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Introduction

Optic neuropathies refer to a group of disorders with abnor-
malities and dysfunction of the optic nerve. Apart from the 
primary optic nerve disorders, some optic neuropathy cases 
are associated with systemic disorders, such as demyelinat-
ing inflammatory optic neuritis (ON), which are associated 
with multiple sclerosis or neuromyelitis optic neuropathy. 
Other types of inflammatory ON can be associated with 
systemic autoimmune disorders, such as systemic lupus ery-
thematosus or sarcoidosis1,2. Ischemic optic neuropathy is 
suggested to be associated with other conditions, including 
hypertension and diabetes. Tumors involving the optic nerves 
can co-exist with the tumors in the central nervous system. 
Different types of optic neuropathies can lead to various 
severities of visual impairment and even blindness. Acute 
and rapid visual deterioration is typical for demyelinating, 
inflammatory, ischemic, and traumatic causes, while a 
gradual course indicates the compressive, toxic/nutritional, 
or hereditary causes. Central scotoma and centrocecal  
scotoma are usually found in hereditary optic neuropathy. 
Altitudinal defects present in ischemic optic neuropathy and 
hemianopia can be associated with compressive optic neu-
ropathy. Glaucoma, the main type of irreversible optic neuro-
pathy, begins without apparent symptoms in the early stages 
but with initial gradual deterioration of peripheral vision3. 

The classification and characteristics of optic neuropathies 
were summarized in Table 1.

Optic neuropathies can also be classified as acquired or 
inherited44. Acquired optic neuropathies affect people with 
wide spectrum of ages, but commonly occur in adults. The 
morphological changes involve not only the optic nerve head 
but also the entire optic nerve and blood vessels, and even 
co-existing with the intracranial problems. Their etiologies 
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are diverse, including vascular, inflammatory, compressive, 
infiltrative, traumatic, toxic, and nutritional optic neuropa-
thies3. In contrast, hereditary optic neuropathies belong to 
those with underlying heritable etiology. Leber’s hereditary 
optic neuropathy (LHON) and autosomal dominant optic 
atrophy (ADOA) are the most common hereditary optic neu-
ropathies mostly affecting the children and teenagers45. Optic 
nerve damage in LHON and ADOA are usually observed in 
earlier life, and the optic nerve is permanently affected as the 
results of gene mutations46. Glaucoma is also considered as a 
complex genetic disease with the interplay between multiple 
associated genes and the environmental factors47. Glaucoma 
is characterized by the optic nerve head cupping and visual 
field defects47, and intraocular pressure (IOP) elevation is a 
reversible risk factor39.

In spite of different etiologies for different types of optic 
neuropathies, retinal ganglion cell (RGC) death and the axo-
nal loss are the commonly shared pathophysiological changes 
for all types of optic neuropathies. RGCs collectively trans-
mit the image-forming and non-image forming visual infor-
mation from the retina to the lateral geniculate nucleus and 
superior colliculus in the brain; therefore, they are the impor-
tant treatment target in plenty of the optic neuropathy 
research. RGC death in optic neuropathies is complex and 
complicated48, and RGC protection and regeneration are the 
major goals in the design of treatment regimes.

Clinically, a variety of medications and surgical proce-
dures have been applied to different optic neuropathies in 
multiple clinical trials or routine practices, targeting the 
pathological conditions in different types of optic neuropa-
thies. However, the visual defect of a significant number of 
patients with optic neuropathies still cannot be fully recov-
ered under current clinical interventions. Completely rescu-
ing RGCs from degeneration, activating their regeneration 
endogenously, and replenishing them exogenously are the 
major challenges for the clinicians and researchers. Besides, 
RGCs are vulnerable to stresses and injuries, and they have 
limited regenerative capacity. Partial functional recovery is 
possible; yet, the vision loss is inevitable and irreversible.

Basically, mammalian retina has low intrinsic regenerative 
capacity. Lack of trophic support, scar formation at the injury 
site, and the myelin-associated inhibitors further contribute to 
RGC degeneration and failure in axonal regeneration upon 
diseases and after injuries49. Many research studies strived 
through variable ways to alleviate RGC death and axonal 
loss, including supplying exogenous neurotrophic factors, 
electrical stimulation, inhibiting the apoptosis mediators, 
counteracting glial scar formation and the myelin-associated 
inhibitors, as well as gene and cell therapies. Exogenously 
supplying brain-derived neurotrophic factor (BDNF) and cili-
ary neurotrophic factor (CNTF) can promote RGC survival in 
rodents after optic nerve injury50,36. Moreover, glial cell line–
derived neurotrophic factor (GDNF), fibroblast growth factor 
(FGF), transforming growth factor-β (TGF-β), and insulin-
like growth factors (IGFs) can also enhance RGC survival in 

retinal degeneration models, such as ischemic/reperfusion 
model51. However, multiple injections of neurotrophic factors 
are needed to demonstrate a prominent effect of RGC protec-
tion. Trans-corneal electrical stimulation for 1 month shows 
increase in RGC survival with preservation of RGC function 
after hypertensive injury in mouse retina52. Inhibiting the 
apoptotic pathway by caspase-3 inhibitors, such as z-DEVE-
fmk, has been reported to promote RGC survival53. By target-
ing the myelin-associated growth-inhibitory molecules, the 
inhibitor of myelin-associated glycoprotein can promote 
neurite outgrowth from dorsal root ganglia neurons54. Gene 
therapy mediated through the adeno-associated viruses 
(AAVs) on different target genes, such as ectopic expression 
of BDNF55 and CNTF as well as knockdown of RhoA50, can 
enhance RGC survival and axonal regeneration in rodents. 
The disease types, tissue tropism of AAVs, the gene targets, 
the vector carrying capacity, potential genome integration, 
immune responses, as well as the treatment safety and toxic-
ity should reasonably be considered before the clinical appli-
cation of gene therapy56. It is also warranted to develop novel 
and effective treatments for optic neuropathies. Recently, 
stem cell therapy was proposed as a potential treatment for 
optic neuropathies. Adult stem cells, including mesenchymal 
stem cells (MSCs) and hematopoietic stem cells (HSCs), 
have been applied in clinical trials based on their neuro-
protective properties. In this article, the applications of adult 
stem cells on different types of optic neuropathies and the 
related mechanisms will be reviewed. Research updates on 
the strategies to enhance the neuroprotective effects of human 
adult stem cells will be summarized. In addition, the potential 
of cell replacement therapy by adult stem cells for optic neu-
ropathies will also be discussed.

An Overview and the Neuroprotective 
Effects of Adult Stem Cells

Stem cells are defined as the immature cells with the capabil-
ity of self-renewal and differentiation into mature cells. They 
are essential for tissue growth, development, and homeosta-
sis. According to the developmental stages, stem cells can be 
sub-classified into embryonic stem cells (ESCs) and adult 
stem cells. ESCs, derived from the inner cell mass of a blas-
tocyst prior to gastrulation, are regarded as the gold standard 
of pluripotent stem cells, which are capable to differentiate 
into all cells of the three germ layers: ectoderm, mesoderm, 
and endoderm. Adult stem cells, referring to the stem cells 
originated from fully developed tissues, have been identified 
in multiple organs and tissues, including the umbilical cord, 
bone marrow, teeth, adipose tissue, brain, eye, intestine, and 
salivary glands57. Adult stem cells function to maintain the 
specificity of adult tissues through homeostatic cell replace-
ment and tissue regeneration58. Although they are presumed 
quiescent within the adult tissues, they can divide infre-
quently to produce a stem cell clone and a transiently ampli-
fying cell. The transiently amplifying cells can undergo 
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limited cell divisions before terminally differentiating into 
mature functional tissue cells. Adult stem cell differentiation 
is lineage restricted, and different types of adult stem cells 
have their specific functions in different tissues and organs. 
This review article focused on the research of HSCs, MSCs, 
and retinal stem cells in the treatment of optic neuropathies.

Hematopoietic stem cells (HSCs) can differentiate into all 
cell lineages in mature blood (erythroid, myeloid, and lym-
phoid) and sustain the blood production for the entire human 
life59. HSCs for transplantation in many blood-related dis-
eases are mainly obtained from adult bone marrow, umbilical 
cord blood, and mobilized peripheral blood. HSCs can be 
sorted with the positive selection by CD34, CD45, and CD133 
as well as the negative selection by CD31, CD105, and 
CD14660. Activation of HSCs is driven by the PI3K/AKT/
mTORC1 signaling pathway, whereas their re-entry into qui-
escence depends on the MEK/ERK signaling pathway61.

Mesenchymal stem cells (MSCs) are the multipotent stro-
mal cells with the capability differentiating into mesodermal 
lineages, including adipocytes, chondrocytes, and osteo-
cytes62. Although MSCs were originally identified in bone 
marrow, they can also be found in different tissues, including 
adipose tissue, umbilical cord, and teeth63. Human MSCs can 
be sorted with the positive selection by CD29, CD44, CD73, 
CD90, CD105, CD146, and STRO-1 as well as the negative 
selection by CD31, CD34, CD45, CD49f, and CD13364. 
Apart from the expression of specific cell surface markers, 
MSCs are also defined to be growing in adherence to the 
plastic surface while maintained in standard culture condi-
tions and are capable to be in vitro induced into mesenchy-
mal lineages with appropriate medium as recommended by 
the International Society of Cellular Therapy65.

Retinal stem or progenitor cells (RPCs) are the neural 
stem cells generating all seven types of mature retinal cells: 
cone/rod photoreceptors, bipolar cells, horizontal cells, 
amacrine cells, RGCs, and Müller glia. RPCs are originated 
from neuroectoderm during development66 and have been 
reported to be resided in the retina and the pigmented ciliary 
margin in zebrafish, chick, and rodent67. Moreover, Müller 
glia and retinal pigment epithelium have also been sug-
gested demonstrating the RPC properties through de-differ-
entiation upon injury68. The expressions of PAX6, VSX2, 
RAX, SOX2, Nestin, and c-Kit can be found in RPCs, but 
negative for SSEA469.

Endogenous regeneration by stem cells upon diseases or 
after injuries in human retina, referring to the progenitor 
cells localized in the ciliary margin zone of the retina and the 
Müller glia, is very rare and largely unknown. Besides, the 
collection of RPCs from a living patient could possibly fur-
ther damage the retina, which is not ethical. Therefore, treat-
ments using adult stem cells for optic neuropathies mainly 
rely on the application of autologous/heterologous stem cells 
from other tissues, including HSCs and MSCs.

Adult stem cells, in addition to the capability differenti-
ating into lineage-specific mature cells, also possess the 

neuroprotective properties, especially for HSCs and MSCs. 
The neuroprotective effect is mainly mediated by the para-
crine bystander effect, including modulating the plasticity of 
the host damaged tissues, secreting the survival-promoting 
and neurotrophic factors, restoring the release of synaptic 
transmitters, integrating into the existing neural and synaptic 
networks, and rebuilding the afferent and efferent connec-
tions70. Moreover, MSCs also demonstrate the immuno-
modulatory properties71, allowing autologous/heterologous 
transplantation without additional immunosuppression treat-
ment. MSCs have been found to facilitate cell repair via 
immunomodulation72,73. In addition, organelle or material 
transfer, such as mitochondrial transfer, from MSCs into the 
targeted cells through tunneling nanotubes can also rescue 
cells from damage and apoptosis74,75. Importantly, the neuro-
protective properties are naturally acquired by adult stem 
cells without the need of reprogramming or genetic modifi-
cation, and the usage of adult stem cells has no moral objec-
tion or ethical controversies. The risk of teratoma formation 
is very limited after adult stem cell transplantation76. Despite 
the accessibility and naturality of adult stem cells, the retina 
is comparatively resistant to transplant integration with lim-
ited long-term xenograft survival. Application of erythropoi-
etin or chondroitinase ABC can facilitate the transplanted 
cell migration into the retina77. Adult stem cell treatment 
should be promising for optic neuropathies.

Application of Adult Stem Cells for 
Different Types of Optic Neuropathies

Application of Adult Stem Cells for Demyelinating 
Optic Neuritis

Demyelinating ON is one of the most common causes of 
unilateral or bilateral painful visual loss in young adults4. 
The incidence of ON was estimated as five per hundred 
thousand individuals annually, with a prevalence of 115  
per hundred thousand individuals in the United States8. 
Demyelinating ON can be an early sign of neuromyelitis 
optica spectrum disorder (NMOSD), multiple sclerosis, or 
other autoimmune disorders on the spinal cord, brain, and 
optic nerve4. The anti-aquaporin-4 (AQP4) and anti-myelin 
oligodendrocyte glycoprotein (MOG) auto-antibodies are 
discovered in some demyelinating ON patients, but target-
ing different tissues under different pathogenesis5,6. The 
pathophysiological mechanism of AQP4 antibody-related 
ON could be related to the binding of AQP4 antibody 
(AQP4-IgG or AQP4-Ab) to the AQP4 water channel on the 
surface of astrocytes, resulting in astrocyte cytotoxicity 
along with secondary oligodendrocyte damage and demye-
lination5. On the other hand, the pathophysiological mecha-
nism of the MOG antibody–related ON is caused by the 
antibodies directed against MOG on the oligodendrocytes6. 
There is also a group of ON patients without identification 
of specific auto-antibody. However, no targeted treatment 
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for demyelinating ON is clinically available. High dose of 
intravenous methylprednisolone (IVMP), aiming to reduce 
the inflammation at the optic nerve, can promote visual 
function improvement in the patients with ON78. In addition, 
the plasma exchange treatments, oral steroids, and immuno-
suppressive and immunomodulatory drugs can also be 
applied to prevent further relapse79. Nevertheless, high dose 
IVMP and the enhanced immunosuppressive treatment will 
extensively suppress the normal immune function, leading 
to severe side effects and increasing the risk of serious infec-
tion. Application of adult stem cells, especially MSCs, in 
ON should help with the immunomodulation, anti-inflam-
mation, and enhancing RGC survival18,80,81.

In the experimental MOG-induced autoimmune encepha-
lomyelitis model resembling multiple sclerosis, tail vein 
injection of human bone marrow–derived MSCs has been 
shown to alleviate RNFL thinning and RGC death as well as 
protect the pattern electroretinography response with reduc-
ing the HIF-1 signaling activation and upregulating the 
Abca1 expression80. For the clinical study of MSC  
therapy on ON and NMOSD (Table 2), the clinical trial 
(NCT02249676) on 12 neuromyelitis optica (NMO) patients, 
one recurrent ON patient, and two patients with recurrent lon-
gitudinally extensive transverse myelitis received auto logous 
MSC transplantation, showed that increase in RNFL thick-
ness and optic nerve diameters with visual function improve-
ment could be observed at 1 year after transplantation18. 
Another clinical trial (NCT01920867) on a 54-year-old 
female subject with autoimmune ON reported improvements 
in visual acuity, visual field, and RNFL thickness after autolo-
gous bone marrow–derived MSC transplantation19. Moreover, 
five Chinese NMO patients treated with human umbilical 
cord–derived MSCs showed improvement in symptoms, and 
the signs were improved in four study subjects with reduction 
in relapse frequencies, magnetic resonance imaging (MRI) 
characteristics, and the severity of lesions15. Although few 
adverse events reported, peripheral blood B lymphocytes 
were inhibited, and T lymphocytes increased after treat-
ment15. In addition, a clinical trial (NCT01920867) on a 
27-year-old female subject with idiopathic bilaternal ON 
reported that the visual acuity of the eyes receiving retrobul-
bar, subtenon, and intravitreal stem cell injections improved 
from 20/800 to 20/100 while those receiving intra-optic nerve 
injection of stem cells and vitrectomy improved from 
20/4,000 to 20/40 at 6 months after autologous bone marrow–
derived MSC injection17. The visual acuity improvement 
remained stable even after the 12-month follow-up period. 
However, the transplanted bone marrow–derived MSCs in 
patients with NMO exhibit the decreased proliferation capac-
ity and increased cell death rate82. Furthermore, there are 2 
clinical trials applying the autologous bone marrow–derived 
MSCs, including the SCOTS2 (NCT03011541) in the United 
States for the NMO treatment, and the Treatment of Optic 
Neuropathies Using Autologous Bone Marrow-Derived Stem 
Cells (NCT02638714) in Jordan for the safety and efficacy on 
functional restoration in ON.

For the clinical study on HSCs, a study on 13 NMOSD 
patients with the infusion of mobilized autologous periph-
eral blood stem cells, one patient with coexistent systemic 
lupus erythematous died due to the complications of active 
lupus; yet, the mental (from 37.6 to 65), physical (from 28 
to 56), and total quality of life (from 34.2 to 62) were 
improved in 11 patients after a 5-year follow-up period16. 
Critically, among the 11 patients with sero-positive on base-
line AQP4-IgG, nine patients became sero-negative after 
stem cell transplantation. Moreover, in a 23-year-old 
Chinese female NMO subject who received autologous 
peripheral HSC transplantation, the visual acuity of the right 
eye increased from 0.02 to 0.04 at 6 months after transplan-
tation14. In spite of the remaining atrophic optic nerve, other 
symptoms were improved, including the muscle power. In 
contrast, a study on 21 opticospinal MS patients with intra-
venous transplantation of autologous peripheral blood stem 
cells reported no significant improvement after transplanta-
tion even though the expanded disability status scale score 
was decreased83. Besides, failure in preventing the relapse 
of NMO was also reported in one patient with autologous 
HSC transplantation, which could be due to the inadequate 
reset of immune tolerance or sustained autoimmunity to 
aquaporin-4 auto-antigen84. There are also two clinical trials 
on autologous HSCs for NMO withdrawn or terminated 
without any data released: The Autologous Transplant To 
End NMO Spectrum Disorder (ATTEND; NCT03829566) 
in the United States and the Autologous Hematopoietic 
Stem Cell Transplant in Neuromyelitis Optica (SCT-NMO; 
NCT01339455) in Canada.

Application of Adult Stem Cells for Non-Arteritic 
Anterior Ischemic Optic Neuropathy

Non-arteritic anterior ischemic optic neuropathy (NAION) 
belongs to one of the most common acute optic neuropathies 
with an incidence of 2.3 to 10.3 per hundred thousand indi-
viduals per year in the United States21. The pathophysiology 
of NAION is presumed as the acute hypoperfusion of short 
posterior ciliary arteries, resulting in insufficient blood flow 
to the optic nerve head and anterior optic nerve segment85,86. 
The ischemic insult becomes worsen by the optic disc edema 
compressing the axon and capillaries and leads to a compart-
ment syndrome86. Along with the ischemia, the cytotoxic 
factor and cytokine release would lead to further damages on 
the optic nerve87, and eventually, optic nerve atrophy would 
develop86. Different therapeutic strategies for NAION have 
been investigated, including intravitreal, peri-ocular, sys-
temic, and surgical therapies88, to reduce the related vascular 
risk factors, improve the perfusion of the optic nerve by 
vasodilators, relieve the optic nerve head pressure, inhibit 
cytotoxic factors by the molecular targeted therapy, and pro-
mote optic nerve axonal regeneration. Application of adult 
stem cells in NAION should be able to improve the vascular 
circulation and perfusion and nourish the RGCs with the 
neurotrophic factors.
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In a mouse model of NAION, intravenous (1 × 106 cells in 
0.2 ml) or intravitreal injection (2 × 105 cells in 3 μl) of adult 
mouse bone marrow–derived stem cells at 1 month showed 
stem cell migration to various retinal layers and differentia-
tion into endothelium, immune cells, astrocytes, and neural 
cells, indicating that the transplanted adult bone marrow cells 
can contribute to the retinal remodeling after ischemia by pro-
moting cell regeneration and sustaining endogenous repair89. 
Early neural and sustained astrocyte differentiation from 
adult bone marrow–derived stem cells could be regulated 
through the Flt-1-mediated vascular endothelial growth factor 
(VEGF) signaling89. In addition, both BDNF and CNTF can 
enhance the neural differentiation of adult bone marrow–
derived stem cells in the retina of AION mice90. In a rat model 
of AION, intravitreal injection of human Wharton’s jelly 
MSC-derived conditional medium can inhibit RGC apoptosis 
and microglia activation and preserve visual function81. 
Notably, the transplantation of human Wharton’s jelly MSCs 
in normal rats would cause severe inflammation and impair 
the retinal structure and function as compared with the phos-
phate buffered saline (PBS)-treated rats81. The effect of xeno-
transplantation of human MSCs cannot be ignored.

Currently, there are two clinical studies using adult stem 
cells for NAION (Table 2). The Stem Cell Ophthalmology 
Treatment Study (SCOTS; NCT01920867), conducted in 
the United States, is a non-randomized study based on the 
combinations (retrobulbar, subtenon, intravitreal, and intra-
venous) of autologous bone marrow–derived stem cell 
injection. In SCOTS, 10 NAION patients received autolo-
gous bone marrow–derived stem cell treatment91. About 
80% patients showed improvement in Snellen binocular 
vision within 6 months, and 20% remained stable. This 
study showed an average of 22.74% vision improvement in 
Snellen and maximum 83.3% improvement in logMAR 
visual acuity, with an average logMAR visual acuity gain of 
0.364 in the treated eyes.

Another Phase II clinical trial for acute NAION in Spain 
(NCT03173638) aimed to assess the safety and inflamma-
tory reaction of intravitreal allogenic bone marrow–derived 
MSC injection in the acute phase of NAION based on the 
neuroprotective properties of MSCs to reduce the progres-
sive axonal degeneration in NAION. The outcome of the 
study has not been reported yet.

Application of Adult Stem Cells for Traumatic 
Optic Neuropathy

Traumatic optic neuropathy (TON) refers to the optic nerve 
injured directly or indirectly or by a blast. In 1998, the World 
Health Organization estimated trauma causing 1.6 million 
binocular blindness, 2.3 million people with both eyes low 
vision, and 19 million monocular blindness92. The injuries 
from traffic accidents, sports, and recreational activities 
account for 78.2% cases in India93. Direct optic nerve injury 

includes penetrating trauma and impinging injury by bone 
fragments or orbital hemorrhage. Indirect injury commonly 
occurs during head or globe injury when the optic nerve 
could be sheared and avulsed by the rotational forces94. The 
energy can be transmitted through the skull to the optic nerve 
and retina, causing rapid changes in IOP and inducing RGC 
damage94. Following the direct mechanical disruption on the 
axons of the optic nerve, the enzymatic processes could be 
activated to degrade the cytoskeleton, leading to the delayed 
impairment of the axonal structure and function95. In the 
TON treatment trial (TONTT) study, daily intravenous 
administration of erythropoietin (stimulating erythrocyte 
production) or methylprednisolone for three consecutive 
days significantly improves the best corrected visual acuity 
and color vision in the TON patients94. Adult stem cells, with 
the secretion of neurotrophic factors and exosomes, can 
nourish the microenvironment in TON so as to promote RGC 
survival and axonal regeneration.

To mimic the clinical situation of TON, the experimental 
model of optic nerve injury by crushing the optic nerve in 
rodents is adopted. Intravitreal injection of rat bone marrow–
derived stem cells (5 × 106 cells in 5 μl) can increase RGC 
survival by 1.6 folds and promote axonal regeneration at 2 
weeks after injection as compared with those with saline or 
dead cell injection35. Similarly, our group demonstrated that 
intravitreal injection of human periodontal ligament–derived 
stem cells (PDLSCs) can enhance RGC survival and axonal 
regeneration after optic nerve injury in rats, possibly through 
direct cell–cell interaction as well as neurotrophic factor 
secretion by PDLSCs36. Higher expression of FGF-2 and 
IL-1β in the transplanted retina can explain the neuroprotec-
tive effect of MSCs96. Human or rat dental stem cells can 
secrete nerve growth factor (NGF) and BDNF to promote 
RGC survival and axonal regeneration in the rat optic nerve 
crush model through the TrK receptor36,37. Our group also 
found that retinal injury can enhance the secretion of BDNF 
from human PDLSCs36. In addition, intravitreal injection of 
rat MSCs and human Wharton’s jelly MSCs as well as its 
extracellular vesicles can enhance axonal regeneration and 
synaptic reconnection in superior colliculus, but fail to pre-
serve the visual behavior in rodents with optic nerve injury97, 
indicating that MSCs can promote long-distance axonal 
regeneration. Yet, the neuroprotective mechanisms of MSCs 
still require further investigations. Besides, there is still no 
clinical trial on human stem cells for TON.

Application of Adult Stem Cells for Leber’s 
Hereditary Optic Neuropathy

LHON belongs to one of the mitochondrial disorders with an 
incidence of 1 per 100,000 individuals45. LHON is mater-
nally inherited due to the point mutations in mitochondrial 
DNA, leading to the reduction in mitochondrial ATP produc-
tion and the elevation in oxygen-free radicals. The oxidative 
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stress in turn leads to the dysfunction and apoptosis of 
RGCs98. For the treatment, creatine and dietary antioxidant 
supplements, including coenzyme Q10 and L-carnitine, have 
been suggested to enhance mitochondrial bioenergetics and 
to ameliorate the neurodegenerative process99. Application 
of adult stem cells in LHON might be able to transfer healthy 
mitochondria to the diseased RGCs through cell–cell con-
tract-mediated cellular material transfer so as to enhance 
RGC survival.

LHON mouse model has been established100; yet, no stem 
cell transplantation study has been tested in this mouse 
model. Alternatively, patient-specific LHON model can also 
be generated from induced pluripotent stem cells (iPSCs)101. 
Repairing mitochondrial dysfunction via mitophagy activa-
tion could be a possible treatment strategy for LHON102. For 
the LHON clinical trial on human adult stem cells (Table 2), 
SCOTS (NCT01920867) recruited five LHON patients, who 
received the transplantation of autologous bone marrow–
derived stem cells29. The visual acuity and peripheral vision 
persistently increased, improving from finger counting to 
20/100 and hand motion to 20/200. However, the thicknesses 
of macula and optic nerve head are not correlated with the 
vision improvement. Although adverse or serious adverse 
event was not found in this study, the sample size was rela-
tively too small to draw the conclusion.

Application of Adult Stem Cells for Glaucoma

Glaucoma, characterized by the optic disc cupping and pro-
gressive RGC degeneration39, is a leading cause of irrevers-
ible visual impairment and blindness in the world. It was 
estimated that 60.5 million individuals suffered from glau-
coma in 2010, and the glaucoma patients will increase to 
111.8 million in 204038. The risk factors include aging, gen-
der, ethnicity, hypertension, smoking, myopia, and diabe-
tes103. Lamina cribrosa is considered as the primary site of 
injury. The imbalanced IOP level imposes mechanical stress 
to RGCs and leads to RGC death104. Although the pathogen-
esis of glaucoma is yet to be elucidated, various theories 
have been proposed, including the vascular, biochemical, 
and biomechanical theories104. For the biomechanics, the 
elevated IOP, together with the concept of the decreased 
intracranial pressure and the high trans-lamina cribrosa pres-
sure difference, induces lamina cribrosa pore distortion, 
nerve fibers compression, and RGC death105. For the vascu-
lar theory, the decreased ocular perfusion caused by the ele-
vated IOP can lead to intraneural ischemia, which would lead 
to RGC damage owing to inadequate supply of oxygen and 
nutrients as well as the activation of astrocytes and Müller 
glia. The elevated endothelin-1 and deranged nitric oxide-
cyclic GMP signaling could also be involved in the vascular 
dysregulation106. The biochemical theory suggests that the 
involvement of reactive oxygen species (ROS), excitatory 
amino acids, nitric oxide, caspases, matrix metalloprotein-
ases (MMPs), and tumor necrosis factor-α could lead to 

RGC apoptosis and neuroinflammation in glaucomatous 
optic neuropathy107,108. Current clinical treatments mainly 
focus on lowering the IOP, and they can effectively delay the 
disease progression in majority of the glaucoma patients. 
The development of IOP-independent strategies to enhance 
RGC survival is warranted108. Application of adult stem cells 
in glaucoma should be able to improve the vascular circula-
tion for better nutrient supply, exert the anti-inflammatory 
and anti-oxidative effects, and enhance RGC survival by the 
paracrine effect of adult stem cells.

In the chronic IOP elevation rat model by ligating the epi-
scleral veins, RGC reduction was ameliorated in rats with 
intravitreal injection of rat bone marrow stromal cells (4 × 
104cells in 5 μl)40. The transplanted bone marrow stromal 
cells were present along the inner limiting membrane or inte-
grated into the nerve fiber and GC layer, but rarely expressed 
the neural lineage markers. Increased expression of bFGF 
and CNTF in bone marrow stromal cell treatment could 
explain the RGC protective effect. In the laser-induced IOP 
elevation rat model, intravitreal injection of rat bone mar-
row–derived MSCs (5 × 106 cells in 5 μl) increases RGC 
axonal survival and decreases axonal loss at 4 weeks after 
transplantation41. Comparatively, intravenous transplanta-
tion of bone marrow–derived MSCs showed no effect on 
optic nerve damage rescue. Moreover, intravitreal injection 
of human bone marrow–derived MSCs or dental pulp stem 
cells (1.5 × 105 cells in 5 µl) in rats before bi-weekly intra-
cameral injection of TGF-β1 can increase RGC survival and 
protect retinal nerve fiber layer thinning and RGC function at 
1 month after transplantation, which was not observed in 
adipose-derived stem cells42. Mouse bone marrow–derived 
MSC-promoted RGC survival in acute IOP elevation mice 
model could be mediated through the miR-21/PDCD4 axis 
with the suppression of caspase-8-mediated apoptosis, 
microglia activation, and inflammatory mediator produc-
tion109. Apart from stem cell transplantation, intravitreal 
injection of small extracellular vesicles collected from bone 
marrow–derived MSCs can also promote RGC protection 
and prevent retinal nerve fiber layer degenerative thinning 
and the retinal function loss in the microbeads and laser pho-
tocoagulation-induced IOP elevation rat model43. The RGC 
protection mechanism of MSC-derived small extracellular 
vesicles could be mediated through miRNAs that, with the 
knockdown of Argonaute-2, the protective effects of MSC-
derived exosomes on RGC soma and axons after optic nerve 
injury would be diminished110.

Up to now, there are four clinical trials studying adult 
stem cells in glaucoma (Table 2): SCOTS (NCT01920867) 
and SCOTS2 (NCT03011541) in the United States on 
autologous bone marrow–derived stem cells; the 
Effectiveness and Safety of Adipose-Derived Regenerative 
Cells for Treatment of Glaucomatous Neurodegeneration 
(NCT02144103) in Russia on subtenon injection of autolo-
gous adipose–derived regenerative cells for primary open-
angle glaucoma; and the Intravitreal Mesenchymal Stem Cell 
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Transplantation in Advanced Glaucoma (NCT02330978) in 
Brazil on intravitreal autologous bone marrow–derived MSC 
transplantation for the worst eye of legal bilaterally blinded 
glaucoma patients. The two advanced glaucoma patients in 
NCT02330978 trial did not show improvements on visual 
acuity, visual field, and electroretinographic (ERG) responses 
after transplantation. Yet, retinal detachment with prolifera-
tive vitreo retinopathy was found in one patient at 15 days 
after MSC transplantation111. The strategy of MSC transplan-
tation in glaucoma patients should be a concern, and modifi-
cations may be needed. The safety of intravitreal MSC 
transplantation requires further investigations. The results of 
other three clinical trials have not been released yet.

Enhancement of the Neuroprotective 
Effects for Adult Stem Cell Application

Although adult stem cell transplantation has been proven to 
alleviate RGC death and promote axonal regeneration in dif-
ferent RGC degeneration models, the neuroprotective effect 

of adult stem cells is still modest. The regenerative properties 
can be influenced by the intrinsic and extrinsic factors, such 
as age effect112 and cigarette smoke component113. To boost 
up the treatment effect of adult stem cells for optic neuropa-
thies, priming or preconditioning of adult stem cells is a pro-
spective strategy to enhance adult stem cell properties before 
transplantation. These include improving the grafting ability 
of adult stem cells, increasing stem cell survival in host tis-
sues, and promoting the paracrine effects and migration abil-
ity of stem cells. Recently, there are growing research 
interests to explore different attempts to modulate the prop-
erties of adult stem cells (Fig. 1).

Hypoxia

Hypoxic condition (2% oxygen) has been demonstrated to 
increase the proliferation rate and stemness of adipose-
derived stem cells without altering cell morphology114, which 
promotes DNA synthesis and reduces the expression of 
MMPs114. Human bone marrow–derived stem cells and 

Figure 1. Enhancement of adult stem cell properties. Priming or preconditioning of adult stem cells can enhance the properties of 
adult stem cells with hypoxia, electrical stimulation, laser irradiation or by chemicals, growth factors, cytokines or herbal medicine/
molecules. CREB: cAMP response element-binding protein; CXCR: chemokine receptor; ERK: extracellular signal-regulated kinase; HIF: 
hypoxia inducible factor; IDO: indoleamine 2,3-dioxygenase; JNK: c-Jun N-terminal kinase; MMPs: matrix metalloproteinases; NRF-2: 
nuclear factor erythroid 2-related factor 2; PEG2: prostaglandin E2; ROS: reactive oxygen species ; SOX9: sex determining region Y-box 
transcription factor 9; STAT3: signal transducer of activators of transcription 3.
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umbilical blood CD133+ cells, when exposed to 1.5% oxy-
gen for 24 h, could increase total colony numbers with 
hypoxia inducible factor (HIF)-1α upregulation115. The 
increase in stem cell survival after hypoxia treatment is asso-
ciated with the expression of HIF-1α through the increased 
phosphorylation of AKT and p38 MAPK116. Low oxygen–
activated HIF-1α delays cell senescence with macrophage 
inhibitory factor activation and p53-mediated pathway inhi-
bition117. In addition, canine adipose tissue–derived MSCs 
preconditioned with deferoxamine (a hypoxia-mimetic 
agent) exhibit an increased secretion of anti-inflammatory 
prostaglandin E2 and tumor necrosis factor-α–stimulated 
gene-6, while decrease the M1 macrophage but increase the 
M2 macrophage marker expression118. Furthermore, hypoxic 
preconditioning prior to transplantation can suppress MSC 
apoptosis and increase the migration abilities with higher 
CXCR4 expression, resulting in promoting neuronal regen-
eration and improving neural function after transplantation 
in rat model of middle cerebral artery occlusion119.

Chemicals, Growth Factors, and Cytokines

FGF can promote the proliferation of MSCs from different 
sources120,121. Preconditioning human umbilical cord blood–
derived MSCs with both interferon-γ (IFN-γ) and interleukin-
1β (IL-1β) can induce regulatory T-lymphocyte differentia tion 
and inhibit Th1 T-lymphocyte differentiation with increasing 
prostaglandin E2 secretion and indoleamine 2,3-dioxygenase 
(IDO) and cyclooxygenase 2 (COX2) gene expression122. 
Melatonin preconditioning can increase MMP-9 and MMP-
13 expression in bone marrow–derived MSCs123, and 
improves transplanted bone marrow–derived MSC survival 
and engraftment, which promotes renal regeneration in 
chronic kidney disease rat model123. Moreover, precondition-
ing with hydrogen peroxide (H2O2) also reported to enhance 
the proliferation, clonogenicity, adhesion, and migration of 
decidua basalis–derived MSCs and reduce IL-1β expres-
sion124. H2O2 preconditioning can increase superoxide dis-
mutase, NQO1, catalase, and heme oxygenase 1 expression 
in bone marrow–derived MSCs via nuclear factor erythroid 
2-related factor 2 pathway, resulting in decrease in intracel-
lular ROS levels, increase in the anti-oxidative stress ability, 
and promotion of bone marrow–derived MSC survival125. In 
addition, preconditioning human cardiac stem cells with 
cobalt-protoporphyrin (heme oxegenase-1 inducer) can 
result in greater improvement in left ventricular remodeling 
by protecting human cardiac stem cells from apoptosis via 
ERK/NRF-2 signaling pathway activation126. Thrombin pre-
conditioning can accelerate human umbilical cord blood–
derived MSC-derived extracellular vesicles biogenesis and 
enrich the cargo contents by protease-activated receptor-
mediated signaling pathways127, whereas less degradation of 
exosomes could be achieved by kartogenin preconditioning 

on bone marrow–derived MSCs128. Furthermore, treatment 
of rat MSCs with valproic acid and lithium can stimulate cell 
migration through the HDAC/CXCR4 and GSK-3β/MMP-9 
pathways, respectively129.

Herbal Medicine and Molecules

We recently demonstrated that curcumin treatment (5 μM) 
on human bone marrow–derived MSCs can enhance 
MMP13-mediated osteogenic differentiation, reduce MMP1 
expression, and upregulate immunomodulatory gene IDO1 
expression although it would inhibit MSC proliferation  
and migration in high concentration (10 μM or above)130. 
Treatment of a Chinese medicinal herbal formula, Danggui 
Buxue Tang (a mixture containing Astragali radix  
and Angelicae sinensis radix), can increase the number of 
bone marrow stromal cells and promote cell adhesion and 
migration via focal adhesion and PI3K/Akt signaling path-
way activation131. Moreover, treatment of Chinese medicinal 
herbal formula Du-Huo-Ji-Sheng-Tang and its active constit-
uent Ligusticum chuanxiong hort can delay human MSC 
aging process by decreasing cell senescence and increasing 
its osteogenic activity132. Treatment of Salvia miltiorrhiza 
Bunge attenuates apoptosis and improves cell viability of 
MSCs, leading to the recovery of the infarcted brain region 
and behavior in rat model of middle cerebral artery occlu-
sion133. In addition, treatment of icariin (the active component 
of epimdium koreanum or epimdium berberidaceae maxim) 
promotes the survival of adipose-derived MSCs against oxi-
dative stress, reduces cell apoptosis, and attenuates intracel-
lular ROS through the PI3K/Akt-STAT3 signaling pathway134. 
Treatment of cajanine, isolated from the extracts of pigeon 
pea (Cajanus cajan L. Millsp.), can promote bone marrow–
derived MSC proliferation by activating the cell cycle signal 
transduction pathway and accelerating their osteogenic dif-
ferentiation135. Similarly, treatment of polydatin (isolated 
from the bark of Picea sitchensis or Polygonum cuspidatum) 
can enhance the proliferation of bone marrow–derived MSCs 
and the alkaline phosphatase activity via the BMP-Wnt/β-
catenin signaling pathways136.

Laser Irradiation

Low-level laser irradiation (LLLI; 660 nm, 30 mW) with  
1 J/cm2energy density can enhance human PDLSC prolifera-
tion137. Moreover, LLLI (660 nm, 70 mW) with the energy 
density of 4 J/cm2can improve the bone healing process of 
adipose-derived stem cells in rats with critical-sized calvarial 
defects138. Furthermore, the proliferation, adipogenic differ-
entiation ability, and VEGF, TGF-β, and platelet-derived 
growth factor (PDGF) secretion of adipose-derived stem 
cells can be enhanced by 4 J/cm2 GaAIAs low-level red laser 
(650 nm, 523 mW)139.
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Electrical Stimulation

Porcine bone marrow–derived MSCs preconditioned with 
nanosecond pulsed electric fields (10 ns at 20 kV/cm and 
100 ns at 10 kV/cm) enhances the chondrogenic differentia-
tion with an increase in matrix deposition through the activa-
tion of JNK/CREB-STAT3 signaling pathway, and 
transplantation of preconditioned MSCs also enhances carti-
lage regeneration in rats suffered from articular cartilage 
defects140. Moreover, in vitro electrical preconditioning of 
human neural progenitor cells with a conductive polymer scaf-
fold by a +1 V to −1 V square wave at 1 kHz for 1 hour can 
enhance stroke recovery in rat model of distal middle cerebral 
artery occlusion through VEGF-A pathway141. In addition, 
epidural stimulation of the motor cortex by electrical current 
for 1 month in normal rats can increase the proliferation and 
migration of progenitor cells in the subventricular zone142. 
Furthermore, in the rat ischemic stroke model, electrical stim-
ulation (100 μA, 100 Hz) for 2 weeks after injection of rat 
bone marrow–derived MSCs (62.5 × 106 cells/ml) showed 
amelioration in neurological severity score and reduction in 
the infarction areas143. Longer migration distance and wider 
migration area are also observed for the transplanted bone 
marrow–derived MSCs with electrical stimulation.

Replacement Therapy for Optic 
Neuropathies by Adult Stem Cells

Cell replacement therapy conceptually aims to generate 
RGCs from stem cells to replace the diseased RGCs so as to 
rescue the visual function loss. New RGCs could be produced 
from different stem cell sources. Majority of research studies 
currently focus on the generation of RGCs from pluripotent 
stem cells, such as ESCs and iPSCs. Nevertheless, adult stem 
cells have also shown possessing the ability differentiating 
into retinal/neuronal lineage. The patients’ stem cell–derived 
RGCs can serve as an in vitro platform carrying the patients’ 
genome to study human disease pathology and mechanism as 
well as for drug screening and development101.

Retinal Differentiation of Induced Pluripotent 
Stem Cells

Pluripotent stem cells, including ESCs and iPSCs, are the 
most promising sources of stem cells for cell replacement 
therapies due to their powerful differentiation capacities. The 
ESC therapy must be allogenic and is still under ethical con-
troversial. In contrast, iPSCs can be generated from patients’ 
somatic cells with the ability to differentiate into the cells of 
three germ layers, including retinal cells144. Importantly, 
iPSCs can also be used to generate retinal organoids145. Not 
only from the normal subjects, RGCs can also be generated 
from the iPSCs of the patients with Leber hereditary optic 
neuropathy146 and autosomal dominant optic atrophy147. 

Understanding the disease pathology and mechanism by the 
patients’ iPSC-derived RGCs could be one of the important 
strategies in future optic neuropathy research.

Retinal Differentiation of Müller Glia

Retinal Müller glia are believed acting like RPCs when 
responding to the retinal injury148. Human Müller cell line 
(MIO-M1) demonstrated the photoreceptor differentiation 
ability through the regulation of canonical Wnt signaling in 
vitro149–151. Moreover, transplantation of human Müller cell 
line (MIO-M1; 3 × 104 cells in 3 μl) in the laser-induced 
chronic IOP elevation rat model showed the capability to dif-
ferentiate toward a neuronal phenotype rather than glial at 2 
weeks after transplantation77. Although previous studies 
reported that adult stem cells directly injected into the retina 
could not spontaneously differentiate into retinal cells in the 
transplanted animal eyes, recent findings suggest that adult 
stem cells could also stimulate Müller glia re-entering the 
cell cycle and dedifferentiating to the RPC stage in vivo. The 
transplanted HSCs have been shown to fuse with Müller glia 
in the mouse model of N-methyl-N-nitrosourea-induced pro-
gressive photoreceptor degeneration that the Wnt signaling 
pathway is activated in the hybrid cells and drives the de-
differentiated hybrid cells toward the intermediate photore-
ceptor progenitor fate150,152. Not only the transplanted cells, 
the endogenously mobilized bone marrow cells could also 
fuse with Müller glia in the retina through the SDF1/CXCR4 
axis regulation in the N-methyl-D-aspartate-induced retinal 
damage mouse model, which the hybrid cells could further 
differentiate toward a neuronal fate, including RGCs and 
amacrine cells.153 Critically, the hybrid cells can also pro-
mote the regeneration of other damaged retinal cells. Retinal 
damage is critical for the hybrid cell formation in vivo, and 
retinal Müller glia can spontaneously fuse with the trans-
planted or endogenously mobilized HSCs. The hybrid cells 
can proliferate and commit to differentiation toward the 
mature retinal cells through the activation of the signaling 
pathways150,152,153. This discovery makes an advancement in 
the in vivo cell replacement therapy for retinal damage. Yet, 
the conversion efficiency, regenerated cell survival, and 
functional integration and rescue still need further in-depth 
investigations.

Retinal Differentiation of Mesenchymal  
Stem Cells

Retinal differentiation is not limited to stem cells from retinal 
lineage since adult stem cells can give rise to an entirely dis-
tinct lineage of mature cells out of its physiological differen-
tiation process. MSCs, which normally differentiate into 
chondrocytes, adipocytes or osteoblasts, can be induced into 
neural cells62. Upon bone marrow transplantation, genetic 
markers from donor’s hematopoietic cells could be found in 
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multiple tissues, including brain cortex and cerebellum154. 
Moreover, intravitreally injected adult rat hippocampus-
derived neural stem cells (5 × 105 cells in 5 μl) in the transient 
retinal ischemia-reperfusion adult rat model can integrate into 
the host retina and express neuronal differentiation marker 
Map2ab at 4 weeks after transplantation155. In addition, sub-
retinal transplantation of adult hippocampus-derived neural 
progenitor cells in transient retinal ischemia model could dis-
play the neuron-like morphologies with fibers extending to 
RNFL at 4 to 5 weeks after transplantation, but they rarely 
co-express the retinal phenotypic markers156. The plasticity of 
adult stem cells could be interpreted by five possible mecha-
nisms: cell fusion, transdifferentiation, dedifferentiation, het-
erogeneous stem cell populations, and pluripotency58. Cell 
fusion postulates that stem cells fuse with the host cells and 
acquire a mature phenotype of the embedded tissue. 
Transdifferentiation refers to the direct lineage conversion 
with the activation of dormant differentiation program to 
alter cell lineage specificity, whereas dedifferentiation hypoth-
esizes that tissue-specific stem cells dedifferentiate spontane-
ously into basal multipotent cell state and re-differentiate into 
another cell lineage. Heterogeneity in stem cell population 
indicates a mixed population of stem cells found within the 
tissue origin, which might explain some events of transdiffer-
entiation and dedifferentiation. Pluripotency is believed that 
pluripotent stem cells exist in adult tissues as a rare sub-popu-
lation within the stem cell niches, and these pluripotent stem 
cells have been found in bone marrow–derived MSCs, sper-
matogonial stem cells, and the remnants of migrating neural 
crest157. Unlike iPSC reprogramming, retinal/neuronal differ-
entiation of adult stem cells can bypass the complicated dedif-
ferentiation process so as to reduce the risk of teratoma 
formation by the undifferentiated iPSCs upon transplanta-
tion158. Once the retinal/neuronal differentiation protocols of 
adult stem cells could be optimized, the in vitro neuron pro-
duction could overcome the difficulty to collect retinal/neural 
progenitor cells from the patients.

Retinal differentiation of MSCs from different sources 
has been reported (Table 3). Human umbilical cord blood–
derived MSCs and amniotic epithelial stem cells have been 
shown to be induced into cone/rod photoreceptor-like cells 
by inhibition of microRNA (miRNA)-203149. Mouse bone 
marrow–derived MSCs treated with BDNF, NGF, and bFGF 
can also express the photoreceptor and neural markers after 
14-day induction, which can be enhanced by supplementa-
tion of human recombinant Wnt1152. Apart from photorecep-
tors, retinal pigment epithelial (RPE)-like cells have been 
reported to be generated from human adipose-derived stem 
cells159, and bone marrow–derived stem cells160. Moreover, 
rat bone marrow–derived MSCs can also be directed to 
RGC-like cells by co-culturing with postnatal day 1-3 rat 
retinal cells161. Coherent to other studies, we previously 
showed that human PDLSCs can be induced into retinal lin-
eage with the treatment of noggin, Dkk-1, IGF-1, and bFGF 
with photoreceptor marker expression and glutamate-evoked 
calcium response162. Based on the noggin, Dkk-1, IGF-1, and 

bFGF treatment, with the addition of BDNF, CNTF, NGF, 
and Shh, can direct human PDLSCs to RGC lineage after 
24-day induction with neuronal and RGC marker expression, 
synapse formation, the glutamate-evoked calcium response, 
and spontaneous electrical activities163. The neuronal differ-
entiation of human PDLSCs could be mediated by miRNA-
132164. In addition to PDLSCs, we demonstrated that human 
adipose-derived stem cells can also be directed to retinal 
cells, and Notch signaling activator JAG1 can enhance the 
expression of RGC and RPC markers165 . Furthermore, we 
revealed that spermatogonial stem cells possess the capabil-
ity to differentiate toward the RGC lineage upon the 3-dimen-
sional organoid culture166. Notably, apart from the pluripotent 
spermatogonial stem cells, pluripotent stem cells with neural 
crest origin could be isolated and purified from human 
PDLSCs by connexin-43167. These pluripotent adult stem 
cells should improve the retinal cell differentiation form 
human adult stem cell sources. Therefore, transplantation of 
adult stem cell–derived retinal cells should be a manageable 
treatment against retinal diseases in future69.

Challenges and Prospects

The therapeutic potentials of adult stem cells on optic neu-
ropathies have been intensively investigated (Fig. 2). The 
neuroprotective effect of HSCs and MSCs for RGC protec-
tion is convincing; yet, there are concerns and challenges for 
the adult stem cell treatments: (1) A standard guideline 
should be established to standardize the purity and condition 
of the transplanted adult stem cells as well as the modes of 
MSC transplantation since severe bilateral visual loss was 
reported in three age-related macular degeneration patients 
with intravitreal autologous adipose tissue–derived “stem 
cells” injections169, and retinal detachment with proliferative 
vitreoretinopathy was found in one patient at 15 days  
after MSC transplantation in a clinical trial study111. (2) 
Preconditioning could be a promising strategy to enhance the 
neuroprotective effects of adult stem cells; yet, studies in this 
area are still limited. Other preconditioning techniques and 
strategies as well as their mechanisms warrant further explo-
ration and optimization. (3) Intravitreal transplantation of 
bone marrow–derived MSCs could induce reactive gliosis by 
activating the JAK/STAT3 and MAPK cascades in Müller 
glia, which could be a main obstacle for successful trans-
plantation in RGC replacement and axonal regeneration170. 
(4) Stem cell–derived retinal cell integration and connection 
with the existing network in the host retina are the major 
challenges for the transplantation of exogenous stem cell–
derived retinal cells. The connectivity of stem cell–derived 
RGCs could be hindered by the internal limiting mem-
brane171. Activation of endogenous retinal stem cells or 
Müller glia to replace the diseased cells could be a possible 
alternative strategy to minimize these concerns172. (5) The 
majority of retinal disease modeling by stem cells currently 
relies on iPSCs101. Whether adult stem cells could similarly 
resemble the models of human diseases remains to be 



14 

T
ab

le
 3

. 
R

et
in

al
 D

iff
er

en
tia

tio
n 

of
 A

du
lt 

St
em

 C
el

ls
.

C
el

l t
yp

es
Sp

ec
ie

s
In

du
ct

io
n

D
ur

at
io

n
In

du
ce

d 
re

tin
al

 c
el

l t
yp

e
Po

te
nt

ia
l m

ec
ha

ni
sm

s

M
ül

le
r 

ce
ll 

lin
e 

M
IO

-M
115

0
H

um
an

D
M

EM
, 1

0%
 fe

ta
l c

al
f s

er
um

, 2
0 

ng
/m

l F
G

F2
, 2

0 
μM

 t
au

ri
ne

, 5
 μ

M
 r

et
in

oi
c 

ac
id

, a
nd

 1
00

 n
g/

m
l 

IG
F-

1
7 

da
ys

Ph
ot

or
ec

ep
to

r-
lik

e 
ce

lls
W

nt
 s

ig
na

lin
g 

pa
th

w
ay

Bo
ne

 m
ar

ro
w

–d
er

iv
ed

 s
te

m
 

ce
lls

16
0

H
um

an
1.

 
 D

M
EM

, 1
0%

 F
BS

, 0
.1

%
 r

oc
k 

in
hi

bi
to

r,
 1

%
 c

el
l s

hi
el

d,
 in

ac
tiv

at
ed

 h
um

an
 r

et
in

al
 p

ig
m

en
t 

ep
ith

el
iu

m
 c

el
ls

2.
 

D
M

EM
, 1

0%
 F

BS
, i

na
ct

iv
at

ed
 h

um
an

 r
et

in
al

 p
ig

m
en

t 
ep

ith
el

iu
m

 c
el

ls

1.
 2

 d
ay

s
2.

 5
 d

ay
s

R
et

in
al

 p
ig

m
en

t 
ep

ith
el

iu
m

-li
ke

 c
el

ls
/

Bo
ne

 m
ar

ro
w

–d
er

iv
ed

 
m

es
en

ch
ym

al
 s

te
m

 c
el

ls
15

2
M

ou
se

D
M

EM
/F

-1
2 

m
ed

iu
m

, 2
%

 B
27

, 2
%

 N
2,

 2
5 

ng
/m

l B
D

N
F,

 4
0 

ng
/m

l N
G

F,
 2

5 
ng

/m
l b

FG
F

14
 d

ay
s

R
et

in
al

 n
eu

ro
n-

lik
e 

ce
lls

W
nt

/β
-c

at
en

in
 

si
gn

al
in

g
A

m
ni

ot
ic

 e
pi

th
el

ia
l s

te
m

 
ce

lls
15

1
H

um
an

K
er

at
in

oc
yt

e-
Se

ru
m

 F
re

e 
M

ed
iu

m
, 0

.0
31

 μ
g/
μl

 h
um

an
 r

ec
om

bi
na

nt
 E

G
F,

 1
2.

4 
m

g/
m

l b
ov

in
e 

pi
tu

ita
ry

 e
xt

ra
ct

, 1
0 

%
 F

BS
, 3

0 
nM

 a
nt

i-m
iR

N
A

-4
10

21
 d

ay
s

R
et

in
al

 p
ig

m
en

t 
ep

ith
el

iu
m

-li
ke

 c
el

ls
m

ic
ro

R
N

A
-4

10

A
m

ni
ot

ic
 e

pi
th

el
ia

l s
te

m
 

ce
ll14

9
H

um
an

1.
 

K
er

at
in

oc
yt

e-
Se

ru
m

 F
re

e 
M

ed
iu

m
, 1

00
 n

g/
m

l D
kk

-1
, 1

0 
ng

/m
l N

og
gi

n,
 1

0
2.

 
ng

/m
l I

G
F-

1,
 5

 n
g/

m
l b

FG
F 

SF
M

, a
nt

i-m
iR

N
A

-2
03

21
 d

ay
s

Ph
ot

or
ec

ep
to

r 
ce

lls
m

ic
ro

R
N

A
-2

03

Pe
ri

od
on

ta
l l

ig
am

en
t–

de
ri

ve
d 

st
em

 c
el

ls
16

2
H

um
an

1.
 

D
M

EM
/F

12
 m

ed
iu

m
, 1

%
 B

27
, 1

 n
g/

m
l n

og
gi

n,
 1

 n
g/

m
l D

kk
-1

2.
 

D
M

EM
/F

12
 m

ed
iu

m
, 1

%
 B

27
, 1

0 
ng

/m
l n

og
gi

n,
 1

0 
ng

/m
l D

kk
-1

, N
2

1.
 3

 d
ay

s
2.

 2
5 

da
ys

R
et

in
al

 p
ro

ge
ni

to
r 

ce
lls

, 
ph

ot
or

ec
ep

to
r

/

Pe
ri

od
on

ta
l l

ig
am

en
t–

de
ri

ve
d 

st
em

 c
el

ls
16

3
H

um
an

1.
 

 D
M

EM
/F

12
 m

ed
iu

m
, 1

0%
 k

no
ck

ou
t 

se
ru

m
 r

ep
la

ce
m

en
t, 

1x
 B

27
 s

up
pl

em
en

t, 
1 

ng
/m

l 
no

gg
in

, 1
 n

g/
m

l D
kk

-1
, 5

 n
g/

m
l I

G
F-

1
2.

 
 D

M
EM

/F
12

 m
ed

iu
m

, 1
x 

B2
7 

su
pp

le
m

en
t, 

1x
 N

2 
su

pp
le

m
en

t, 
10

0 
ng

/m
l n

og
gi

n,
 1

0 
ng

/m
l 

D
kk

-1
, 1

00
 n

g/
m

l I
G

F-
1,

 5
0 

ng
/m

l b
FG

F
3.

 
 D

M
EM

/F
12

 m
ed

iu
m

, 1
x 

B2
7 

su
pp

le
m

en
t, 

1x
 IT

S 
su

pp
le

m
en

t, 
10

 n
g/

m
l n

og
gi

n,
 1

0 
ng

/m
l D

kk
-1

, 
10

 n
g/

m
l I

G
F-

1,
 5

0 
ng

/m
l b

FG
F,

 1
0 

ng
/m

l B
D

N
F,

 1
0 

ng
/m

l C
N

T
F,

 1
0 

ng
/m

l N
G

F,
 1

0 
ng

/m
l S

hh

1.
 3

 d
ay

s
2.

 7
 d

ay
s

3.
 1

4 
da

ys

R
et

in
al

 g
an

gl
io

n-
lik

e 
ce

lls
m

ic
ro

R
N

A
-1

32

A
di

po
se

-d
er

iv
ed

 s
te

m
 

ce
lls

15
9

H
um

an
1.

 
D

M
EM

/F
12

 m
ed

iu
m

2.
 

D
M

EM
, 1

%
 F

BS
, 2

 m
M

 L
-g

lu
ta

m
in

e
1.

 2
 d

ay
s

2.
 8

0 
da

ys
R

et
in

al
 p

ig
m

en
t 

ep
ith

el
ia

l c
el

ls
/

A
di

po
se

-d
er

iv
ed

 s
te

m
 

ce
lls

16
8

H
um

an
1.

 
1 

ng
/m

l N
og

gi
n,

 1
 n

g/
m

l D
K

K
-1

, 1
0 

ng
/m

l I
G

F-
1,

 1
%

 N
2,

 2
%

 V
ita

m
in

, 2
%

 B
27

2.
 

10
 n

g/
m

l N
og

gi
n,

 1
0 

ng
/m

l D
K

K
-1

, 1
0 

ng
/m

l I
G

F-
1,

 1
%

 N
2,

 2
%

 V
ita

m
in

 B
27

3.
 

5 
ng

/m
l b

-F
G

F,
 5

 n
g/

m
l I

G
F-

1,
 1

%
 N

2,
 2

%
 V

ita
m

in
, 2

%
 B

27
4.

 
10

0 
µM

 V
ita

m
in

 A

1.
 7

 d
ay

s
2.

 7
 d

ay
s

3.
 1

3 
da

ys
4.

 1
da

y

R
et

in
al

 p
ro

ge
ni

to
r 

ce
lls

,
Ph

ot
or

ec
ep

to
r 

ce
lls

/

A
di

po
se

-d
er

iv
ed

 s
te

m
 

ce
lls

16
5

H
um

an
1.

 
 D

M
EM

/F
12

 m
ed

iu
m

, 1
0%

 k
no

ck
ou

t 
se

ru
m

 r
ep

la
ce

m
en

t, 
1x

 B
27

 s
up

pl
em

en
t, 

1 
ng

/m
l 

no
gg

in
, 1

 n
g/

m
l D

kk
-1

, 5
 n

g/
m

l I
G

F-
1

2.
 

 D
M

EM
/F

12
 m

ed
iu

m
, 1

x 
B2

7 
su

pp
le

m
en

t, 
1x

 N
2 

su
pp

le
m

en
t, 

10
 n

g/
m

l n
og

gi
n,

 1
0 

ng
/m

l 
D

kk
-1

, 1
0 

ng
/m

l I
G

F-
1,

 5
 n

g/
m

l b
FG

F
3.

 
 D

M
EM

/F
12

 m
ed

iu
m

, 1
x 

B2
7 

su
pp

le
m

en
t, 

1x
 IT

S,
 1

0 
ng

/m
l n

og
gi

n,
 1

0 
ng

/m
l D

kk
-1

, 1
0 

ng
/

m
lIG

F-
1,

 5
 n

g/
m

l b
FG

F

1.
 3

 d
ay

s
2.

 7
 d

ay
s

3.
 1

4 
da

ys

R
et

in
al

 p
ro

ge
ni

to
r 

ce
lls

,
R

et
in

al
 g

an
gl

io
n 

ce
lls

,
Ph

ot
or

ec
ep

to
r 

ce
lls

N
ot

ch
 s

ig
na

lin
g 

ac
tiv

at
io

n

Sp
er

m
at

og
on

ia
l s

te
m

 
ce

lls
16

6
M

ou
se

1.
 

G
la

sg
ow

-M
EM

, 5
%

 K
SR

, 0
.1

 m
M

 N
EA

A
, 0

.1
 m

M
 p

yr
uv

at
e,

 a
nd

 0
.1

 m
M

 β
-M

E
2.

 
D

M
EM

/F
-1

2,
 N

-2
 s

up
pl

em
en

t
3.

 
D

M
EM

/F
-1

2,
 1

0%
 E

S-
FB

S,
 N

-2
 s

up
pl

em
en

t, 
0.

5m
M

 r
et

in
oi

c 
ac

id
, 3

0 
ng

/m
l B

D
N

F

1.
 7

 d
ay

s
2.

 3
 d

ay
s

3.
 4

 d
ay

s

R
et

in
al

 g
an

gl
io

n 
ce

lls
/

BD
N

F:
 b

ra
in

-d
er

iv
ed

 n
eu

ro
tr

op
hi

c 
fa

ct
or

; b
FG

F:
 b

as
ic

 fi
br

ob
la

st
 g

ro
w

th
 fa

ct
or

; C
N

T
F:

 c
ili

ar
y 

ne
ur

ot
ro

ph
ic

 fa
ct

or
; D

kk
-1

: d
ic

kk
op

f-
re

la
te

d 
pr

ot
ei

n 
1;

 D
M

EM
: D

ul
be

cc
o’

s 
m

od
ifi

ed
 E

ag
le

 m
ed

iu
m

; E
G

F:
 e

pi
de

rm
al

 g
ro

w
th

 fa
ct

or
; F

BS
: 

IG
F-

1:
 in

su
lin

-li
ke

 g
ro

w
th

 fa
ct

or
 1

; I
T

S:
 in

su
lin

-t
ra

ns
fe

ri
n-

se
le

ni
um

; M
E:

 m
er

ca
pt

oe
th

an
ol

; M
EM

: m
in

im
al

 e
ss

tin
al

 m
ed

iu
m

; M
IO

-M
1:

 H
um

an
 M

ül
le

r 
ce

ll 
lin

e;
 N

EA
A

: n
on

-e
ss

en
tia

l a
m

in
o 

ac
id

s;
 N

G
F:

 n
er

ve
 g

ro
w

th
 fa

ct
or

; S
hh

: s
on

ic
 

he
dg

eh
og

.



Tan et al 15

determined. These questions are critical for future clinical 
application of adult stem cell therapy, which creates the 
research opportunities on adult stem cells for RGC protec-
tion and regeneration. Furthermore, functional modulation of 
other cells in the optic nerve, including astrocytes, oligoden-
drocytes, and microglia, should also be considered in the 
treatments for optic neuropathies. Further studies are needed 
to optimize the application of adult stem cells in the treat-
ment regime for optic neuropathy.
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