, 27, 28).

There remains much potential and promising work in
methods that seek to incorporate three-dimensional (3D)
contextual information into MM scoring systems (29, 30).

Predicted Indirectly Recognizable HLA
Epitopes (PIRCHE)
The complex immune alloreactivity after solid organ
transplantations involves both T and B cells. Indirect T cell
activation is proposed as a key player in the humoral response
leading to dnDSA formation (31). The PIRCHE algorithm
identifies which mismatched HLA epitopes can be recognized
by T cells needed to activate the B-cell response. The output
from the software includes a score which predicts the risk of
DSA formation. Studies have found good correlation between
PIRCHE score, DSA formation, and allograft outcome (32–34).

A recent comparative study among KT recipients EMM, AMS,
and AMS as augmented by electrostatic mismatch showed that
each method was independently associated with DSA formation
after adjustment for recipient age, immunosuppression regiment,
and non-adherence without evidence of superiority of either
approach (35). Meneghini et al. compared the 3 methods of
analysis among a cohort of 169 KT recipients and found a
strong correlation between the three software scores, however
only the PIRCHE score was found to be an independent
predictor of donor-specific T-cell response in multivariable
analysis, as would be expected (36). Similarly, in a study of
2,787 transplants PIRCHE-II and HLAMatchmaker were both
found to independently predict DSA formation in multivariable
analysis (controlling for the other method) suggesting that
these approaches may complement each other (37). Combining
the software approaches and understanding the immune
alloreactivity mechanism where both T and B cells are involved,
will likely be the most informative approach. Efforts to combine
them have already been initiated and presented at the most
recent meeting of America Society of Histocompatibility and
Immunogenetics (38).

It is important to understand that despite the improved
computational analysis software there are limitations. The
needed HR-2F typing is available in living donation but not in
deceased donors. The NGS technologies until recently did not
allow a turn-around time of <7 h for HR-2F, however recent
advances have taken a large leap towards ameliorating this
limitation (39, 40). To address this problem our community
has attempted to impute HR-2F HLA typing utilizing low
or even intermediate level typing and an NMDP database
called HaploStats or even HLAMatchmaker. Engen et al.,
studied the accuracy of imputation techniques and showed
that only 35.6% of the imputed haplotypes had no mistakes,
and HLAMatchmaker was not able to provide high-resolution
haplotypes for 45.2% of Caucasian subjects and 63.5% of non-
Caucasian subjects (p = 0.002) (41). This study reinforces that
bypassing direct and accurate characterization of HLAs at the
HR-2F introduces significant bias into the analysis by currently
available computational software.

EPITOPE MATCHING IMPACT ON
CLINICAL OUTCOMES

Epitope/eplet based matching has been suggested as a more
precise strategy to improve immunologic outcomes with reduced
formation of dnDSA compared to antigen-level matching (13,
42–46). It is known that chronic antibody-mediated rejection
(ABMR), due to dnDSA is the major cause of late graft loss
(15). DSA directed against HLA antigens are central to the
development of ABMR. It was also found that formation of
dnDSA vary and depend on the number and type of amino acid
mismatches between donor and recipient, the electrostatic effect
of these changes and the conformational differences in epitopes
(47). The important question is what evidence exists correlating
using epitope matching to improve clinical outcomes, specifically
reducing rejection rates and graft loss.

Philogene et al. demonstrated in a cross-sectional study of 110
racially diverse pediatric KT recipients that an HLA class I eplet
load >70 resulted in a greater risk of rejection compared to same
race recipient and donor (48). A second retrospective analysis of
151 living donor KT recipients in a European cohort evaluated
incidence of ABMR in patients transplanted with low, moderate
and high HLA-II epitope mismatch load. ABMR incidence rates
were 2, 14, and 13%, respectively, at 96 months (p = 0.036). A
sub-analysis including only patients with no preformed DSA (n
= 138) demonstrated similar results (49).

Sapir-Pichhadze et al. studied a large American cohort of
118,382 first KT recipients and assessed death censored graft
failure based on antibody verified EMM. Antibody-verified
eplet mismatches were found to be independent predictors
of death-censored graft failure (50). Their team validated the
results in an independent Canadian cohort of 52 patients
with transplant glomerulopathy and 104 controls, with similar
findings. Collectively, these results support donor-recipient
matching for specific HLA eplets to reduce the risk of graft loss.

In adult kidney transplantation there is a growing body of
literature showing increased risk for DSA formation, ABMR,
and allograft failure with increasing eplet/epitope mismatch
score (13, 16, 51, 52). In children, there is less published
literature, however, most research implementing EMM in
pediatric KT has focused on eplet load, an enumeration of eplets
mismatched between the donor and recipient (48, 53, 54). Eplet
load has been linked to adverse allograft outcomes including
acute rejection, allograft loss, and transplant glomerulopathy
(50, 51, 55).

LOAD VS. IMMUNOGENICITY

Despite the ample evidence for superior ability to risk stratify and
predict adverse outcomes by optimizing matching with eplet load
testing, perfect immunological matching at the allele or eplet level
is impractical. Over-prioritization of HLA matching results in
prolonged waitlist time and must be balanced with the morbidity
and mortality of advanced CKD and dialysis including increased
risk for cardiovascular disease (56, 57). The prolonged waitlist
time is unequally burdensome and disadvantages patients from
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racial and ethnic minority populations who express rare HLA
genotypes (58, 59).

Eplet load does not account for the electrostatic and
conformational characteristics that result in variable antigen
immunogenicity (17, 60). The concept that some eplets are
more immunogenic than others was explored in a retrospective
study in heart and lung transplant recipients; specific eplet
mismatches were found to be disproportionally associated with
dnDSA formation and modeling avoidance of these high-risk
eplets predicted a significant reduction in dnDSA formation
(43). Using imputation to determine HR-2F HLA type in the
Scientific Registry of Transplant Recipients (SRTR), a subset
of 15 eplet mismatches was linked to a higher hazard of
death-censored graft failure among KT recipients, even after
accounting for other known risk factors (61, 62). Additionally,
a small subset of Ab-verified eplets have been linked to
transplant glomerulopathy in an independent Canadian KT
cohort (50). These innovative studies are laying the foundation
for incorporating variable immunogenicity into the decision
framework for donor allocation and acceptance. One major
limitation of these studies is the use of imputation to determine
HLA type, which is prone to error especially in racial and
ethnic minorities (63). The authors appropriately identified this
limitation and used sensitivity analysis to compare findings in
Caucasian patients with those of other races with similar results.

Just as not all eplets are equally immunogenic, not all DSA are
equally pathogenic and as such, eplet load is insufficient to inform
risk stratification for DSA most likely to lead to adverse allograft
outcomes (13, 16, 64, 65). A novel approach to study the variable
immunogenicity of HLA-DQ eplets was designed by Schawalder
et al., utilizing pregnancy as the immunological trigger, allowing a
study of variable immunogenicity without the need to account for
medication non-adherence and other significant post-transplant
complications (66). The team identified several DQB1 and
DQA1 eplets with higher immunogenicity scores in a primarily
Caucasian study cohort, however these findings still need to
be confirmed in a broader, more ethnically diverse cohort and
then applied to a robust transplant cohort to examine the
immunomodulatory impact of immunosuppression on the host
response. The Schawalder study also highlighted the challenges
of studying variable immunogenicity as the immune response
is often complex and assigning antibody specificity to a specific
eplet when multiple mismatched eplets on the same HLA
molecule are present is fraught with bias. Tambur et al. studied
a cohort of KT recipients with 2 DQ mismatches where dnDSA
was generated to only 1 of the DQ antigens (2MM1DSA
cohort) and showed significant inconsistency with eplet load,
affirming that EMM is a significant correlate of rejection at the
population level however is not sufficiently informative to serve
as a predictor at the individual level (64). A recently described
contributor to immunogenicity is the degree of expression
of each HLA antigen, adding another level of complexity in
assessing immunological risk. In a study of 103 pediatric solid
organ transplant donor-recipient pairs, Shieh et al. showed
DPB1 expression level was independently associated with DSA
formation and EMM lost statistical significance in amultivariable
regression model (67).

IMPLEMENTATION

Implementation of EMM analysis has the potential to greatly
improve the precision with which donors and recipients are
matched, which can be especially beneficial for highly sensitized
patients (68, 69). The principle hurdle to implementation of
EMM analysis in deceased donor kidney allocation is the time
necessary to perform high resolution tissue typing.

Until recently, most HLA laboratories used probe-based
methods including sequence specific primer (SSP) and sequence-
specific oligonucleotide prove typing (SSO) which generates
low-intermediate resolution typing at the antigen level, and
unable to provide the necessary allele-level specificity to allow
EMM analysis. Exact genomic sequencing either through Sanger
sequence-based typing (SBT) or Next-Generation sequencing
(NGS), is gradually becoming the prevalent method for typing
as laboratories seek to transition to a single assay for solid organ
and bone marrow transplant programs. The major limitation to
NGS is the 2–3 days needed for the assay and associated analysis.

In living donor KT, where the time to perform high-
resolution typing is not a barrier, there are great possibilities
for the application of this technology. The Australian Paired
Kidney Exchange employs high-resolution typing and EMM
score, utilizing this as a tool to aid in donor selection in
addition to other pertinent clinical factors, and has described
excellent outcomes in pediatric patients (70). The National
Kidney Registry in the United States has started collecting data
on EMMbetween donors and recipients, although no publication
is yet available to compare the impact of adding EMM into donor
selection considerations.

While the time element remains the main barrier to

implementation of this methodology in deceased donor

allocation on a large scale, several pilot and small-scale studies

have shown benefit for pediatric KT recipients. Starting in
January 2014, all patients listed for DDKT in Australia had SSO
typing with imputation of alleles entered into the allocation
program, and for each patient eplet load thresholds as well
as unacceptable matches were pre-determined at the time of
listing (53). Utilizing this method, children received DDKT with
lower eplet loads compared to the previous allocation scheme,
having an exceptionally significant impact on decreasing Class
II load [Class II EMM 20.4 (5.4) vs. 63.7 (16.2), p < 0.001],
however the study was limited by very small sample size. A
pediatric center reported their practice of incorporating Class
II EMM prospectively in 19 pediatric patients and showed
that the adult reported DR and DQ eplet load thresholds may
not be the same for pediatric patients. The paper reported
only short-term outcomes and further data is needed to
assess the impact on DSA formation and allograft survival
(71). Recently, a novel nanopore sequencing technology was
reported that can produce reliable, cost-effective, and rapid
(<6 h) HR-2F typing (39, 40). While not yet ready for full-time
clinical use, the ongoing development of such technologies will
enable incorporation of EMM analysis into deceased donor
kidney allocation.

Despite the promise of better immunological matching with
eplet-based matching, we must be cognizant for the potential to
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worsen racial and ethnic disparities with over-prioritization of
HLA matching. Prior to 2014, HLA matching was prioritized
in deceased donor allocation in order to optimize long-term
allograft survival. However, as non-White patients express
rare HLA types, the likelihood of finding an HLA-matched
donor for racial and ethnic minority patients is significantly
reduced (58, 59). The 2014 Kidney Allocation System (KAS)
deprioritized HLA matching and has narrowed the disparity
in waitlist time among Black and Hispanic candidates and
improved their transplant rates (72, 73). Unfortunately, the
same policy had the unintended consequence of prolonging
pediatric waitlist times, highlighting the need for critical appraisal
that policy change can have on clinical outcomes (74–76).
Because organ allocation is an entangled dynamic system,
in which change to one factor can significantly impact the
others, prioritization of only one element often fails and
highlights the pressing need to develop an allocation model that
can optimize immunological matching but that can preserve
pediatric priority, as well as minimize racial and geographic
disparities (77, 78).

In the United States, the Organ Procurement and
Transplantation Network (OPTN) is reviewing allocation
policy and strategies to improve equity with a proposal to create
a composite allocation score in which candidates would get
a summary score of different variables associated with their
predicted need and potential for survival benefit, including
factors such as age (pediatric priority), geographic proximity to
donor, and sensitization. These models are under development
and will require close monitoring after implementation. More
data are needed to inform approaches to optimize matching for
children and one approach might include a focus on class II
matching (79).

DISCUSSION/CONCLUSION

Epitope/eplet matching holds the promise of better
immunological compatibility between donors and recipients
thereby reducing risk for DSA formation. Despite many
advances, many questions remain including the specific
mechanisms of variable immunogenicity, technological barriers
to rapid high-resolution molecular tissue typing, and balancing
equity in an allocation system. The community however, is eager
to use this approach, simply because molecular characterization
is more meaningful than an allele name. Nevertheless, there
remains considerable ambiguity in how to balance epitope
mismatch with clinical factors including medical urgency
(dialysis duration or limited access), age, psychosocial factors
influencing adherence, and viral infection risk. It is very likely
that the appropriate science and tools will soon be available
for utilization and application, but additional studies are
needed to identify the most efficient and effective approach to
optimize outcomes.
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