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ABSTRACT
Background. Emerging evidence implicates the correlation of embryonic germline
genes with the tumor progress and patient’s outcome. However, the prognostic
value of these genes in lung adenocarcinoma (LUAD) has not been fully studied.
Here we systematically evaluated this issue, and constructed a novel signature and a
nomogram associated with embryonic germline genes for predicting the outcomes of
lung adenocarcinoma.
Methods. The LUAD cohorts retrieved from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) database were used as training set and testing
set, respectively. The embryonic germline genes were downloaded from the website
https://venn.lodder.dev. Then, the differentially expressed embryonic germline genes
(DEGGs) between the tumor and normal samples were identified by limma package.
The functional enrichment and pathway analyses were also performed by clusterProfiler
package. The prognostic model was constructed by the least absolute shrinkage and
selection operator (LASSO)-Cox regression method. Survival and Receiver Operating
Characteristic (ROC) analyses were performed to validate the model using training set
and four testing GEO datasets. Finally, a prognostic nomogram based on the signature
genes was constructed using multivariate regression method.
Results. Among the identified 269 DEGGs, 249 were up-regulated and 20 were down-
regulated. GO and KEGG analyses revealed that these DEGGs were mainly enriched
in the process of cell proliferation and DNA damage repair. Then, 103 DEGGs with
prognostic value were identified by univariate Cox regression and further filtered
by LASSO method. The resulting sixteen DEGGs were included in step multivariate
Cox regression and an eleven embryonic germline gene related signature (EGRS) was
constructed. The model could robustly stratify the LUAD patients into high-risk and
low-risk groups in both training and testing sets, and low-risk patients had much
better outcomes. The multi-ROC analysis also showed that the EGRS model had
the best predictive efficacy compared with other common clinicopathological factors.
The EGRS model also showed robust predictive ability in four independent external
datasets, and the area under curve (AUC) was 0.726 (GSE30219), 0.764 (GSE50081),
0.657 (GSE37745) and 0.668 (GSE72094). More importantly, the expression level
of some genes in EGRS has a significant correlation with the progression of LUAD
clinicopathology, suggesting these genesmight play an important role in the progression
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of LUAD. Finally, based on EGRS genes, we built and calibrated a nomogram for
conveniently evaluating patients’ outcomes.

Subjects Bioinformatics, Oncology, Respiratory Medicine, Medical Genetics
Keywords Lung adenocarcinoma, Embryonic germline genes, Prognosis, Biomarkers,
Bioinformatics analysis

INTRODUCTION
As the most common pathological subtype of non-small cell lung cancer (NSCLC), lung
adenocarcinoma (LUAD) largely occurs among women and non-smoking populations
(Herbst, Morgensztern & Boshoff, 2018). Benefiting from the advance in surgical technique,
targeted therapy, immunotherapy and radiochemotherapy, the treatment of LUAD has
undergone revolutionary changes in recent years (Yang, Yang & Yang, 2020). However, due
to the lack of sensitive early detection methods, most patients are in advanced stages at the
time of their first diagnosis. The overall 5-year survival rate has not improved significantly
(Chen et al., 2014).

Many cancers activate genes normally associated with different developmental states,
including germ cell-specific genes, which suggests that some unknown mechanisms
which are normally limited to the development of germ cells maybe involved in the
process of tumorigenesis (Bruggeman et al., 2018; Erenpreisa & Cragg, 2010; Kho et al.,
2004; Lepourcelet et al., 2005;McFarlane & Wakeman, 2017; Simpson et al., 2005). With the
first discovery of MAGE-1 in melanoma cells, a series of genes that are normally restricted
to the testis, such as BAGE, GAGE, HOM-MEL-40, SYCP1, and NY-ESO-1 have been
found in various tumors, and these genes are collectively called cancer/testis (CT) genes
(Almeida et al., 2009; Boël et al., 1995; Chen et al., 1997; De Backer et al., 1999; Türeci et al.,
1996; Türeci et al., 1998; van der Bruggen et al., 1991). Although the driving role of these
CT genes in tumorigenesis and development has not been fully studied, there is evidence
that they may play a role in the early stage of oncogenesis and the maintenance of tumor
phenotypes (Bruggeman et al., 2018). However, these previously identified CT genes are
mixed with genes derived from testicular somatic cells and are not truly germline- specific
genes. Currently, using bioinformatic methods, Bruggeman et al. (2020) identified 672 so
called embryonic germ cell genes which are restricted to the germline and also expressed in
a variety of tumor tissues, including lung cancer. However, the level of expression of these
genes in lung adenocarcinoma and its relationship with patient prognostics have not been
fully studied.

In this study, we systematically analyzed the expression levels of embryonic germline
cell-specific genes in LUAD cohort and constructed a novel prognostic signature and
nomogram, which can be used to predict the overall survival of LUAD patients.
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MATERIAL AND METHODS
Data source and preprocessing
Data were collected and preprocessed as previously described (Yue, Ma & Zhou, 2019).
Briefly, as the training dataset, the expression profile and clinical information of LUAD
cohort were downloaded from TCGA database using GDC tool and summarized into
an expression and a clinical matrix, respectively. The ensemble ids in the expression
matrix were converted into gene symbols according to the annotation file and the multiple
expression data of a single gene were replaced by an average value. Genes that are not
expressed in all samples are also removed from the expression matrix. For testing sets, we
used lung adenocarcinoma as a keyword to search in the GEO database. After removing
the datasets which are devoid of clinical data or expression data of genes in the model, four
independent GEO datasets GSE30219, GSE50081, GSE37745 and GSE72094 were selected
and downloaded via GEOquery package (Davis & Meltzer, 2007). For pan-cancer analyses,
the expression profiles and clinical data of 33 TCGA cancer types were downloaded from
TCGA database, and preprocessed according to previously mentioned procedures. Tumor
cohorts with normal samples <5 were not included in the pan-cancer expression analysis.
The gene expression values were all converted to transcripts per million transcripts
(TPM) to facilitate subsequent analysis. The protein expression data of LUAD were
obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database
(https://cptac-data-portal.georgetown.edu/).

Identification of the differentially expressed embryonic germline
genes (DEGGs)
The embryonic germline genes were downloaded from the website https://venn.lodder.dev
(Bruggeman et al., 2020), and their expression data were extracted into a matrix. Then, the
differentially expressed embryonic germline genes (DEGGs) between tumor and normal
samples were identified using methods mentioned previously (Yue, Ma & Zhou, 2019).
The multiple comparisons were controlled using the false discovery rate (FDR) (Benjamini
& Hochberg, 1995). The screening criteria were |log2Fold Chang| > 1 and FDR < 0.05.

Functional enrichment and pathway analysis
The Gene Ontology(GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes(KEGG) pathway analysis were performed according to previously described
methods (Yu et al., 2012; Yue, Ma & Zhou, 2019). P . adjust (FDR) <0.05 was considered
statistically significant.

Construction of EGRS in training dataset
The EGRS model was established using methods described previously (Yue, Ma & Zhou,
2019). Briefly, the 454 LUAD samples were included in the univariate Cox regression
analysis to determine the prognostic value of DEGGs. P < 0.05 was considered statistically
significant. The prognostic DEGGs were further screened out using LASSO regression
via glmnet package in R software for avoiding model overfitting (Friedman, Hastie &
Tibshirani, 2010). Then, the resulting key DEGGs were included in multivariate Cox
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analysis, and risk score formula was constructed as follow:

Risk score=
∑

β ∗gene.

The β and gene represent the coefficient of multivariate Cox regression and the expression
value of corresponding DEGGs in EGRS, respectively. The * represents the multiplication
operator.

Validation of the EGRS in the training and testing sets
To further validate the expression pattern, the protein expression profiles of DEGGs
in EGRS between normal and tumor samples were analyzed using proteomic data of
LUAD cohort obtained from CPTAC database. Then, the predicted effect of the EGRS
was evaluated in the training and testing sets, respectively. Samples in the training set were
divided into high- and low-risk group according to the median of risk score values. The risk
score distribution, survival status and the expression level of 11 DEGGs in EGRS between
the high- and low-risk samples were evaluated. In addition, we divided the patients in
training set into two groups according to commonly used clinicopathological factors and
analyze the differentiation of the expression levels of 11 DEGGs between the two groups
by student’s t -test. P < 0.05 was considered statistically significant. Kaplan–Meier (KM)
survival analysis and receiver operating characteristic (ROC) curve were used to evaluate the
predicting power of the EGRS, and the prognostic performance of other clinicopathological
factors was also compared with that of EGRS model. The KM plot and ROC curve were
used to assess the generalization power of EGRS model in four independent GEO datasets.
Finally, a pan-cancer expression and prognostic analyses of 11 DEGGs were performed to
extend our findings to other types of cancers.

Construction and evaluation of a nomogram
For predicting the OS of individual LUAD patient, Nomogram was generated based on the
results of the multivariate Cox analysis to predict 1-, 3-, and 5-year OS. The performance
of the nomogram was evaluated using calibration plots.

RESULT
Identification the DEGGs in LUAD
The transcriptome data of LUAD cohort which contains 497 tumor and 54 normal samples
were downloaded from TCGA database, and the corresponding expression profiles of
embryonic germline genes were extracted according to the data published previously
(Bruggeman et al., 2020). The DEGGs between normal and tumor samples were identified
by limma package in R software (Ritchie et al., 2015). Totally, 269 DEGGs were screened
out, among which, the upregulated DEGGs were 249, and the down-regulated DEGGs
were 20 (Fig. 1A, Table S1). The representative DEGGs are shown by heat map (Fig. 1B)
and box plot (Fig. 1C), respectively.

Functional enrichment and KEGG analysis of DEGGs
The GO enrichment analysis of the DEGGs revealed that the DEGGs were mainly enriched
in biological process of cell proliferation and DNA damage repair, such as nuclear division
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Figure 1 The differentially expressed embryonic germline genes (DEGGs) between LUAD and normal
tissues. (A) The volcano plot of DEGGs. The red and green dots represent the up-regulated and down-
regulated DEGGs, and the black dots represent the embryonic germline genes that do not meet the se-
lection criteria. (B) The heatmap of the representative DEGGs. N and T represent the normal and LUAD
samples, respectively. The color of scale bar (from green to red) indicates the expression status of DEGGs
(from lowly expression to highly expression). (C) The boxplot of the representative DEGGs. P < 0.05 was
considered as statistical significance. LUAD, Lung adenocarcinoma; FDR, False Discovery Rate.

Full-size DOI: 10.7717/peerj.12257/fig-1

(GO:0000280), DNA replication (GO:0006260), cell cycle checkpoint (GO:0000075),
double-strand break repair (GO:0006302) and interstrand cross-link repair (GO:0036297)
(Figs. 2A, 2B). The KEGG analysis showed that the enriched pathways were cell cycle
(hsa04110), homologous recombination (hsa03440), and Fanconi anemia pathway
(hsa03460) (Figs. 2C, 2D). The detailed GO terms of the three categories, biological
process (BP), cellular component (CC), molecular function (MF) and KEGG results were
presented in Tables S2 and S3, respectively.

The construction of embryonic germline gene related prognostic
model
For EGRS construction, the univariate Cox regression analysis was conducted and the
resulting 103 DEGGs with prognostic value (p< 0.05, Fig. 3A) were further screened by
LASSO regression. Then, the sixteen keyDEGGswere selected to performed themultivariate
Cox regression analysis (Figs. 3B, 3C). Finally, a prognostic signature containing eleven
DEGGs (RAD54L, ZNF322, CENPI, IGF2BP1, IGF2BP3, RAD51AP1, E2F7, HMMR,
DNAJC5B, ADAMTS12, NANOS1) was constructed and the risk score formula was
presented as follow:

Risk score= (−0.4294)∗RAD54L−0.2411∗ZNF322−0.4645∗CENPI+0.2243∗
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IGF2BP1+0.2095∗ IGF2BP3−0.5093∗RAD51AP1+0.7979∗E2F7+0.7968∗

HMMR−0.3272∗DNAJC5B+0.1997∗ADAMTS12−0.5248∗NANOS1.

The validation of the EGRS for survival prediction
Due to the potential inconsistencies in gene expression between the transcriptome and the
proteome, we first verified the protein expression of the 11 DEGGs in EGRS in normal and
tumor samples through the CPTAC database. Given the limitations of available data, only 4
genes of the 11 DEGGs were analyzed. Consistent with the transcriptome data, the protein
expression of 4 genes (IGF2BP1, IGF2BP3, HMMR and ADAMTS12) were up-regulated
in LUAD tumor samples. The log2FoldChanges of IGF2BP1, IGF2BP3, HMMR and
ADAMTS12 were 0.49, 1.14, 0.50 and 0.87 and the p-values of the 4 genes were 2.7E−02,
9.22E−08, 1.32E−07 and 7.27E−18, respectively. In addition, the pan-cancer expression
analysis also revealed that 11 DEGGs in EGRS showed differential expression in most types
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Figure 3 The identification of the DEGGs with prognostic value. (A) The forest plot of the representa-
tive prognostic DEGGs screened out by univariate Cox proportional hazards regression. The red rectan-
gles represent hazard factors, and blue rectangles represent protective factors. (B) Lasso co-efficient pro-
files of prognostic DEGGs by optimal lambda. (C) The partial likelihood deviance plot presented the min-
imum number corresponds to the covariates used for multivariate Cox analysis. DEGGs, differentially ex-
pressed embryonic germline genes; Lasso, least absolute shrinkage and selection operator.
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of tumors, but diverse expression trends between tumor and paired adjacent normal tissues
of some types of cancers were observed, suggesting that the DEGGs may play different
roles in the development of different types of tumors (Fig. S1). Then, Kaplan–Meier (KM)
survival analysis indicated that the overall survival between the high- and low-risk groups
in training set was significantly different, and the low-risk patients had significantly better
outcomes than that of high-risk patients (P = 4.083e−09) (Fig. 4A). Besides, our model
had the best predictive power, compared with other clinicopathological factors such as age,
gender, TNMand stage. Its area under curve (AUC) of ROCwas 0.790 (Fig. 4B). TheDEGGs
in EGRS indicated differential expression between high- and low-risk samples (Fig. 4C),
and with the increase of risk score, the proportion of death cases was also increasing
(Figs. 4D, 4E). Between different pathological groups, the expression levels of genes in
EGRS also showed significant difference (Fig. 5). Contrary to CENPI, the expressions of
DNAJC5B in elderly patients (>65 years old) were higher than those in younger patients
(≤65 years old) (Figs. 5A, 5B). The HMMR, RAD51AP1 were highly expressed in men
than in women (Figs. 5D, 5E). ZNF322 was related to T stage, and its expressions in T3-4
were significantly lower than those in T1-2 (Fig. 5G). The CENPI, DNAJC5B, HMMR,
RAD51AP1 and ZNF322 were correlated to N stage. Except for ZNF322, other genes were
highly expressed in N1-2 stage (Figs. 5I–5L). The expressions of ADAMTS12 in M1 stage
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were lower than those in M0 stage (Fig. 5N). The expressions of DNAJC5B, HMMR,
IGF2BP1, IGF2BP3, RAD51AP1, ZNF322 were correlated to the pathological stage. Except
for ZNF322 and DNAJC5B, the expressions of other genes in stage III-IV were significantly
higher than those in stage I-II (Figs. 5P–5U). More importantly, the risk scores in the
advanced LUAD were significantly higher than those in the early stage (Fig. 5H, 5M and
5V), although its distribution had no statistical difference in some pathological statuses
such as age, gender and tumor metastasis (Figs. 5C, 5F and 5O).

The univariate andmultivariate Cox analyses suggested the risk scorewas an independent
prognostic factor (Figs. 6A, 6B). The pan-cancer prognostic analysis also indicated the 11
DEGGs had prognostic value in some cancer types. Likewise, different prognostic effects
based on cancer type were observed in some DEGGs (the detail results were packaged into
a Supplementary file). In addition, the predictive power of the EGRS was further validated
in four GEO testing datasets. Consistent with the training set, our model also stratified the
samples in the testing sets into low-risk and high-risk groups, and the low-risk patients had
better outcomes (Figs. 6C–6F). The AUC results also showed that our model had stable
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predictive ability. The AUC in four independent GEO datasets were 0.726 (GSE30219),
0.764 (GSE50081), 0.657 (GSE37745) and 0.668 (GSE72094) (Figs. 6G–6J).

Construction and evaluation of a nomogram
In order to more straightforwardly predict the prognosis of LUAD patients, a nomogram
was constructed (Fig. 7A). According to the expression level of 11 genes in an individual
patient, a numeric value was calculated to directly predict the 1-, 3-year and 5-year
prognostic survival rate. The calibration plots showed that the predictive values of OS
probabilities in 1-, 3-, and 5-year fit well with the observation values, suggesting that
the nomogram is suitable for predicting the prognostic survival rate of LUAD patients
(Figs. 7B, 7C, 7D).

DISCUSSION
Although the data published recently on lung cancer in the United States are encouraging,
lung cancer is still amalignant tumorwith highmorbidity andmortality in the world (Siegel,
Miller & Jemal, 2020; Sung et al., 2021). In China, the incidence of lung cancer ranks the
first and the second amongmen andwomen, respectively, and it is still themalignant disease
with the highest mortality rate (Zhang et al., 2020b). The lung adenocarcinoma is the most
common pathological subtype of non-small cells lung cancer (NSCLC), which accounts for
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about 40% of all lung cancer cases (Kleczko et al., 2019). Benefiting from carrying a higher
proportion of actionable mutations, lung adenocarcinoma has more treatment options
than other subtypes of lung cancer, however, its five-year overall survival rate remains
unsatisfactory (Zhang et al., 2019b). Accumulating evidence indicates that patients with
early stage of disease have a better prognosis, so finding more effective early diagnostic
biomarkers or therapeutic targets is important for developing more effective treatment
regimens, prolonging patient’s survival time and improving their quality of life.

The various types of human cells are derived from a single fertilized egg cell through
differentiationmechanisms that we do not fully understand (McKenna & Gagnon, 2019). In
this process, specific types of genes in differentiating cells are expressed in a well-organized
spatiotemporal sequence under the cues of various internal and external factors, and finally
generate tissue cells with distinct morphology, function and gene expression profiles (Trott
& Martinez Arias, 2013). Germline cell-specific genes are a class of genes that are expressed
only in germ cells. Accumulating evidence shows that tumor cells and germ cells have
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Figure 7 Prognostic nomogram and calibration plots of EGRS. (A) The nomogram of EGRS. (B, C and
D) calibration plots of nomogram predicting 1-year, 3-year and 5-year survival, respectively.

Full-size DOI: 10.7717/peerj.12257/fig-7

similar behaviors, so it is speculated that tumor cells may adopt certain similar regulatory
mechanisms in the process of tumorigenesis and development (Bruggeman et al., 2018;
Simpson et al., 2005). Indeed, follow-up studies have detected multiple germ cell-specific
genes in different tumor tissues (Erenpreisa & Cragg, 2010; McFarlane & Wakeman, 2017;
Whitehurst, 2014). The products of these genes are regarded as ideal immunotherapy targets
due to their restricted range of expression and have attracted more and more attention.

Currently, Bruggeman et al. (2020) identified 672 true embryonic germ cell-specific
genes by removing contaminated somatic genes. However, the expression status and their
prognostic value of these genes have not been fully studied in lung adenocarcinoma. To
take these issues, we systematically studied the expression levels of the above-mentioned
672 genes in the TCGA LUAD cohort, evaluated their correlation with the prognosis
of LUAD patients, and finally constructed and validated a prognostic model consisting
of 11 DEGGs. Our model can well stratify the patients into high- and low-risk groups
and robustly predict the outcomes of patients in both training and testing sets. Among
the 11 DEGGs, ZNF322 (also known as ZNF322A, ZNF388 or ZNF489) is a member of
the zinc finger transcription factor family, and may act as a positive regulator in MAPK
signaling pathway (Li et al., 2004). Recent studies have shown that the overexpression of
ZNF322 is related to the oncogenesis of many tumors including lung cancer through a
variety of mechanisms, such as directly suppressing the expression of c-Myc to promote
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cell stemness or up-regulating the transcription of α-adducin (ADD1) and cyclin D1
(CCND1) to promote tumor growth and metastasis (Jen et al., 2016; Jen et al., 2019; Liao et
al., 2017; Williams et al., 2014). DNA binding protein RAD51AP1 is a component of DNA
damage repair system, which plays an important role in RAD51-mediated homologous
recombination (Pires, Sung & Wiese, 2017). Further studies indicates that overexpression of
RAD51AP1 promotes the proliferation of lung cancer cells and correlates to poor prognosis
(Chudasama et al., 2018; Li et al., 2018b;Wu et al., 2019). HMMR coding a 724 amino acids
protein, which may associate with the motility of cancer cells (Sankaran et al., 2012). Quite
a few of studies had shown that the highly expression of HMMR is closely related to the
prognosis of LUAD patients, and it may promote the progression of lung adenocarcinoma
by regulating the metabolic state of tumor cells (He & Zuo, 2019; Jiao et al., 2020; Li et
al., 2020a; Li, Qi & Li, 2020c; Liu et al., 2019; Man et al., 2014; Shen et al., 2019; Stevens
et al., 2017; Zhang, Zhang & Yu, 2019a; Zhou et al., 2015). The ADAMTS12 is a novel
anti-tumor metalloprotease, and the expression is epigenetically silenced in tumor cells (Li
et al., 2018a; Moncada-Pazos et al., 2009). A bulk of studies suggest the overexpression of
IGF2BP1 and IGF2BP3 facilitate the progress of lung cancer, and relate to the prognosis
of LUAD patients (Beljan Perak et al., 2012; Gong et al., 2016; Guo et al., 2021; Huang et
al., 2019; Kato et al., 2007; Li & Zhan, 2020; Li et al., 2020b; Mizutani et al., 2016; Müller
et al., 2019; Ohdaira et al., 2012; Wang, He & Ma, 2020; Xueqing et al., 2020; Zhang et al.,
2020a). E2F7 plays an important physiological role in embryonic development and cell
cycle regulation (Park et al., 2015). Recent researches show the various non-coding RNA
can influence the progress of lung cancer by regulating the expression of E2F7 (Liang et
al., 2018; Liu et al., 2020; Wang et al., 2021; Yuan et al., 2021). NANOS1 was up-regulated
in lung cancer, and promoted the progress of tumor progress (Bonnomet et al., 2008; De
Keuckelaere et al., 2018). RAD54L is also a potential prognostic biomarker of NSCLC (Tu
et al., 2021; Zheng et al., 2021). Literature retrieval showed that the relation of LUAD and
DEGGs DNAJC5B, CENPI has not been reported so far. In addition, pan-cancer expression
and prognosis analyses also indicated that 11 DEGGs showed differential expression and
prognostic value in a variety of tumors, suggesting that these DEGGs may also play a role in
the development of tumors other than lung adenocarcinoma, which needed to be validated
by further functional experiments.

Although we constructed and validated an 11-gene prognostic model, the present study
still has several limitations: first, the number of samples in training set is not large enough;
secondly, due to tumor heterogeneity and individual differences among LUAD patients,
the generalizing abilities of the model need further improvement. Therefore, further
model optimization and validation using LUAD cohort with larger samples are needed.
In addition, the results of bioinformatics analysis did not carry out related experimental
verifications. Therefore, whether the genes in the model play a functional role in the
progress of LUAD remains to be resolved. These issues mentioned above will be the main
content of our follow-up studies.
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CONCLUSION
In summary, we used LUAD transcriptome data to identify DEGGs. From the DEGGs,
an 11-gene signature and a prognostic nomogram were constructed and validated for
predicting the outcomes of LUAD patients. Further studies on these genes will provide a
new insight into the potential relationship between tumor microenvironment and LUAD
prognosis.
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