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The radially outward flow of fluid into a porous
medium occurs in many practical problems, from
transport across vascular walls to the pressurization
of boreholes. As the driving pressure becomes non-
negligible relative to the stiffness of the solid structure,
the poromechanical coupling between the fluid and
the solid has an increasingly strong impact on
the flow. For very large pressures or very soft
materials, as is the case for hydraulic fracturing
and arterial flows, this coupling can lead to large
deformations and, hence, to strong deviations from a
classical, linear-poroelastic response. Here, we study
this problem by analysing the steady-state response of
a poroelastic cylinder to fluid injection. We consider
the qualitative and quantitative impacts of kinematic
and constitutive nonlinearity, highlighting the strong
impact of deformation-dependent permeability. We
show that the wall thickness (thick versus thin)
and the outer boundary condition (free versus
constrained) play a central role in controlling the
mechanics.

1. Introduction
The radially outward flow of fluid into a porous
medium is central to many practical problems in, for
example, geomechanics, biophysics and filtration. In
geomechanics, pile driving involves the mechanical
expansion of a cylindrical cavity in a fluid-saturated
soil, generating large pore pressures in the surrounding
medium that gradually relax through consolidation [1].
Similarly, fluid injection into boreholes involves the
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pressurization of a cylindrical cavity in a soil or rock, driving flow radially outward into
the surrounding medium [2–5]. Biophysical applications include injection into subcutaneous
tissue [6] and blood flow through arteries and vascular networks, which have permeable
walls [7–13]. Radially outward flow is also relevant to the design of cylindrical filters [14].
In many of these cases, the driving pressure is sufficiently large relative to the stiffness of
the solid structure that the poromechanical coupling between the fluid and the solid has an
important impact on the flow. Classically, this coupling is described by the iconic theory of
linear poroelasticity [15,16], which combines Darcy’s Law with linear elasticity in a linearized
kinematic framework and is valid for infinitesimal deformations of the solid. However, soft
materials such as biological tissues, weak materials such as soils, thin structures such as
vasculature, and scenarios involving large injection pressures such as hydraulic fracturing may
result in substantial deformations that violate this linear theory. Large deformations are inherently
nonlinear from the perspective of kinematics, and typically also result in nonlinear constitutive
behaviour such as nonlinear elasticity and deformation-dependent permeability. Recent work in
biomechanics and geomechanics, in particular, has focused on capturing the complex material-
and application-specific behaviours of tissues and soils [17–23].

Our goal here is to focus on the mechanics of large radial deformations in the context of a
simple model problem. We work with relatively generic constitutive laws to avoid obscuring
the universal physics of these problems with material-specific behaviour. Historically, uniaxial
deformation has been a key model problem for studying the importance of nonlinearity,
both mathematically and experimentally [24–27]. The uniaxial problem is important for a
variety of practical applications; for example, many composite manufacturing processes involve
the uniaxial injection of a resin gel or metal melt into a deformable porous matrix [28].
Mathematically, the uniaxial problem is inherently simple since the flow and deformation fields
are strictly one dimensional and the exact relationship between displacement and porosity is
linear [27]. Radial deformations are more challenging despite the fact that the velocity and
displacement fields remain one dimensional, since the stress and strain fields become biaxial and
the exact relationship between the porosity and displacement becomes nonlinear.

Radial poroelastic deformations have been studied using linear poroelasticity in the context
of both fluid injection or extraction from boreholes [2–4] and arterial blood flow [7,8]. Nonlinear
effects have attracted interest primarily in the latter case, specifically in the context of fluid flow
through artery walls. For example, Klanchar & Tarbell [9] introduced deformation-dependent
permeability within a linear poroelastic framework. Barry & Aldis [10] and Barry & Mercer [11]
accounted partially for the nonlinear kinematics of large deformations while retaining linear
elasticity. In a different context, MacMinn et al. [29] developed a rigorous and fully nonlinear
model, but for a strictly volumetric constitutive law and assuming constant permeability. None of
these previous works explicitly defined or explored the general parameter space for axisymmetric
deformations, nor did they systematically assess the relative importance of nonlinear kinematics,
nonlinear elasticity and deformation-dependent permeability.

Here, we consider the axisymmetric deformation of a poroelastic cylinder driven by radially
outward fluid flow using a rigorous, fully nonlinear model. We focus, in particular, on
the qualitative and quantitative implications of the simplifications of linear poroelasticity,
the separate roles of nonlinear kinematics, nonlinear elasticity and deformation-dependent
permeability, and the nontrivial coupling of these with the geometry and boundary conditions.
We show that the wall thickness and the outer boundary condition play crucial roles in controlling
the mechanics of the problem.

2. Model problem
We consider the radially outward injection of fluid from the centre of a porous cylinder of inner
radius a and outer radius b. We assume axisymmetry and model the two-dimensional annular
cross-section, assuming that the material is constrained in the axial direction and is therefore in
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Figure 1. We consider radially outward fluid flow through a soft porous cylinder of initial inner radius a0 and initial outer radius
b0. The inner radius is free to expand, while the outer boundary is either (a) subject to a constant radial effective stress σ �

r or
(b) fixed in place. Note that we assume plane strain and adopt the convention of tension being positive.

plane strain. We assume that the inner boundary is mechanically free so that the inner radius
a = a(t) expands in response to injection. We assume that the outer boundary is either subject to
a constant effective stress σ�

r , in which case the outer radius b = b(t) also expands in response to
injection (figure 1a), or that the outer boundary is constrained such that the outer radius b = b0
is fixed (figure 1b). The latter situation is useful for comparison to numerical simulations and
experiments [29].

(a) Summary of theory
Large-deformation poroelasticity is a continuum approach to modelling the interactions of two
superposed phases, a porous solid skeleton and an interstitial fluid [27]. We next summarize this
theory in the context of axisymmetric flow and deformation.

(i) Kinematics

The fluid velocity vf, solid displacement us and solid velocity vs each have only one component,

us = us(r, t)êr, vs = vs(r, t)êr and vf = vf(r, t)êr, (2.1)

where the subscripts s and f denote quantities related to the solid and to the fluid, respectively,
r is the radial coordinate (a ≤ r ≤ b), t is time and êr is the radial unit vector. We work in an Eulerian
(spatial) reference frame, such that the displacement is given by

us(r, t) = r − R(r, t), (2.2)

where R(r, t) denotes the reference position of the material that is located at position r at
time t. Without loss of generality, we take us(r, 0) = 0 such that R(r, 0) = r—that is, we adopt
the initial configuration as the reference configuration. The deformation is fully characterized
by the deformation gradient tensor F = (I − ∇us)−1, where I denotes the identity tensor and (·)−1

the inverse. For an axisymmetric deformation, this can be written as

F =

⎛
⎜⎝λr 0 0

0 λθ 0
0 0 λz

⎞
⎟⎠ , (2.3)

where λr, λθ and λz are the three principal stretch ratios.1 For plane strain, these are given by

λr =
(

1 − ∂us

∂r

)−1
, λθ =

(
1 − us

r

)−1
and λz ≡ 1. (2.4)

1In general, λ2
i are the eigenvalues of FFT, where the superscript T denotes the transpose.
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Note that although the displacement field is one dimensional, the state of strain is indeed two
dimensional (i.e. both λr and λθ are distinct and non-trivial).

The Jacobian determinant J ≡ det (F) measures the local volume change,

J = λrλθλz = λrλθ . (2.5)

We assume that the solid and fluid phases are individually incompressible, such that deformation
occurs only through rearrangement of the solid skeleton with corresponding changes in the local
porosity or fluid fraction, φf. This then requires that

J(r, t) = 1 − φf,0

1 − φf
, (2.6)

where φf,0 is the reference (initial) porosity, which we take to be uniform. Combining
equations (2.4)–(2.6), we obtain an explicit nonlinear expression for porosity in terms of
displacement,

φf − φf,0

1 − φf,0
= 1

r
∂

∂r

(
rus − 1

2
u2

s

)
. (2.7)

Conservation of mass for the fluid–solid mixture is given by

∂φf

∂t
+ 1

r
∂

∂r
(rφfvf) = 0 and

∂φf

∂t
− 1

r
∂

∂r
[r(1 − φf)vs] = 0, (2.8)

where 1 − φf is the local solid fraction. Conservation of solid volume requires that

∫ b

a
2πr(1 − φf) dr = π (b2

0 − a2
0)(1 − φf,0), (2.9)

and it can be shown that equation (2.9) is identically satisfied by equation (2.7), subject to
the kinematic boundary conditions us(a, t) = a(t) − a0 and us(b, t) = b(t) − b0, where a0 ≡ a(0) and
b0 ≡ b(0) denote the initial inner and outer radii, respectively.

(ii) Darcy’s Law

We assume that fluid flows relative to the solid skeleton according to Darcy’s Law. In the absence
of gravity and other body forces, this can be written

φf(vf − vs) = − k(φf)
μ

∂p
∂r

, (2.10)

where μ is the dynamic viscosity of the fluid, p is the fluid (pore) pressure and k(φf) is the
permeability, which we take to be an isotropic function of porosity (see §2c).

We model injection as a line source at the origin with flow rate per unit length Q̂(t). Thus,
equations (2.8) can be summed and integrated to give

2πr[φfvf + (1 − φf)vs] = Q̂(t). (2.11)

Combining equation (2.11) with equations (2.8) and (2.10), we eliminate φs, vs and vf to obtain

∂φf

∂t
+ 1

r
∂

∂r

(
φf

Q̂(t)
2π

− r(1 − φf)
k(φf)
μ

∂p
∂r

)
= 0, (2.12a)

where along the way we obtain expressions for vf and vs

vf = Q̂(t)
2πr

− (1 − φf)
φf

k(φf)
μ

∂p
∂r

and vs = Q̂(t)
2πr

+ k(φf)
μ

∂p
∂r

. (2.12b)

We next link the fluid pressure to the stress in the solid.
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(iii) Mechanical equilibrium

Mechanical equilibrium requires that
V · σ = 0, (2.13)

where σ is the total stress supported by the fluid–solid mixture, and we neglect inertia as well as
the effect of gravity and other body forces. The total stress can be decomposed as

σ = σ ′ − pI, (2.14)

where Terzaghi’s effective stress σ ′ is the portion of the stress supported through deformation of
the solid skeleton, and where we adopt the convention of tension being positive. Equation (2.14)
provides mechanical coupling between the fluid and the solid. Combining equations (2.13) and
(2.14) leads, for an axisymmetric deformation, to

∂σ ′
r

∂r
+ σ ′

r − σ ′
θ

r
= ∂p

∂r
, (2.15)

where σ ′
r and σ ′

θ are the radial and azimuthal (hoop) components of the effective stress,
respectively.

(iv) Linearization

We have now considered kinematics, Darcy’s Law, Terzaghi’s effective stress and mechanical
equilibrium. The model thus far is exact, assuming only that the fluid and solid constituents are
individually incompressible.

The common assumption of infinitesimal deformations leads to classical linear poroelasticity
[16,27]. This corresponds here to the assumptions that us/r � 1 and ∂us/∂r � 1. Note that this will
clearly be a bad assumption near the inner radius if us becomes comparable with a0. Linearizing
equations (2.7) and (2.12a) leads to

φf − φf,0

1 − φf,0
≈ 1

r
∂

∂r
(rus) and

∂φf

∂t
− 1

r
∂

∂r

(
r(1 − φf,0)

k(φf,0)
μ

∂p
∂r

)
≈ 0, (2.16)

respectively. Note that equation (2.9) is not identically satisfied by the kinematic expression in
equation (2.16), implying that the linearized model is not rigorously mass conservative. We also
consider a linearised model with deformation-dependent permeability by simply replacing k(φf ,0)
with k(φf ) in equation (2.16) above. We next consider the constitutive behaviour of the solid.

(b) Constitutive laws
The relationships between stress and strain, and between strain and displacement are constitutive
laws for the solid skeleton. We assume that the solid deforms elastically, meaning that these
relationships are quasi-static (i.e. rate independent) and reversible (i.e. history independent). We
investigate the impact of this relationship on the results by considering both linear and nonlinear
elasticity laws.

(i) Hencky elasticity

Hencky elasticity is a simple, nonlinear, hyperelastic model that is based on a logarithmic strain
measure and provides good agreement with experiments for moderate deformations [30,31]. In
uniaxial compression, Hencky elasticity provides a stiffer response than linear elasticity, with the
stress diverging as the thickness of the material approaches zero; in uniaxial tension, Hencky
elasticity provides a softer response than linear elasticity, with the stress reaching a maximum
and then decaying asymptotically to zero (see electronic supplementary material, section A).

Hencky elasticity has several advantageous properties [32], including that it reduces to linear
elasticity in the limit of infinitesimal deformations and that it uses the same elastic parameters
as linear elasticity [33]. We work here in terms of Lamé’s first parameter Λ and the p-wave
or oedometric modulus M.
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For the displacement field given in equation (2.2), the Hencky strain tensor is

ε =

⎡
⎢⎣ln λr 0 0

0 ln λθ 0
0 0 0

⎤
⎥⎦ , (2.17)

which again has two non-trivial components since axisymmetric displacement leads to both radial
and azimuthal strains. The associated Cauchy effective stress for Hencky elasticity is

σ ′ =

⎡
⎢⎢⎢⎢⎢⎣
M ln λr

J
+ Λ

ln λθ

J
0 0

0 Λ
ln λr

J
+ M ln λθ

J
0

0 0 Λ

(
ln λr + ln λθ

J

)

⎤
⎥⎥⎥⎥⎥⎦ . (2.18)

On substitution of equation (2.18) into equation (2.15), we arrive at

∂p
∂r

= ∂

∂r

(
M ln λr

J
+ Λ

ln λθ

J

)
+ M − Λ

r

(
ln λr

J
− ln λθ

J

)
. (2.19)

The right-hand side of equation (2.19) is a function of us only. In combination with equations (2.7)
and (2.12a), this then provides a nonlinear partial differential equation (PDE) for us.

(ii) Linear elasticity

Linear elasticity combines a linear relationship between strain and displacement with a linear
relationship between stress and strain. The linear (small or infinitesimal) strain tensor is

ε =

⎡
⎢⎢⎢⎢⎣

∂us

∂r
0 0

0
us

r
0

0 0 0

⎤
⎥⎥⎥⎥⎦ (2.20)

with the associated linear stress tensor

σ ′ =

⎡
⎢⎢⎢⎢⎢⎣
M∂us

∂r
+ Λ

us

r
0 0

0 Λ
∂us

∂r
+ Mus

r
0

0 0 Λ

(
∂us

∂r
+ us

r

)

⎤
⎥⎥⎥⎥⎥⎦ . (2.21)

On substitution of equation (2.21) into equation (2.15), we obtain

∂p
∂r

= ∂

∂r

[
M ∂us

∂r
+ Λ

us

r

]
+ M − Λ

r

(
∂us

∂r
− us

r

)
=M ∂

∂r

[
1
r

∂

∂r
(rus)

]
. (2.22)

Linear elasticity is in some sense an idealized constitutive behaviour that most materials will
approximately follow for infinitesimal deformations, and from which most materials will deviate
as deformations become finite. For example, Hencky elasticity reduces to linear elasticity for
infinitesimal deformations; that is, equations (2.17) and (2.18) reduce to equations (2.20) and (2.21),
respectively, for us/r � 1 and ∂us/∂r � 1. Alternatively, linear elasticity can instead be viewed as
an exact constitutive law for an idealized material, for which it would be valid for arbitrarily large
deformations.

Equation (2.22) can be combined with equations (2.7) and (2.12a) to provide a PDE for us. In
what follows, we use ‘Hencky elasticity’ to refer to equations (2.17)–(2.19) and ‘linear elasticity’
to refer to equations (2.20)–(2.22).
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(iii) Linear poroelasticity

We now combine linearized kinematics (§2a(iv)) with linear elasticity (§2b(ii)). This then allows
us to write equation (2.22) directly in terms of φf using equation (2.16),

∂p
∂r

≈M ∂

∂r

(
φf − φf,0

1 − φf,0

)
. (2.23)

Equation (2.16) can then be rewritten as a linear second-order parabolic PDE for φf.

(c) Permeability laws
The solid skeleton deforms through rearrangement of the pore structure, leading to changes
in the porosity. This is then likely to alter the permeability of the material. For infinitesimal
deformations, this effect is second-order in the deformation, and is therefore typically neglected.
We consider the impact of this simplification by comparing results for constant permeability with
results for deformation-dependent permeability. As in MacMinn et al. [27], we adopt a normalized
Kozeny–Carman formula,

k(φf) = k0
(1 − φf,0)2

φ3
f,0

φ3
f

(1 − φf)2 , (2.24)

where k0 ≡ k(φf,0) is the reference permeability. Although not quantitatively appropriate for all
materials, this relation captures the important qualitative behaviour that k(φf) vanishes as φf
vanishes and k(φf) diverges as φf tends to one.

Note that many materials have a naturally anisotropic permeability. In addition, anisotropic
deformations may lead to the emergence of anisotropic permeability. For example, fluid flow
through the walls of a porous cylinder leads to compression in the radial direction and stretching
in the azimuthal direction, which might be expected to reduce the azimuthal permeability while
enhancing the radial permeability. We neglect natural anisotropy here for simplicity, and induced
anisotropy is irrelevant under the requirement of axisymmetry.

(d) Initial state and boundary conditions
Before injection, the porosity is uniform, φf(r, 0) = φf,0, the fluid and the solid are at rest, vf(r, 0) =
vs(r, 0) = 0, and the material is relaxed, σ ′

r(r, 0) = σ ′
θ (r, 0) = 0. We take this initial state to be the

reference state, such that us(r, 0) = 0.

(i) Injection

For t > 0, we assume that fluid is injected from the origin either at an imposed constant volume
flow rate per unit length Q̂ or via an imposed constant pressure drop 
p ≡ p(a, t) − p(b, t). It is
straightforward to enforce the former condition since Q̂ appears explicitly in the PDE. Enforcing
the latter condition is less straightforward (electronic supplementary material, §B).

(ii) Inner boundary

The inner boundary is mechanically free, thus the normal effective stress must vanish. The
inner boundary is also a material boundary. Hence, the appropriate mechanical and kinematic
conditions are

σ ′
r(a, t) = 0, us(a, t) = a(t) − a0 and vs(a, t) = ∂us

∂t

∣∣∣∣
r=a

= da
dt

. (2.25)
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(iii) Outer boundary

We consider two distinct sets of conditions at the outer boundary. In both cases, we assume
without loss of generality that the fluid pressure vanishes at the outer boundary

p(b, t) = 0. (2.26)

If the outer boundary is subject to an applied effective stress, then this is a moving boundary.
The appropriate mechanical and kinematic conditions are

σ ′
r(b, t) = σ�

r , us(b, t) = b(t) − b0 and vs(b, t) = ∂us

∂t

∣∣∣∣
r=b

= db
dt

. (2.27)

Three conditions are required because the outer radius b(t) is unknown, and must be determined
as part of the solution.

Alternatively, if the outer boundary is constrained such that its position is fixed, then the
appropriate conditions are

us(b, t) = 0 and vs(b, t) = ∂us

∂t

∣∣∣∣
r=b

= 0. (2.28)

This scenario requires only two conditions because the outer radius b is fixed and known. The
normal component of the effective stress at the outer boundary σ ′

r(b, t) is unknown, but does not
need to be determined as part of the solution.

Conditions (2.28) are convenient for comparison with experiments and numerical
simulations [29], and are relevant to industrial applications such as filtration. Conditions (2.27)
are likely to be more relevant to biomedical and geotechnical applications.

(iv) Linearized boundary conditions

For the kinematically rigorous models, conditions at the inner and outer boundaries
(equations (2.25)–(2.28)) are applied at a(t) and b(t), respectively. For the kinematically linearized
models, these are instead applied at a0 and b0, respectively (e.g. σ ′

r(a, t) = 0 �→ σ ′
r(a0, t) ≈ 0).

(e) Non-dimensionalization and parameters
To proceed, we non-dimensionalize via the scaling

r̃ = r
b0

, ũs = us

b0
, ã = a

b0
, b̃ = b

b0
, σ̃ ′

i = σi
′

M , t̃ = t
Tpe

and p̃ = p
M , (2.29)

where Tpe ≡ b2
0μ/k0M is the characteristic poroelastic timescale. We can then rewrite

equation (2.12a) in dimensionless form,

∂φf

∂ t̃
+ 1

r̃
∂

∂ r̃

(
φfq(t̃) − r̃(1 − φf)k̃(φf)

∂ p̃
∂ r̃

)
= 0, (2.30)

where k̃(φf) = k(φf)/k0. Injection is characterized either by a fixed dimensionless flow rate q or by
a fixed dimensionless pressure drop 
p̃,

q ≡ μQ̂
2πk0M

or 
p̃ ≡ 
p
M , (2.31)

where, in the latter case, q(t̃) must be calculated from 
p̃ as part of the solution. Both of these
quantities compare the characteristic pressure due to injection with the characteristic elastic
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stiffness of the material. The model is additionally characterized by the value of φf,0 and three
other dimensionless parameters:

Γ ≡ Λ

M , ã0 ≡ a0

b0
and σ̃ �

r ≡ σ�
r

M , (2.32)

where Γ compares the bulk modulus to the shear modulus (Γ ∈ [− 1
2 , 1], where Γ = 1 corresponds

to an incompressible material).
We work in dimensionless quantities from here onwards; hence, we drop the tildes for

convenience.

(f) Summary of models
Thus far, we have developed several different models for the response of a poroelastic cylinder to
radially outward flow by considering two different representations of the kinematics (linearized
and rigorous), two different elasticity laws (linear and Hencky) and two different permeability
laws (constant and Kozeny–Carman). We categorize these models as linear ‘L’ (linearized
kinematics with linear elasticity), quasi-linear ‘Q’ (rigorous kinematics with linear elasticity) and
nonlinear ‘N’ (rigorous kinematics with Hencky elasticity). For each of these, we consider both
constant ‘k0’ and Kozeny–Carman ‘kKC’ permeability. We then have six combinations: L-k0, L-kKC,
Q-k0, Q-kKC, N-k0 and N-kKC. Note that L-k0 is classical linear poroelasticity and N-kKC is fully
nonlinear poroelasticity; the other four models are intermediate between these two extremes.
Note also that we do not combine linearized kinematics with Hencky elasticity because this is
asymptotically inconsistent; linearizing the kinematics requires that us/r � and ∂us/∂r � 1, under
which assumptions Hencky elasticity reduces to linear elasticity.

3. Steady-state solutions
We now seek solutions to the above models at steady state, for which the fluid velocity is steady
(∂vf/∂t = 0) and the solid is stationary (vs = 0). Combining equations (2.8), (2.10) and (2.15), we
have

dσ ′
r

dr
+ σ ′

r − σ ′
θ

r
= dp

dr
= − q

rk(φf)
, (3.1)

where φf = φf[us(r)]. Combining this with an elasticity law, a permeability law and a kinematic
relationship between us and φf then leads to a second-order ODE in us for all models. For linear
elasticity (L and Q models), we combine equation (3.1) with equation (2.21) to arrive at

d2us

dr2 + 1
r

dus

dr
− us

r2 = − q
rk[φf(us)]

. (3.2)

For Hencky elasticity (N models), we combine equation (3.1) with equation (2.18) to arrive at

d2us

dr2 = (1 − λθ/λr)[ln(λr) + Γ ln(λθ ) − Γ ] + (1 − Γ ) ln(λθ/λr) − qλrλθ/k[φf(us)]
λrr{1 − [ln(λr) + Γ ln(λθ )]} , (3.3)

where the stretches are defined in equation (2.4). Note that equations (3.2) and (3.3) are valid for
any permeability law, boundary conditions and treatment of kinematics.

Thus, we have a boundary-value problem (BVP) comprising a second-order ODE
(equation (3.2) or equation (3.3)) with two constraints at the inner boundary (equations (2.25)) and
either three or four constraints at the outer boundary, depending on whether the outer boundary
is fixed (equations (2.26) and (2.28)) or not (equations (2.26) and (2.27)). For the L-k0 and Q-k0
models, the ODE (equation (3.2)) can be solved analytically (electronic supplementary material,
§C). For the L-k0 model, this provides the full solution to the problem. For the Q-k0 model,
it remains to solve an implicit algebraic system for a and, depending on the outer boundary
condition, for b. This can be implemented with standard numerical root-finding techniques. For
the other four models, the ODE cannot be solved analytically and we instead solve it numerically
using a Chebyshev spectral collocation method, as described in §3b.
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(a) Injection
An imposed flow rate q will lead to a steady-state pressure drop 
p. The latter is not needed as
part of the solution, but can be calculated readily via the integration of equation (2.12b), giving


p = q
∫ b

a

1
rk(φf)

dr. (3.4)

By contrast, an imposed pressure drop 
p will lead to a steady-state flow rate q that must be
calculated as part of the solution by rearranging equation (3.4). For constant permeability, this
relationship becomes


p = q ln
(

b
a

)
. (3.5)

Everything else being fixed, the same steady state can therefore be achieved by imposing either
q or 
p. Clearly, the geometry and boundary conditions will have a strong impact on the
relationship between q and 
p. We explore this relationship in the next section.

(b) Numerical solution via Chebyshev spectral collocation
When the ODE cannot be solved analytically, it must instead be integrated numerically as a
BVP. Here, we use a direct method based on Chebyshev spectral collocation (i.e. a Chebyshev
pseudospectral method) [34–36]. That is, we solve the BVP and all constraints simultaneously
using a dense Chebyshev pseudospectral differentiation matrix and Newton iteration (electronic
supplementary material, §D). This approach is robust and accurate, and also allows for the
straightforward incorporation of additional unknowns and constraints, such as solving the
problem for an imposed pressure drop 
p rather than for an imposed flow rate q. We generate the
differentiation matrices using the suite of Matlab functions provided in Weideman & Reddy [37].

4. Results
We have developed steady-state solutions for six different models, each for two distinct outer
boundary conditions—a fixed outer boundary (‘constrained’) and an applied effective stress σ�

r
at the outer boundary (see §2f). As described in §2e, these models are characterized by five
dimensionless parameters: Γ , a ratio of elastic constants; φf,0, the initial porosity; a0, the ratio of
the initial inner radius to the initial outer radius; σ�

r , the applied effective stress; and either q, the
flow rate, or 
p, the pressure drop. To focus on the impact of model choice, boundary conditions
and geometry, we adopt fixed values of Γ = 0.4 and φf,0 = 0.5 throughout the rest of the paper.
Varying these two parameters across a moderate range of typical values does not lead to dramatic
qualitative differences in the resulting behaviour. Similarly, we fix σ�

r = 0 (‘unconstrained’) for
simplicity.

(a) Model comparison
In this section, we compare and contrast the six models for the two different boundary conditions
(unconstrained and constrained) in the context of two end-member geometries: a thick-walled
cylinder (figure 2) and a thin-walled cylinder (figure 3). This gives us a preliminary sense for how
the geometry impacts the mechanics, which is in turn the focus of §4b.

(i) Unconstrained thick-walled cylinder

In figure 2, we consider a thick-walled cylinder for flow driven by an imposed pressure drop of

p = 0.33. For an unconstrained thick-walled cylinder (figure 2a), the predictions of all models are
qualitatively similar. The porosity φf (figure 2a(i)), azimuthal effective stress σ ′

θ (figure 2a(iv)) and
pressure p (figure 2a(v)) all have maxima at the inner boundary and decrease monotonically from
left to right. The porosity remains everywhere greater than φf,0, the azimuthal effective stress
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Figure 2. Six models at steady state for a thick-walled cylinder (a0 = 10−3). We consider (a) an unconstrained cylinder and
(b) a constrained cylinder, both for flow driven by an imposed pressure drop
p= 0.33. For clarity, we plot the results against
the Lagrangian coordinate R(r, t)= r − us and on a logarithmic horizontal scale. The unconstrained and constrained cylinders
exhibit very similar behaviour, implying that the distinction between these twoouter boundary conditions is unimportantwhen
the walls are very thick (i.e. for small a0). Additionally, note that in this case the permeability law has a stronger impact than
the elasticity law or the treatment of the kinematics. (Online version in colour.)

is strictly tensile and the pressure drops from p(a, t) = 
p = 0.33 to p(b, t) = 0 by construction.
Additionally, the pressure profile is strongly nonlinear for the kKC models, but closer to classical
linear poroelasticity (L-k0) for the k0 models. In contrast to the behaviour of these quantities, the
displacement us (figure 2a(ii)) and the radial effective stress σ ′

r (figure 2a(iii)) are non-monotonic.
The displacement has an interior maximum that is located in roughly the same place for all
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models. The radial effective stress vanishes at the inner and outer boundaries by construction.
Between these limits, it is purely tensile with an interior maximum, with the location of this
maximum depending strongly on model choice.

(ii) Constrained thick-walled cylinder

For the same pressure drop, a constrained thick-walled cylinder (figure 2b) exhibits a strikingly
similar behaviour to that of the unconstrained cylinder. The maximum porosity at the inner
boundary is lower than for the unconstrained cylinder, and the porosity now drops slightly
below φf,0 at the outer boundary where the material is slightly compressed. The displacement
is qualitatively similar, but a factor of two to three smaller than in the unconstrained case. The
radial and azimuthal effective stresses are now both slightly compressive at the outer boundary.
This comparison between the unconstrained and constrained cylinders supports the intuition that
the difference between these two cases becomes unimportant for thick walls (i.e. a0 � 1).

In all of the cases shown in figure 2, the flow is driven by the same imposed pressure drop
of 
p = 0.33. In addition to the above differences between the six models and the two boundary
conditions, each of these 12 cases will result in a different flow rate2 q (see legend of figure 2).
In all cases, q is lower for the constrained cylinder than for the unconstrained cylinder (again,
except for the L-k0 model). This is because the inner radius of the constrained cylinder always
expands less than that of the unconstrained cylinder, and q is very sensitive to the inner radius
(equation (3.4)); the constrained cylinder is also slightly compressed against the outer boundary,
which reduces its permeability in the kKC models, amplifying the reduction in q.

All of the k0 models produce quantitatively similar values of q. For each, q differs by only
a few percent between the two boundary conditions; between the k0 models for the same
boundary condition, q differs by approximately 10–20%. By far the largest difference is between
the corresponding k0 and kKC models, where the kKC model produces a value of q that is
approximately two to four times larger than the corresponding k0 model. The permeability law
makes a great difference since large deformations of a thick-walled cylinder lead to large and non-
uniform changes in porosity. This substantial change in porosity leads to a substantial change in
permeability for the kKC models, but has no impact on the k0 models. This effect leads to higher
values of q for the kKC models because the average porosity is in all cases larger than φf,0, so the
permeability increases. Comparing the N models to the Q models, and the Q models to the L
models, reveals that both rigorous kinematics and nonlinear elasticity also lead to higher values
of q relative to their linearized counterparts. However, these effects are noticeably weaker than the
impact of changing the permeability law. Given that the values of q vary so widely, it is surprising
that the behaviour illustrated in figure 2 is otherwise so similar across the models and boundary
conditions.

(iii) Unconstrained thin-walled cylinder

We now consider the other extreme geometry, a thin-walled cylinder, for a driving pressure drop
of 
p = 0.025 (figure 3). Note that this value of 
p is more than one order of magnitude less than
the value used for the thick-walled cylinder (figure 2). Despite this much smaller value of 
p,
σ ′

θ here is comparable in magnitude to the thick-walled case while us is much larger. We discuss
these points in more detail in §4b.

For the unconstrained thin-walled cylinder (figure 3a), φf (figure 3a(i)) is almost uniform across
the domain, with a weak and roughly linear decrease from left to right. This behaviour is mirrored
in us (figure 3a(ii)) and σ ′

θ (figure 3a(iv)). The pressure also decreases roughly linearly from
left to right, from p(a, t) = 
p = 0.025 to p(b, t) = 0, following classical linear poroelasticity for all
models. Unlike for the thick-walled case, the permeability law is relatively unimportant for these
quantities, whereas the kinematics and the elasticity law play much more prominent roles. Note

2Except for the L-k0 model, for which q is independent of the boundary condition.
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Figure 3. Six models at steady state for a thin-walled cylinder (a0 = 0.85). We again consider (a) an unconstrained cylinder
and (b) a constrained cylinder, now for flow driven by an imposed pressure drop
p= 0.025. For clarity, we plot the results
against the Lagrangian coordinate R(r, t)= r − us on a linear horizontal scale. Unlike for the thick-walled cylinder (figure 2),
the two different boundary conditions in this case result in strikingly different behaviour. For the unconstrained cylinder, the
most important factors are theelasticity lawand the treatment of the kinematics; thepermeability law is relatively unimportant.
For the constrained cylinder, all models exhibit nearly identical behaviour. (Online version in colour.)

that the kinematics consistently account for most of the difference between the L models and the
N models (i.e. the Q models are closer to the N models than they are to the L models).

Unlike these other quantities, σ ′
r does show a strong dependance on the permeability law. This

suggests that the most direct impact of the permeability law is on σ ′
r , and this propagates to all
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other quantities when σ ′
r is mechanically important (e.g. figure 2). For the unconstrained thin-

walled cylinder, σ ′
r vanishes at the boundaries and has an intermediate tensile maximum of order

10−3, whereas σ ′
θ is uniformly of order 10−1. As a result, the stark differences in σ ′

r between the k0
and kKC models are ultimately unimportant.

(iv) Constrained thin-walled cylinder

For the same pressure drop, the constrained thin-walled cylinder exhibits strikingly different
behaviour to the unconstrained thin-walled cylinder. Whereas the unconstrained cylinder
expands almost uniformly by 20–70%, the constrained cylinder is prevented from doing so.
This results in much smaller displacements, with a maximum of order 10−3, making model
choice essentially unimportant—all models approach their asymptotic limit of classical linear
poroelasticity (L-k0). Note also that most of the material is in compression, with the porosity
decreasing roughly linearly from a value just above φf,0 at the inner boundary to a value
noticeably below φf,0 at the outer boundary. The displacement is weakly nonlinear, decreasing
monotonically from left to right.

With regard to the flow rate q, we first note that the values of q in this case are substantially
larger than the corresponding values for the thick-walled cylinder despite the fact that 
p is much
smaller. To rationalize this, note that the relationship between q and a0 for a given 
p is strongly
nonlinear even for a rigid cylinder (i.e. equation (3.5) with a = a0 and b = b0). The same is also
true for classical linear poroelasticity, where the same expression also applies. In other words,
this difference in q is due in large part to the fact that a0 is much larger.

For the constrained thin-walled cylinder, q is considerably smaller than for the unconstrained
thin-walled cylinder (except for the L-k0 case, where q is independent of the boundary conditions).
For the k0 cases, this is because the cylinder expands substantially and almost uniformly, which
decreases the ratio of b to a and increases the flow rate (equation (3.5)). This is true to a much
lesser extent for the constrained cylinder since the displacements are much smaller. For the
kKC models, this increase in q is substantially enhanced for the unconstrained cylinder by the
noticeable increase in porosity and therefore permeability. The reverse occurs for the constrained
cylinder, where the porosity decreases, leading a lower q for the kKC models than for the
k0 models. As for the thick-walled cylinder, both rigorous kinematics and nonlinear elasticity
also lead to higher values of q relative to their linearized counterparts. For the unconstrained
cylinder, these effects are substantial; for the constrained cylinder, these effects are noticeably
weaker than the impact of the permeability law. There is relatively little difference in q across
the six different models for the constrained cylinder, again because the displacements are
necessarily small.

In this section, we have considered the implications of model choice in the context of two
end-member geometries (thick- and thin-walled). We have shown that the error associated with
linearization depends strongly on factors such as geometry and boundary conditions. In the next
section, we study the mechanics of the problem over the full transition from a0 � 1 to 1 − a0 � 1.

(b) Impact of geometry
We now explore the parameter space more broadly, focusing on the importance of geometry (a0)
and driving (q or 
p) while again fixing Γ = 0.4 and φf,0 = 0.5. Although the N-kKC model is
arguably the most ‘correct’ of those considered above, it is much more computationally expensive
than the other models. For simplicity, we restrict ourselves to the Q-kKC model below. This
model offers a good compromise between accuracy, robustness, and computational efficiency,
demonstrating the same qualitative behaviour as the N-kKC model for both end-member
geometries and for both boundary conditions (electronic supplementary material, §F).

In figure 4, we consider the evolution of several key quantities as the inner radius a0 varies
continuously from a0 � 1 (thick walls) to 1 − a0 � 1 (thin walls). For a particular value of a0,
the flow can be driven by imposing either a fixed pressure drop 
p or a fixed flow rate q; the
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other quantity (q or 
p, respectively) is then calculated as part of the solution.3 We drive the flow
with a fixed pressure drop 
p and plot the results for several values of 
p for unconstrained
cylinders (figure 4a) and constrained cylinders (figure 4b). The resulting flow rate q varies along
these contours of fixed 
p as shown in figure 4a(vi),b(vi).

Note that these same results can be presented in several different ways, which is useful for
interpretation. Here, we show contours of fixed 
p plotted against a0 (figure 4). In §E of the
electronic supplementary material, we additionally show contours of fixed q against a0 (electronic
supplementary material, figure E1), contours of fixed a0 against q (electronic supplementary
material, figure E2) and contours of fixed a0 against 
p (electronic supplementary material,
figure E3).

(i) Unconstrained cylinders

For unconstrained cylinders (figure 4a), the most striking feature is the double-valued nature of
all quantities for a certain range of a0. Specifically, our results suggest that there exists a 
p-
dependent maximum initial inner radius amax

0 (
p), above which the problem appears to have no
solution and below which the problem appears to have two distinct solutions for at least some
range of a0. Although most of these contours terminate at some value of a0 beyond which our
numerical scheme is no longer able to converge to a solution, the existence of complete branches
for larger values of 
p suggests that all contours would continue smoothly back to a0 = 0. For
simplicity, we assume that this is indeed the case in the discussion below.

For a0 > amax
0 (
p), no steady-state solution exists. This suggests that, for a given value of a0,

there exists a maximum allowable driving pressure 
pmax(a0) that can be supported (electronic
supplementary material, Fig. E3). This maximum is an inherent feature of poromechanical
coupling in a radial geometry. In the absence of a change in constitutive behaviour, applying a
pressure drop larger than 
pmax(a0) would lead to unbounded deformation and, ultimately, to
material failure. The value of 
pmax is finite and positive for 0 < a0 < 1, diverging as a0 tends to
zero and vanishing as a0 tends to one.4

For a0 < amax
0 (
p), two distinct steady-state solutions exist for a given a0. These correspond

to a less-deformed solution and a more-deformed solution, where the latter is characterized by
more extreme values of all quantities except for |σ ′

r |max. This implies that a given 
p can lead
to one of two different flow rates for the same cylinder: a lower flow rate in the less-deformed
state or a higher flow rate in the more-deformed state. The classical balloon-inflation problem in
nonlinear elasticity famously also exhibits multiple solutions in certain regions of its parameter
space; in that case, the effect is purely kinematic and nonlinear-elastic. Here, this effect results
from the non-trivial coupling of kinematics and poromechanics, even for a linear elasticity law.
In the remainder of this section, we focus on the characteristics of these two solutions.

Flow drives all parts of the material radially outward (ur > 0 for all r), so that the inner and
outer radii of the cylinder always increase, a > a0 and b > b0 (i.e. 
a > 0, figure 4a(i), 
b > 0, not
shown). The wall thickness b − a may increase or decrease, depending on whether 
b exceeds

a (
(b − a), figure 4a(ii)). For a0 � 0.1, both solutions are characterized by a decrease in wall
thickness. For a0 � 0.1, the less-deformed solution instead corresponds to an increase in wall
thickness. For a0 � 0.01, both solutions correspond to an increase in wall thickness.

For all values of a0 and 
p, both the minimum porosity φmin
f and the maximum porosity φmax

f
exceed φf,0 (figure 4a(iii); solid and dot-dashed lines, respectively). This implies that the porosity
increases throughout the material (φf > φf,0 for all r), which further implies that the total cross-
sectional area always increases, regardless of whether the wall thickness increases or decreases.
For sufficiently small 
p, there exists a value of a0 at which φmin

f and φmax
f intersect, implying the

existence of a family of solutions with uniform porosity. The difference between φmin
f and φmax

f

3Note that one could instead impose both 
p and q and calculate a0, which could be desirable in applications where a0 is
a design parameter to be used for targeting a particular combination of 
p and q. We do not consider this case here.
4The limit a0 → 0 corresponds to a line source in an infinite domain, for which no steady state exists. The limit a0 → 1
corresponds to vanishingly thin walls, which can support no load.
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Figure 4. We explore the steady-state parameter space in more detail using the Q-kKC model, plotting contours of fixed

p against a0 for several key quantities for (a) unconstrained cylinders (
p ∈ [0.005, 0.5374], blue to yellow) and (b)
constrained cylinders (
p ∈ [0.005, 1.2], blue to red). We show (i) the change in inner radius
a; (ii) change in wall thickness

(b − a); (iii) minimum porosityφmin

f andmaximum porosityφmax
f (solid and dot-dashed lines, respectively); (iv) maximum

absolute radial effective stress |σ ′
r |max and (v) maximum absolute azimuthal effective stress |σ ′

θ |max; and (vi) flow rate q.
We compare the latter with the reference flow rate q0 that would occur for a rigid cylinder with the same initial geometry,
q0 = 
p ln(b0/a0)−1 (light grey lines). Note that the left and right columns use the same colour scale in
p. (Online version
in colour.)
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increases monotonically with 
p such that this intersection no longer exists at high 
p (electronic
supplementary material, Fig. E3).

The maximum absolute azimuthal effective stress |σ ′
θ |max (figure 4a(iv)) and the maximum

absolute radial effective stress |σ ′
r |max (figure 4a(v)) are relevant to material failure. The azimuthal

component increases monotonically with 
p along the less-deformed solution branch; the radial
component exhibits a more complex behaviour, but |σ ′

r |max < |σ ′
θ |max for all a0 and 
p (electronic

supplementary material, Fig. E3).
The flow rate q exhibits the same striking feature as most other quantities—a region

a0 > amax
0 (
p) characterized by no solution, and a region a0 < amax

0 (
p) characterized by two
solutions (figure 4a(vi); coloured lines). We compare the actual flow rate q with the reference flow
rate q0 that would occur for the same 
p for a rigid cylinder with the same initial geometry, q0 =

p ln(b0/a0)−1 (figure 4a(vi); grey lines). This reference flow rate is equivalent to the prediction of
classical linear poroelasticity (L-k0), and it diverges for all 
p as a0 tends to one. Note that q > q0
for all a0 and 
p—that is, a deformable unconfined cylinder will always conduct a higher flow
rate than a rigid cylinder of the same initial geometry, and this is a nonlinear effect.

(ii) Constrained cylinders

Constrained cylinders exhibit qualitatively different behaviour (figure 4b)—a single solution
exists for all values of a0, and all quantities vary monotonically with 
p. Note that we expect
unconstrained and constrained cylinders to approach the same limiting behaviour for a0 � 1,
as noted above in the context of figure 2.

The change in inner radius 
a is strictly positive, tending to zero for both small a0 and large
a0. In the former limit, this is because 
a decreases with a0 for fixed 
p; in the latter limit, this is
because b is fixed and the material has nowhere to go. The change in wall thickness is equal and
opposite to the change in inner radius, 
(b − a) = −
a, and is therefore strictly negative. That is,
the walls always get thinner. As a result, the cross-sectional area always decreases and the average
porosity (and thus φmin

f ) must always be less than φf,0. However, φmax
f is still always greater

than φf,0. The difference between φmax
f and φmin

f increases with 
p (electronic supplementary
material, Fig. E3) and is roughly constant with a0. For a thin-walled cylinder, φmax

f is close to φf,0
while φmin

f is substantially below φf,0. For a thick-walled cylinder, φmin
f is close to φf,0 while φmax

f
is substantially above φf,0. Note that the latter scenario respects the constraint on the average
porosity by virtue of the fact that the large porosities are localized to a small region near the inner
radius while the rest of the cylinder (the vast majority) is weakly compressed. The azimuthal
stress |σ ′

θ |max decreases with a0 for small a0 and increases gently with a0 for large a0, tending
to a finite, nonzero value as a0 tends to one. The radial stress |σ ′

r |max exhibits a similar trend,
with the transition from decreasing to increasing occurring at a much smaller value of a0. For
both stress components, this transition occurs at a corner that corresponds to a transition in the
maximum absolute value of the stress from tensile near/at the inner radius (radial/azimuthal) to
compressive at the outer radius (both).

The flow rate q is weakly non-monotonic in a0 for small a0 and large 
p, implying that two
different values of a0 can lead to the same combination of 
p and q. Comparing the actual
flow rate q to the reference flow rate q0 (rigid cylinder or L-k0 model, grey lines), we find that
a constrained deformable cylinder will conduct a larger flow rate than a rigid cylinder if the walls
are thick, but a smaller flow rate than a rigid one if the walls are thin; this is in contrast to an
unconstrained deformable cylinder, which always conducts a larger flow rate than a rigid one.
This effect is amplified as 
p increases, but its magnitude is relatively modest; q decreases from
a few tens of percent above q0 to a few tens of per cent below q0 over the full range of a0. For an
unconstrained cylinder, by contrast, deformation dominates the flow rate as a0 approaches amax

0 .

(c) Force balance
Flow always forces the material radially outward. This loading must be supported through
a combination of internal azimuthal stress and external radial traction. To investigate these
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Figure 5. Flow leads to a net pressure force Fp (dashed lines) that must be supported by a combination of force due to internal
azimuthal stress Fθ (dot-dashed lines) and force due to external radial traction Fr (solid lines). We plot these forces for (a)
unconstrained cylinders (
p ∈ [0.005, 0.5]) and (b) constrained cylinders (
p ∈ [0.005, 0.6]). The colour scale for
p is the
same as in figure 4. For unconstrained cylinders, note that Fr ≡ 0 and Fθ ≡ Fp. (Online version in colour.)

mechanics in more detail, we consider a macroscopic balance of the ‘vertical’ components of
the forces acting on one-half of the annular cross-section of the cylinder (see diagrams, top of
figure 5). The ‘vertical’ components of the forces due to fluid or pore-pressure loading Fp, internal
azimuthal stress Fθ , and external radial traction Fr are given by

Fp = 2a
p + 2
∫ b

a
p dr, Fθ = 2

∫ b

a
σ ′

θ dr and Fr = −2bσ ′
r(b) (4.1)

and macroscopic force balance requires that Fp = Fθ + Fr. We plot these quantities for
unconstrained cylinders (figure 5a) and constrained cylinders (figure 5b). Note that, as with
figure 4, these results can be presented in several different ways (electronic supplementary
material, Fig. E4).

For unconstrained cylinders, Fr ≡ 0 and, therefore, Fθ ≡ Fp. These two non-trivial force
components increase as 
p increases along the less-deformed solution branch. These quantities
ultimately mirror the behaviour shown in figure 4—two solutions exist for a0 < amax

0 (
p), one
corresponding to less deformation and smaller forces and the other corresponding to more
deformation and larger forces.

For constrained cylinders, Fr will be determined implicitly to satisfy the condition that
us(1) = 0. For fixed 
p, both Fp and Fr increase monotonically with a0. For a0 � 0.05, Fθ is similar
in magnitude to Fr and increases with a0; for a0 � 0.05, however, Fθ decreases rapidly with a0 and
ultimately becomes weakly negative but negligible in the overall force balance. In other words,
the outer boundary supports most of the fluid loading for a cylinder with moderate to thin walls.
Note that Fr < Fp for a0 � 0.5 since Fθ > 0, but Fr > Fp for a0 � 0.5 since Fθ < 0.

5. Conclusion
Despite being a classical topic in geomechanics and in biophysics, radial poroelastic deformation
has not previously been systematically explored, particularly in the context of large deformations.
To assess the qualitative and quantitative impacts of large deformations, we considered six
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different models in the context of two end-member geometries (thick- and thin-walled) and
two different outer boundary conditions (unconstrained and constrained). We showed that the
impacts of nonlinear kinematics, nonlinear elasticity and deformation-dependent permeability
depend strongly on geometry and boundary conditions, as does the relative importance of
these facets of nonlinearity. For example, the mechanical response of an unconstrained thin-
walled cylinder to an imposed pressure drop is dominated by kinematics and elasticity, although
the permeability law exerts a strong control on the resulting flow rate through the material;
for the same pressure drop, a constrained thin-walled cylinder is limited to much smaller
deformations and exhibits what is essentially a linear-poroelastic response (figure 3). By contrast,
the mechanical response of a thick-walled cylinder is much less sensitive to constraint, although
the outer boundary condition has a strong impact on the flow rate when the permeability is
deformation-dependent (figure 2).

To explore the importance of geometry and constraint in more detail, we then focused on
a model that includes rigorous nonlinear kinematics and deformation-dependent permeability,
but with the simplification of linear elasticity (Q-kKC). This model captures the qualitative and
quantitative impacts of large deformations (electronic supplementary material, Fig. F1), but
is more computationally convenient than a fully nonlinear model. We showed that, for an
unconstrained cylinder, a given initial inner radius can conduct an arbitrarily large flow rate but
can only support a finite maximum pressure drop, and this maximum allowable pressure drop
increases with the thickness of the walls (figures 4 and 5; electronic supplementary material, figure
E3). For a pressure drop less than this maximum, our results suggest that two valid solutions
exist—a less-deformed state with a lower flow rate and a more-deformed state with a higher flow
rate. A constrained cylinder, by contrast, can support an arbitrarily large pressure drop but can
only conduct a finite maximum flow rate, and this maximum flow rate is non-monotonic in the
wall thickness (electronic supplementary material, Figs E1–E3). These behaviours are mirrored in
the corresponding force balances (figure 5; electronic supplementary material, figure E4).

We have assumed here that the constitutive response of the solid skeleton remains elastic
for arbitrarily large deformations. This is relevant to biomedical applications such as fluid
permeation through artery walls and to the design of radial filters. In geomechanical applications,
however, large deformations are typically the result of material failure through plasticity or
fracture, which will lead to a fundamentally different constitutive behaviour in the solid.
Additionally, it may be relevant for many biomedical and geophysical applications to couple the
poroelastic domain to different surface phenomena, such as free external flows. These behaviours
may be the subject of future work.

We conclude by noting that, in addition to providing fundamental physical insight, our results
and numerical codes (electronic supplementary material) could serve as a useful benchmark for
general numerical-simulation tools (e.g. finite-element codes). Relatively few benchmarks are
available in the context of large-deformation poroelasticity.
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