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Abstract

Tuberculosis (TB) is a major public health burden worldwide, and more effective treatment is 

sorely needed. Consequently, uncovering causes of resistance to Mycobacterium tuberculosis 
(Mtb) infection is of special importance for vaccine design. Resistance to Mtb infection can be 

defined by a persistently negative tuberculin skin test (PTST–) despite living in close and 

sustained exposure to an active TB case. While susceptibility to Mtb is, in part, genetically 

determined, relatively little work has been done to uncover genetic factors underlying resistance to 

Mtb infection. We examined a region on chromosome 2q previously implicated in our 

genomewide linkage scan by a targeted, high-density association scan for genetic variants 

enhancing PTST– in two independent Ugandan TB household cohorts (n = 747 and 471). We 

found association with SNPs in neighboring genes ZEB2 and GTDC1 (peak meta p = 1.9 × 10−5) 

supported by both samples. Bioinformatic analysis suggests these variants may affect PTST– by 

regulating the histone deacetylase (HDAC) pathway, supporting previous results from 

transcriptomic analyses. An apparent protective effect PTST– against body-mass wasting suggests 
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a link between resistance to Mtb infection and healthy body composition. Our results provide 

insight into how humans may escape latent Mtb infection despite heavy exposure.
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tuberculosis; genetic association; early clearance of Mycobacterium tuberculosis; genetics of 
immunity

Introduction

Tuberculosis (TB) is one of the most devastating communicable diseases in world health, 

with approximately 10.4 million incident cases and 1.4 million deaths from TB in 20151. 

About nine in ten people initially infected with Mycobacterium tuberculosis (Mtb), however, 

do not go on to develop active disease. Hence, TB pathogenesis follows a two-step process2, 

starting with initial infection, (latent Mtb infection, LTBI) diagnosed by the tuberculin skin 

test (TST) or interferon-gamma release assays (IGRA), and progression to symptomatic 

disease in a subset of infected persons.

While a role for human genetic susceptibility to TB has been well-established3, 4, genetic 

susceptibility to Mtb infection has been less studied. Genomewide analyses of TB, whether 

for genetic linkage5–9 or, more recently, for association10–17, have not provided consistent 

evidence for major TB susceptibility loci. Difficulty of replication may stem in part from the 

clinical definitions used for TB18. Few studies have examined latent Mtb 
infection7, 17, 19–21; yet, while few, these studies reveal consistency in genomic loci 

identified.

Within the framework of household contact study22, 23, we have focused on the persistent 

TST negative (PTST–) phenotype, which measures relative resistance to Mtb infection over 

an extended period of time, despite heavy exposure within the household24. The hypothesis 

that this resistance may be influenced by innate and adaptive immune factors is an ongoing 

area of investigation25–27. Studying resistance may reveal genetic insights into mechanisms 

underlying TB pathogenesis16, 21. Resistance to latent Mtb infection has particular relevance 

to the design of a preinfection vaccine26, since reducing the pool of latently infected 

individuals will reduce the incidence of TB. Analysis of PTST– individuals could identify 

critical biologic mechanisms underlying resistance to Mtb infection.

We previously found evidence for genetic linkage of regions on chromosome 2q and 5p with 

the PTST– phenotype7. We then found genetic association with the PTST– phenotype at an 

existing candidate locus, SLC6A3, within the chromosome 5 region28 that had been 

identified by another group examining TST reactivity17, 19, 20. Now, we present a fine-

mapping association scan for PTST– across the other major linkage region, on chromosome 

2q, with two independent samples from Ugandan households ascertained through an index 

case with TB22, 23, 29. Heritability analysis suggested that approximately half of the genetic 

variation in PTST– is due to loci on chromosome 2q. A meta-analysis combining the two 

samples identified two loci of interest, one linked to histone de-acetylase regulation, and 
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another linked to body mass composition, uncovering new biologic pathways underlying 

resistance to Mtb infection.

Results

Sample Description

Our study sample comprises two independently-recruited cohorts of Ugandan households 

ascertained through a proband with active TB (summarized in Table 1)22, 29. Sample 1 (n = 

165 active TB, 501 LTBI, 81 PTST–) was genotyped for a fine-mapping panel with markers 

spaced approximately every 10 kb across the chromosome 2 linkage peak observed in an 

overlapping sample (overlap n = 103 TB, 277 LTBI and 45 PTST–)7, and subsequently 

imputed to the Illumina HumanOmni5 panel. In addition, genotyping for haplotype tagging 

SNPs from several candidate loci that may affect resistance to Mtb infection28 was 

performed. Sample 2 (n = 201 TB, 237 LTBI, 33 PTST–), genotyped for the Illumina 

HumanOmni5 BeadChip (average marker distance ~ 600 bp), includes a greater proportion 

of participants with active TB and a smaller proportion of PTST–. In both samples, PTST– 

are, on average, much younger than non-PTST–, but did not differ significantly in sex ratio 

or in proportion of HIV+ individuals.

Genetic Association Analysis

We focused on SNPs that showed association in both samples, thus demonstrating internal 

replication. We tested genetic association in both samples by means of logistic regression, 

with adjustment for relatedness, and combined results for markers tested in both cohorts, 

after correction for population structure by genomic control (Supplementary Figure 1; see 

Supplementary Table 1 for complete results; the most significantly associated SNPs within 

each sample are listed in Supplementary Tables 2 and 3).

ZEB2/GTDC1 association peaks—The leading combined association result, for 

rs7568133 (145.2 Mb; ORmeta = 2.12, 95% CI = (1.50, 3.00) for the A allele; p = 1.9 × 10−5; 

Figure 1A, Table 2), follows from nominally significant associations in both study samples 

(p = 0.00062 and 0.0085 in Samples 1 and 2, respectively) (Table 2; Figures 1 and 2). The 

effect of this variant is consistent between Samples 1 (OR = 2.00, 95% CI = [1.35, 2.98]) 

and 2 (OR = 2.54, 95% CI = [1.27, 5.11]; p value from Cochran’s Q test for heterogeneity = 

0.56), and the minor allele frequencies are similar (0.495 vs. 0.478 in Samples 1 and 2, 

respectively). rs7568133 falls within the large intron 2 of the DNA-binding transcriptional 

repressor gene, zinc finger E-box-binding homeobox 2 (ZEB2; Figure 2A). This variant 

alters several potential DNA-binding motifs, and is an enhancer mark in primary monocytes, 

but is not listed as an expression quantitative trait locus (eQTL) in the GTEx database 

(Supplementary Table 4).

The overall region of association at ZEB2 is primarily driven by strong associations in 

Sample 1 (Figure 2B), and extends about 200 kb to overlap with the glycosyltransferase-like 

domain-containing 1 (GTDC1) gene (Figure 2). Three markers within the association peak 

are among the five most significantly associated markers for Sample 1 (Supplementary Table 

2). Of these, rs13390689 and rs79319398 are in introns: GTDC1 intron 3 and ZEB2 intron 
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2, respectively. Of particular interest is rs79319398, which lies within a DNA region 

associated with numerous enhancer histone-modification sites in monocytes, neutrophils, 

and B- and T-lymphocytes, and is predicted to affect three regulatory motifs (Supplementary 

Table 4). This variant also has a CADD score of 14.59, placing it in the top 3.5% of all 

possible genetic variants for deleteriousness. Though not within a gene, rs7580080, 7.8 kb 

downstream of ZEB2, is also connected in epigenomic studies to histone modification marks 

in monocytes, neutrophils and hematopoietic stem cells, and has a CADD score of 17.66 

(Supplementary Table 4).

The association peaks in ZEB2 and GTDC1 appear to be independent. Associated variants in 

this region (Figure 2B, marked with asterisks) mostly lie within a single LD block within 

GTDC1 (Supplementary Figure 2); however, rs7568133, is independent of this block and in 

only weak LD with one other associated SNP in ZEB2, rs79319398. A conditional 

association analysis of variants in the GTDC1/ZEB2 region, in which allele dosages of 

rs7568133 were included as a covariate, confirmed the independence of this SNP from the 

associated SNPs in GTDC1, in that adjusting for the rs7568133 genotype did not reduce the 

significance of association of the GTDC1 markers by more than an order of magnitude (data 

not shown). Haplotypes of the 11 SNPs in the LD block, which are highly correlated (r2 near 

1.0), and of two SNPs in ZEB2, rs7568133 and rs79319338, which are in complete LD (D′ 
= 1) but not strongly correlated (Supplementary Figure 2), were tested for association with 

PTST– in Samples 1 and 2, but were not found to be more significantly associated than the 

best single markers (data not shown).

Because HIV status is a potential confounder for TST results, we conducted a sensitivity 

analysis in which HIV+ individuals were omitted. Although the p values for some of the 

highly associated SNPs in Table 2 were slightly less significant, most likely on account of 

the smaller number of available individuals, the ORs were very similar (data not shown), 

indicating that HIV status is not a major cause of misclassification.

FMNL2/ARL6IP6 association peak—In addition, several SNPs in ADP ribosylation 

factor-like 6 interacting protein 6 (ARL6IP6) were associated in both samples and had meta 

p-values < 3x10−5 (Table 2), although evidence of association was stronger from Sample 2 

(Supplementary Table 3). However, the CADD scores for these SNPs were not notable, and 

none of them was listed in the GTEx database as an eQTL (Phred-scaled score < 3; 

Supplementary Table 4). Because the SNPs were not potentially pathogenic, and also 

because this gene did not have a potential connection to Mtb biology, it was not considered 

further as a candidate gene. Other strongly associated markers (p < 10−4) from the meta-

analysis have greatest support from Sample 2 (Table 2). Only one, rs58110523, is within a 

gene (intronic to FMNL2 p < 0.01 in both individual samples), but resides in a region with 

very little association in Sample 1 (Figure 1). These variants, like the index variant 

rs7568133, change multiple binding motifs but are not linked to many epigenetic marks or 

transcription factor binding sites (Supplementary Table 4).
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Regional heritability analysis

From our variance components analysis for region-specific heritability, we estimated that the 

chromosome 2 linkage interval explains 9.22% of PTST– risk in Sample 2 (SE = 5.59%; 

one-sided p = 0.044). The remainder of the autosomal genome explains 12.5% of the overall 

risk (SE = 6.17%; one-sided p = 0.0084); thus, the whole genome accounts for 21.7% of the 

risk.

Body mass composition

Because body-mass wasting is correlated to Mtb infection susceptibility30–34, and because 

GTDC1 has been associated with obesity-related phenotypes in a previous genomewide 

methylation scan35, we examined the relationship between body mass parameters and 

PTST– status in our cohort. A smaller proportion of PTST– participants displayed evidence 

of body-mass wasting than non-PTST– participants by all three measured criteria: BMI, lean 

mass and fat mass (Table 3). However, only the lean-mass measurement showed a 

statistically significant difference (5.1% of PTST–s vs. 17.9% of non-PTST–s; p = 0.039). 

The non-PTST– subjects have a higher prevalence of lean-mass wasting than the PTST– 

subjects.

Discussion

We conducted a fine-mapping study exploring genetic variation associated with the PTST– 

phenotype in two Ugandan household samples over a segment of chromosome 2q with 

previous evidence for genetic linkage7. We measured disproportionate overall heritability 

attributable to the region, and more specifically, associated markers in both cohorts and 

through meta-analysis with the PTST– phenotype. Even though the risk for PTST– 

attributable to the chromosome 2 linkage region was only borderline significant (p = 0.044), 

this 51-Mb segment accounted for approximately 9% of the overall risk for, PTST– and 

more than 40% of the total genomic risk. These results support the hypothesis that at least 

one major locus underlying PTST– lies in this chromosomal region.

The most significant association result from the meta-analysis, rs7568133, implicates the 

genes ZEB2 and GTDC1 on 2q22.3. Though this result falls just short of regionwide 

significance (ca. 8 × 10−6), this marker is associated in both samples with p < 0.01 and has 

good agreement in effect size. rs7568133 alters five potential regulatory motifs, and thus, 

although it is not upstream of either gene, it may function in regulation of gene expression. 

ZEB2 contains a binding motif that potentially disrupts histone deacetylase 2 (HDAC2)36, a 

gene implicated by gene-set enrichment analysis of differences in transcriptional response to 

Mtb infection by monocyte-derived macrophages from PTST– and non-PTST– 

individuals37. The macrophage has a central role in Mtb pathogenesis, from recognition to 

killing, a key component of the innate immune response thought to influence PTST–25–27. 

Thus, our results suggest that genetic variation in macrophage response may influence 

resistance to Mtb infection. Several SNPs with strong association in Sample 1 occur within 

enhancer histone marks and DNaseI-hypersensitivity sites found in numerous types of 

immune-system cells, implying that ZEB2 may be under active transcription in these cell 

types. Moreover, three of these variants have CADD scores greater than 14 (Supplementary 
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Table 1), suggesting that these variants may truly be pathogenic. Together, these findings 

support a role for the HDAC innate immunity pathway in relative resistance to Mtb infection 

that may be genetically regulated.

The nearby gene, GTDC1, is involved with obesity and lipid metabolism. This gene may be 

of interest for TB pathology because resistance to Mtb infection is correlated with 

maintenance of body weight. Several previous studies reported that body mass composition 

is both a risk factor for development of active TB as well as for the speed of recovery from 

active TB30–34. Here, we examined for the first time whether body composition was 

associated with resistance to Mtb infection. Body composition results (Table 3) show a 

significant decrease in lean mass body-mass wasting in PTST– vs. non-PTST–, despite the 

modest sample size. This leads to the hypothesis that GTDC1 is a risk locus for lean mass 

wasting which in turn influences risk for Mtb infection. The ideal way to explore such a 

hypothesis is through Mendelian randomization analysis, which we are unable to perform in 

this dataset because there is not good overlap in the data with individuals having both 

genotype and bioelectrical impedance data. This will be the subject of future research. 

Hypocholesterolemia, a consequence of body-mass wasting, may increase susceptibility to 

Mtb infection through reduced activity of macrophages38. Moreover, previous studies in 

mice suggest that hypercholesterolemia, whether induced by a high-cholesterol diet or by 

knockout of apolipoprotein E (ApoE), impairs the immune response to Mtb infection, with 

much greater susceptibility in ApoE−/− mice39, 40. In contrast, hypercholesterolemic mice 

lacking LDL-R did mount a robust immune response to Mtb, although, like the ApoE−/− 

mice, the inflammatory response to Mtb was destructively exaggerated40, 41, and statin drugs 

appear to increase resistance of human macrophages to Mtb infection42. Finally, methylation 

of GTDC1 was found to be associated with waist circumference in a European American 

cohort, but the result was not successfully replicated35.

The chromosome 2 region featured in the present study has also been recently replicated in 

its association with Mtb infection in a cohort of HIV-infected individuals21. There, a 

different extreme phenotype approach was taken, by focusing on individuals that were 

especially susceptible to Mtb infection because they were immunosuppressed and living in 

TB-endemic settings. In addition, the associated SNPs from this analysis explained the 

original linkage result. This, in combination with our region-specific heritability estimate, 

provides evidence for at least one associated locus in this region. rs7568133 is 14 Mb from 

the major 2q linkage peak for the PTST– phenotype reported earlier7, with greatest LOD 

score at microsatellite marker ATA27H09 (D2S1353, 2q24.1 at chr2:159,558,931–

159,559,082), and a secondary LOD score peak at GATA4E11 (D2S410, 2q14.1 at 

chr2:116,240,929–116,241,085). Six of the eight most significantly associated markers from 

the meta-analysis are within 10 Mb of ATA27H09, suggesting that the linkage signal was not 

caused by a single genetic variant of large effect.

This investigation has several limitations and strengths. First, the power is restricted by the 

number of available PTST– individuals. Family relationships within the sample reduce the 

number of effective independent individuals and family-based association requires a more 

complex association test. Together, these constraints prevent detection of causal variants 

with uncommon alleles (frequency < 0.05) unless they are of large (quasi-Mendelian) effect. 
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Next, the use of Sample 2 HumanOmni5 genotypes as a reference for imputation of Sample 

1 untyped variants potentially compromises the independence of the two samples. However, 

the differences in the major results from the individual samples (Supplementary Table 1; 

Supplementary Table 2) suggests that the induced correlation, if any, was slight. Our earlier 

report23 shows a difference between level of exposure to TB index cases and PTST– vs. 

LTBI; however, this association is limited to children aged 5 to 15. Finally, the study 

samples are different in two respects: the average age for both PTST– and non-PTST– 

individuals is greater in Sample 2, and more non-PTST– have active TB in the Sample 2. 

These limitations attributable to small sample size are partly due to the observational nature 

of the study, whereby some subjects were lost to follow-up prior to the end of the 2-year 

observation period, therefore excluding them from analysis.

In conclusion, we observed an association between PTST- and ZEB2, further supporting a 

role for differential regulation of the HDAC pathway in individuals resistant to Mtb 
infection. These variants are likely functional based on high CADD score and presence of 

enhancer histone marks. Evidence for GTDC1 was weaker, but further suggests a role for 

body composition in differential trajectories in TB pathogenesis. Deep resequencing, 

replication, and functional studies are needed to clarify the roles of these genes in Mtb 
infection.

Materials and methods

Study samples and phenotypes

All procedures performed in studies involving human participants were in accordance with 

the principles of the Declaration of Helsinki. All study protocols were reviewed and 

approved by the National HIV/AIDS Research Committee, the Uganda National Council of 

Science and Technology, and the institutional review board at the University Hospitals Case 

Medical Center, Cleveland, OH, USA. Informed consent was obtained from all participants.

Participants in Sample 1, the initial sample for fine mapping, were recruited as reported 

previously7, 23, 28. Briefly, index cases with culture-positive pulmonary TB and their 

household members were enrolled and evaluated for TB symptoms and reactivity to TST. 

Participants were classified as PTST– if they tested TST– at recruitment and remained TST– 

over 24 months of follow-up. Because the TSTs were at least 3 months apart, boosting was 

unlikely to increase the chances of observing a TST conversion, as we demonstrate 

elsewhere23. The sample after quality control totalled 747 individuals with a PTST– 

phenotype28. This sample overlapped with the sample previously studied by linkage 

analysis7: 360 individuals belonged to both samples.

Individuals in Sample 2, the follow-up sample, were recruited later in the same study, but are 

independent from Sample 1. A total of 471 individuals from Sample 2 passed quality 

controls (see below).

HIV-negative individuals at least 15 years of age were measured for body-mass wasting by 

three related measures: body-mass index (BMI) and its two components, fat mass index 

(FMI) and lean mass index (LMI)43. The overall sample for body-mass composition 
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comprised 232 PTST– and 1553 non-PTST– individuals from the household contact 

study22, 23, including 236 individuals genotyped in Sample 1 (41 PTST–, 195 non-) and 253 

individuals in Sample 2 (23 PTST–, 230 non-) Not all individuals had available 

measurements for all three measures. FMI and LMI were estimated by means of bioeletrical 

impedance analysis30. Criteria for wasting were body-mass index (BMI) < 18.5 kg/m2, fat 

mass index < 1.8 kg/m2 for men and < 3.9 kg/m2 for women, and lean mass index < 16.7 

kg/m2 for men and < 14.6 kg/m2 for women30.

The datasets analyzed in the current study are not publicly available, because the Ugandan 

participants did not consent to broad data sharing. However, individual-level data may be 

requested through a data access committee, chaired by Dr. Sudha Iyengar (ski@case.edu). 

All genetic association results (summary statistics) are available in Supplementary Table 1 

(Online Resource 2).

Genotypes and quality control (QC)

The first phase of the study, conducted on Sample 1, focused on fine mapping a genomic 

region previously implicated by linkage analysis, 146–176 Kosambi cM on chromosome 

2q7. We selected single-nucleotide polymorphisms (SNPs) within map position range chr2: 

116,623,530–170,141,754, in GRCh37 coordinates, to cover the 1-LOD support interval (an 

approximate 95% confidence interval for location) underneath the linkage peak for the 

PTST– phenotype, at approximately 10-kilobasepair (kb) intervals for genotyping by means 

of the Illumina (San Diego, CA) iSelect platform. One informative SNP (minor allele 

frequency (MAF) ≥ 0.1) was selected within each 10-kb window with maximum Illumina 

assay design score. Of 4,672 SNPs attempted, 3,626 were successfully genotyped on Sample 

1 and processed using Illumina Genome Studio, and 3,478 passed marker QC (call rate ≥ 

0.9, minor allele frequency ≥ 0.005, p > 10−6 from exact test of deviation from Hardy-

Weinberg proportions (HWP) in unrelated subjects, as tested by PLINK 44). Sample QC for 

the primary analysis has been described28. Samples with call rate < 0.95 over the fine-

mapping panel were omitted (total n = 34), as were all Mendelian incompatible genotypes 

within families.

DNA samples in Sample 2 were typed for 4,310,364 markers on the Illumina HumanOmni5 

Beadchip, version 1.0. Genotypes were called using Illumina GenomeStudio. Analysis was 

restricted to the region of chromosome 2 genotyped for Sample 1. Samples were required to 

have call rate ≥ 0.98, and samples with 10th percentile of GenCall scores < 0.42 over all 

markers passing initial QC (call rate ≥ 0.90, p > 10−6 for deviation from HWP) were subject 

to manual inspection of fluorescence intensity data (B allele frequency) plotted against map 

position of at least one autosome. Before analysis, markers were subject to a more stringent 

QC (call rate ≥ 0.98, MAF ≥ 0.01). Genetic sex was verified by means of X-chromosome 

heterozygosity and percentage of successfully called Y-chromosome genotypes. 

Relationships and unintentional (non-)duplicates were checked by means of PLINK’s --

genome function44 applied to a sparse set (pairwise r2 < 0.1 between markers) of common 

polymorphisms (MAF ≥ 0.05). Unreported relationships more distant than second-degree 

were classified as unrelated.
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We augmented the fine-mapping marker panel for Sample 1 by imputation45. Because none 

of the 1000 Genomes Phase 3 populations is respresentative of our Ugandan genomes, we 

used a set of Ugandan genomes typed for the HumanOmni5 panel, including Sample 2 as a 

subset, as a reference for imputation. Haplotypes of 44,542 common variants (MAF ≥ 0.5%) 

spanning the fine-mapping region ± 500kb were determined by means of SHAPEIT246, 

including the available parent-offspring duos and trios for more accurate phasing. 

Haplotypes from a subset of 302 unrelated individuals from the HumanOmni5-genotyped 

sample composed the reference data set for imputation into the discovery cohort (n = 892, 

including some without a PTST– phenotype). Genotypes from the Sample 1 fine-mapping 

panel were prephased using SHAPEIT2 before imputation in 5-Mb segments with 500 kb 

overlap using IMPUTE245. Imputation yielded an augmented panel of 40,335 SNPs with 

IMPUTE2 imputation quality score47 ≥ 0.5.

We carried out a principal components analysis (PCA) on the 471 Sample 2 individuals 

passing QC to detect ancestry outliers and to correct for population structure during 

association analysis (see below). A genome-wide panel of 160,884 common (MAF ≥ 0.05) 

independent (pairwise r2 < 0.1) variants passing marker QC from the HumanOmni5 panel 

was chosen, excluding four genomic regions with extensive linkage disequilibrium, which 

can create artifactual principal components (PCs)48: Chr. 2, 135–137 megabasepairs (Mb) 

(lactase gene LCT), Chr. 6, 27–35 Mb (HLA region), Chr. 8, 6–16 Mb (inversion 

polymorphism), and Chr. 17, 40–45 Mb (extensive LD in admixed populations). We 

calculated principal components (PCs) by two different methods: first, using 

EIGENSOFT49, which assumes that all individuals are unrelated; and second, using 

PCAiR50, which performs PCA on an optimal unrelated subset of the sample and which uses 

genotype loadings to project PCs for relatives. Although the PCAiR approach is more valid 

for family data, we used EIGENSOFT PCs in association analyses because they resulted in a 

smaller genomic control (GC) parameter value (see below). To confirm African ancestry, a 

second PCA was conducted with addition of 119 unrelated individuals from the HapMap 

CEU, YRI, CHB and JPT samples, using a panel of 130,718 markers in common between 

the Omni5 PCA panel described above and the 1000 Genomes Phase 1, version 3 data set.

Statistical methods

Association analysis on the imputed Sample 1 genotype data was conducted by means of 

logistic regression, using the generalized estimating equations (GEE) model implemented in 

the gee package in R to allow for correlations within families. The number of minor alleles 

from genotyped markers, or the allele dosage data (expected number of minor alleles) from 

imputation, were used as a genotype predictor under an additive model (on the logarithmic 

scale). The “exchangeable” correlation structure was specified, in which all relatives within 

a family were assumed equally correlated; if this model failed to converge to a stable 

estimate, the “independence” structure was used, which provides a still valid, albeit less 

powerful, approach. For this study, because of the limited sample size and the complexity of 

the statistical model, families were defined by grouping individuals connected by first-

degree relationships; within-household correlations owing to common household 

environment, and correlations between more distant family members, were not modeled. 

Only imputed SNPs with MAF ≥ 0.03 were tested for association, after it was discovered 
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that the GEE algorithm had difficulty converging with some of the rarer imputed variants, 

even under the “independence” correlation structure, whereas models on genotyped SNPs 

with MAF ≥ 0.01 converged well. We chose GEE for association analysis, instead of a 

generalized linear mixed model (GLMM) adjusting for all relationships, not only because of 

model complexity but also because there were very few second- and third-degree relative 

pairs in either sample, and because complex correlations due to sharing the same household, 

the same bed, etc., are difficult to model by GLMM but are estimated from the data by GEE. 

With only a regional marker map, we were unable to assess inflation of test statistics by 

means of the genomic control parameter λ51. However, the value of λ over the region of 

linkage was only 1.007, and the quantile-quantile plot of the results is consistent with no 

genome-wide inflation (see Results). Because we expect this region to harbor truly 

associated variants, we are confident that the type I error was well controlled. Following 

Sobota et al.52, we estimated the number of effective independent tests by isolating a set of 

low-dependence markers, using PLINK’s --indep-pairwise function with an r2 threshold of 

0.2. This approach yielded 6,246 effective independent tests for a nominal p value threshold 

of 8.0 × 10−6 for regionwide significance of 0.05; and for the Omni5 marker set, 6,103 

independent tests for nominal p = 8.1 × 10−6.

Association analysis on Sample 2 was carried out in similar fashion, except that the fourth 

PC from the EIGENSOFT PCA was included as a predictor to adjust for population 

structure. The first 20 PCs were evaluated for association with the PTST– phenotype in 

Sample 2. PCs 3 and 4 were found to be significant when included singly, but in the 

presence of PC 4, PC 3 had a nonsignificant effect, and thus only PC4 was included in 

association analysis as a covariate. A sparse genome-wide scan of about 10,000 SNPs from 

the Sample 2 Omni5 panel, excluding regions implicated in TB susceptibility (the HLA 

region, but also all genes mentioned in two previous reports28, 53) was conducted to obtain 

an estimate of the genomic control (GC) parameter λ for genome-wide inflation of test 

statistics51. Because λ from the final analysis was greater than 1.05, we corrected 

association p values for genome-wide inflation by the method of Bacanu et al.54. It was 

uncertain what was causing the overall inflation of test statistics. One possibility was that 

inflation was caused by including markers with low minor allele counts, but the value of λ 
was not reduced by increasing the minimum MAF to several values from 0.03 to 0.10. 

Second, we compared λ from association analyses adjusting for PC 4 from EIGENSOFT, 

and adjusting for four PCs from PCAiR that were significantly associated with PTST–, and 

found that adjusting for EIGENSOFT PC4 resulted in a smaller value of λ54.

We conducted meta-analysis by the inverse-variance-weighted fixed-effect method, and 

calculated Cochran’s Q statistic and I2 to assess effect heterogeneity between the two 

samples, using a custom script for the statistical software R.

Haplotypes of 13 SNPs in genes GTDC1 and ZEB2 were determined for both Samples 1 and 

2 by means of SHAPEIT2, with the --duohmm option to make use of parent/child 

relationships. Haplotypes from two sets of SNPs, a set of 11 and a set of two, showing 

linkage disequilibrium were used for haplotype-based association analysis. Best-guess 

haplotypes from these two sets were counted, and haplotypes with sample frequencies 

between 3% and 20% were tested for association with PTST– vs. all other pooled 
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haplotypes, under the same GEE regression model used for single-marker association 

testing.

We used the restricted maximum likelihood (REML) estimation approach in the GCTA 

software package55 to partition genetic variance in Sample 2 explained by the specific region 

on Chr. 2 (position 117,911,357 to 168,853,091) and, separately, all other genotyped SNPs 

across the genome. Briefly, we filtered SNPs (excluding SNPs with call rate < 0.95 and 

minor allele frequency < 0.05), generated separate genetic relationship matrices for the 

region on Chr. 2 and the rest of the genome, then performed REML estimation using the 

expectation maximization fitting method to estimate the proportion of “risk” for being PTST 

explained by each of the two genetic partitions (i.e., region on Chr. 2 & all other SNPs). 

REML analysis was adjusted for age, sex, and HIV status.

Differences in proportions in body-mass wasting between PTST– and non-PTST– subsets in 

the sample measured for body mass composition were evaluated by Fisher’s exact test.

Annotating strongly associated variants

We explored the likely effects of genetic variants with the most significant association 

results with information from several well-known databases. We obtained Combined 

Annotation-dependent Depletion (CADD) scores56, a measure of deleteriousness based on 

evolutionary conservation and on numerous measures of regulatory importance and 

predicted protein effects, from the CADD Web site (http://cadd.gs.washington.edu/). We 

report CADD scores as PHRED-like scores, in which a score of 10x indicates pathogenicity 

within the top 100 × 10−x percent of possible variants genome-wide. We extracted specific 

information on chromatin structure, effects on DNA regulatory motifs and association results 

from other GWAS and expression quantitative trait locus (eQTL) studies from the HaploReg 

v4.157 Web site (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php), 

specifying the ChromHMM (Core 15-state model) algorithm for chromatin structure 

determination. We searched the GTEx database58 for prominent PTST– associated markers 

for evidence of eQTL activity in 53 human tissues. Finally, we acquired a measure of overall 

evidence for a regulatory role from RegulomeDB (59; http://www.regulomedb.org/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plots of association results from (A) the meta-analysis, (B) Sample 1 and (C) 

Sample 2. Genotyped and imputed markers are represented as black and blue dots, 

respectively.
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Figure 2. 
LocusZoom plots of the chromosome 2 region surrounding rs7568133, for (A) the meta-

analysis, (B) Sample 1 only and (C) Sample 2 only. In A and B, genotyped and imputed 

markers are represented by squares and circles, respectively. In B, markers selected for 

haplotype-based analysis (see Online Resource 1, Supplementary Figure 2) are marked with 

asterisks. The LD structure shown is that of the 1000 Genomes 2014 AFR population.
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Table 1

Characteristics of the two Ugandan PTST– samples.

PTST– Non-PTST– Total p

Sample 1

n 81 666 747 —

Active TB 0 (0.0%) 165 (24.8%) 165 (22.1%) —

Female 38 (46.9%) 276 (41.4%) 314 (42.0%) 0.41

Age, y 9.3 ± 8.8 17.8 ± 13.5 16.9 ± 13.3 < 0.001

HIV+ 4 (5.4%) 80 (13.0%) 84 (12.2%) 0.061

Sample 2

n 33 438 471 —

Active TB 0 (0.0%) 201 (45.9%) 201 (42.7%) —

Female 16 (48.5%) 215 (49.1%) 231 (49.0%) 0.99

Age, y 11.5 ± 12.5 21.6 ± 13.4 20.9 ± 13.5 < 0.001

HIV+ 3 (9.4%) 56 (12.9%) 59 (12.7%) 0.78

Values are presented either as n (% of total sample) or as mean ± SD. Non-PTST–, LTBI plus active TB; p, p value for test of differences between 

PTST– and non-PTST– individuals, by 2 × 2 χ2 test for sex, Wilcoxon rank-sum test for age, and Fisher’s exact test for HIV status.

Genes Immun. Author manuscript; available in PMC 2019 July 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Igo et al. Page 19

Ta
b

le
 2

M
os

t s
ig

ni
fi

ca
nt

 m
et

a-
an

al
ys

is
 r

es
ul

ts
.

Sa
m

pl
e 

1
Sa

m
pl

e 
2

M
et

a-
an

al
ys

is

M
ar

ke
r

G
en

e
P

os
it

io
n

A
lle

le
s

R
A

F
In

fo
O

R
95

%
 C

I
p

R
A

F
O

R
95

%
 C

I
p

O
R

95
%

 C
I

p

rs
20

28
21

1
B

IN
1

12
7,

90
1,

65
7

C
/A

0.
14

60
0.

78
1.

43
(0

.8
0,

 2
.5

3)
0.

22
0.

14
70

3.
92

(2
.1

8,
 7

.0
7)

5.
4E

-0
6

2.
33

(1
.5

5,
 3

.5
2)

5.
3E

-0
5

rs
75

68
13

3
Z

E
B

2
14

5,
20

4,
97

6
A

/G
0.

49
52

0.
82

2.
00

(1
.3

5,
 2

.9
8)

0.
00

06
2

0.
47

75
2.

55
(1

.2
7,

 5
.1

1)
0.

00
85

2.
12

(1
.5

0,
 3

.0
0)

1.
9E

-0
5

rs
10

16
93

06
A

C
02

34
69

.1
15

1,
92

6,
47

2
A

/G
0.

06
35

0.
84

1.
57

(0
.8

4,
 2

.9
5)

0.
16

0.
06

87
4.

26
(2

.2
4,

 8
.1

1)
1.

0E
-0

5
2.

56
(1

.6
3,

 4
.0

2)
4.

3E
-0

5

rs
58

11
05

23
FM

N
L

2
15

3,
29

2,
23

5
C

/T
0.

04
86

0.
84

2.
85

(1
.4

3,
 5

.6
6)

0.
00

28
0.

04
83

3.
71

(1
.4

8,
 9

.2
9)

0.
00

52
3.

13
(1

.8
0,

 5
.4

2)
4.

8E
-0

5

rs
74

76
29

79
A

R
L

6I
P6

15
3,

80
4,

89
8

G
/A

0.
09

57
0.

88
1.

88
(1

.0
7,

 3
.3

1)
0.

02
8

0.
07

63
5.

25
(2

.3
9,

 1
1.

55
)

3.
7E

-0
5

2.
66

(1
.6

8,
 4

.2
2)

2.
9E

-0
5

rs
11

41
01

79
5

A
R

L
6I

P6
15

3,
82

5,
38

8
A

/G
0.

09
57

0.
88

1.
88

(1
.0

7,
 3

.3
0)

0.
02

8
0.

07
87

5.
46

(2
.4

5,
 1

2.
13

)
3.

2E
-0

5
2.

68
(1

.6
9,

 4
.2

5)
2.

8E
-0

5

rs
79

51
34

02
A

R
L

6I
P6

15
3,

82
9,

13
4

C
/T

0.
09

57
0.

88
1.

88
(1

.0
7,

 3
.3

0)
0.

02
9

0.
07

74
5.

29
(2

.4
0,

 1
1.

66
)

3.
6E

-0
5

2.
66

(1
.6

8,
 4

.2
2)

2.
9E

-0
5

rs
78

08
94

92
A

C
09

26
84

.1
16

4,
82

6,
75

1
G

/A
0.

07
37

0.
92

2.
54

(1
.4

3,
 4

.5
2)

0.
00

15
0.

06
55

2.
56

(1
.2

7,
 5

.1
5)

0.
00

82
2.

55
(1

.6
4,

 3
.9

8)
3.

6E
-0

5

G
en

e,
 g

en
e 

th
at

 c
on

ta
in

s 
or

 is
 n

ea
re

st
 to

 m
ar

ke
r;

 A
lle

le
s,

 e
ff

ec
t/o

th
er

 a
lle

le
, w

he
re

 th
e 

re
fe

re
nc

e 
is

 th
e 

m
in

or
 a

lle
le

 in
 th

e 
sa

m
pl

e;
 R

A
F,

 r
ef

er
en

ce
 a

lle
le

 f
re

qu
en

cy
; I

nf
o,

 I
M

PU
T

E
2 

in
fo

rm
at

io
n 

qu
al

ity
 s

co
re

.

Genes Immun. Author manuscript; available in PMC 2019 July 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Igo et al. Page 20

Table 3

Body mass wasting in PTST– and non-PTST– Ugandan individuals.

PTST– Non-PTST– p

BMI 6 (12.2%) 322 (21.0%) 0.14

Lean mass 2 (5.1%) 218 (17.9%) 0.039

Fat mass 8 (20.0%) 301 (24.6%) 0.51

Criteria for wasting were body-mass index (BMI) < 18.5 kg/m2, fat mass index < 1.8 kg/m2 for men and < 3.9 kg/m2 for women, and lean mass 

index < 16.7 kg/m2 for men and < 14.6 kg/m2 for women30. All tested participants were HIV-negative aged 15 years or older. Values are shown as 
N (%). p, p value by Fisher’s exact test; values below 0.05 are italicized.
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