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In their insightful overview of the special issue of Evolutionary 
Applications on Evolutionary Toxicology, Brady, Monosson, Matson, 
and Bickham (2017) provide a much- needed call for the applica-
tion of evolutionary concepts in our efforts to understand life’s re-
sponses to toxic chemicals. I write to comment on one aspect of their 
editorial that deserves a broader perspective.

Brady and coauthors refer several times to toxicology as an “ap-
plied” science. Indeed, there are important applications of toxicol-
ogy, for example, in toxicity testing of chemicals or in human health 
and ecological risk assessment. However, I would argue that toxicol-
ogy is much more than an applied science.

Important toxicological research in the past and much of the 
toxicological research occurring today should be considered basic 
or fundamental research, rather than applied. For example, toxic 
chemicals—including both natural products such as tetrodotoxin 
and synthetic chemicals like dioxin (2,3,7,8- tetrachlorodibenzo- p- 
dioxin)—have long been used as “molecular probes” to investigate 
fundamental aspects of cell and molecular biology (Narahashi, 1977; 
Poland & Kende, 1976). Research in toxicology (and its sibling, phar-
macology) has provided fundamental insights into the biochemistry 
of enzymes that catalyze the biotransformation of both xenobiotic 
and endogenous chemicals (Lu, 1998; Nebert & Gonzalez, 1987; 
Nelson, Goldstone, & Stegeman, 2013). Transcription factors dis-
covered because of their roles in the response to chemicals have 

subsequently been found to have fundamental roles in development, 
physiology, and immunology (Esser & Rannug, 2015; Nebert, 2017; 
Oladimeji & Chen, 2018; Sykiotis & Bohmann, 2010).

Even much of the toxicological research performed in support of 
applied goals such as testing or risk assessment is of a fundamental 
nature. Many examples can be found in the extensive research on 
mechanisms of toxicity, which generates basic understanding that 
informs screening efforts (Martin et al., 2010; Sipes et al., 2013) and 
regulatory decision- making (Clewell, 2005; Haber et al., 2001; Sturla 
et al., 2014). Such research might best be considered fundamental 
research inspired by societal needs or “use- inspired basic research” 
as defined by Stokes (1995, 1997).

The concept of Evolutionary Toxicology encompasses at least 
two distinct but related ideas, both of which are noted in Brady 
et al. (2017). The first, as outlined in the foundational description 
of Evolutionary Toxicology (Bickham & Smolen, 1994), concerns how 
exposure to chemicals can, by causing mutations or imposing strong 
selective pressures, drive the evolution of populations and spe-
cies (Bickham, 2011; Bickham, Sandhu, Hebert, Chikhi, & Athwal, 
2000; Di Giulio & Clark, 2015; Klerks, Xie, & Levinton, 2011; Nacci, 
Champlin, & Jayaraman, 2010; Oziolor, Bickham, & Matson, 2017; 
Oziolor & Matson, 2015; Reid et al., 2016). The second involves 
understanding how deep evolutionary history has shaped animal 
responses to chemicals, including mechanisms of toxicity (Ballatori, 
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Boyer, & Rockett, 2003; Ballatori & Villalobos, 2002) and defense 
(Goldstone et al., 2006; Nebert & Dieter, 2000) and using that in-
formation to inform both basic research and applied research in 
toxicology. For example, understanding the evolutionary basis of 
phenotypic plasticity during development provides insight into 
fundamental mechanisms underlying the developmental origins 
of adult disease (Gluckman, Hanson, & Beedle, 2007; Lea, Tung, 
Archie, & Alberts, 2017). Such an evolutionary perspective, which 
has parallels in the emerging field of Evolutionary Medicine (Nesse 
& Stearns, 2008; Stearns, 2012; Stearns, Nesse, Govindaraju, & 
Ellison, 2010; Wells, Nesse, Sear, Johnstone, & Stearns, 2017), can 
guide the selection of model systems in toxicological research and 
inform the extrapolation of results from those models to humans 
or wildlife (e.g., Gunnarsson, Jauhiainen, Kristiansson, Nerman, & 
Larsson, 2008; Lalone et al., 2013; Leung et al., 2017).

The thesis of Brady et al. (2017)—that an evolutionary per-
spective can benefit toxicology—is one with which I strongly agree 
(Hahn, 2002; Hahn, Karchner, & Merson, 2017; Whitehead, Clark, 
Reid, Hahn, & Nacci, 2017). However, evolutionary concepts can 
enrich more than just the applied forms of toxicology; they also 
provide an important framework that enhances the fundamental 
understanding of toxicological mechanisms and the basic biol-
ogy of the genes and proteins that control life’s response to toxic 
chemicals.
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