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Abstract: Despite emerging evidence suggesting that autophagy occurs during renal interstitial
fibrosis, the role of autophagy activation in fibrosis and the mechanism by which autophagy influences
fibrosis remain controversial. Transcription factor EB (TFEB) is a master regulator of autophagy-
related gene transcription, lysosomal biogenesis, and autophagosome formation. In this study, we
examined the preventive effects of TFEB suppression on renal fibrosis. We injected synthesized
TFEB decoy oligonucleotides (ODNSs) into the tail veins of unilateral ureteral obstruction (UUO)
mice to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of
interleukin (IL)-1(3, tumor necrosis factor-a (TNF-«), and collagen was decreased by TFEB decoy
ODN. Additionally, TEFB ODN administration inhibited the expression of microtubule-associated
protein light chain 3 (LC3), Beclinl, and hypoxia-inducible factor-1« (HIF-1x). We confirmed that
TFEB decoy ODN inhibited fibrosis and autophagy in a UUO mouse model. The TFEB decoy ODNs
also showed anti-inflammatory effects. Collectively, these results suggest that TFEB may be involved
in the regulation of autophagy and fibrosis and that regulating TFEB activity may be a promising
therapeutic strategy against kidney diseases.
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1. Introduction

Chronic kidney disease (CKD), characterized by glomerular and tubulointerstitial
fibrosis (TIF), is a global health problem with a prevalence of 5-10% [1]. The deposition
of extracellular matrix proteins is a hallmark of CKD, regardless of the etiology of the
primary disease [2—-4]. Fibroblast proliferation is a precursor to extracellular matrix (ECM)
overproduction [5]. The underlying cellular events are complex and involve the interac-
tion of multiple renal resident cells with infiltrating inflammatory cells as well as tubular
epithelial-to-mesenchymal transition (EMT), monocyte/macrophage and T cell infiltration
and cellular apoptosis, and interstitial fibroblast and glomerular mesangial cell differentia-
tion into activated myofibroblasts [6]. Apart from EMT, several studies have demonstrated
that endothelial-to-mesenchymal transition (EndoMT) also plays an important role in the
recruitment of fibroblasts [7,8]. However, the mechanisms regulating EndoMT have not
been fully elucidated, and only a few studies have reported molecular changes and regula-
tory events occurring in endothelial cells during phenotypic transformation into activated
myofibroblasts [9]. In addition, several inflammatory and metabolic molecular mechanisms,
including TGF-f [10], WNT signaling [11], fibroblast growth factor receptor signaling [12],
Notch signaling [13], Hedgehog signaling [14], endothelial [15] and podocyte glucocor-
ticoid receptors [16], endothelial sirtuin 3 (SIRT3)-mediated mechanisms [17] and DPP-4
mediated mechanism [18], are known to be implicated in the pathogenesis of diabetic
nephropathy. Factors that promote/inhibit fibrosis restrict each other, and the dynamic
balance is lost, resulting in the formation of fibrosis [19,20]. The injured site of the renal
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interstitium can be rapidly infiltrated by a large number of inflammatory cells, aggravat-
ing fibrosis [19]. After prolonged renal injury, the infiltrated inflammatory cells release
excessive pro-inflammatory cytokines, such as tumor necrosis factor (TNF) -, interleukin
(IL)-1p and IL-6, to clean up tissue debris, dead cells, and invading organisms from the
injured site, as well as pro-fibrotic cytokines and growth factors [6,21-23]. Once renal
fibrosis develops, most patients progress to irreversible end-stage renal disease, in which
kidney transplantation with dialysis is the only therapeutic option [22]. Therefore, slowing
down the progression of fibrosis could be an important strategy for preventing CKD [24].

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor block-
ers (ARBs) are the traditional therapeutic agents for CKD patients. ACEIs and ARBs in
CKD reduce systemic and intra-glomerular blood pressure and proteinuria [25]. How-
ever, treatment with ACEIs or ARBs does not prevent direct renal injuries or metabolic
changes associated with diabetic nephropathy such as an over-activation of the miner-
alocorticoid receptor [26,27]. To overcome these limitations, several potential drugs have
been evaluated, including SIRT3 [28] and glycolysis inhibitors [29,30], Linagliptin [31],
ROCK inhibitors [32,33], mineralocorticoid antagonists [26], and peptide AcSDKP [18,27],
for protecting against renal injuries. However, further studies are still necessary because
most of these agents are still in preclinical status and the mechanisms of renal fibrosis are
not fully understood.

In recent years, the relationship between autophagy and renal fibrosis has been re-
ported in studies on renal inflammation and autophagy [22,24,34]. Autophagy is an impor-
tant cellular mechanism for the intracellular lysosome-mediated degradation of damaged
organelles, protein aggregates, and other macromolecules in the cytoplasm. It regulates
cell death under normal physiological and pathological conditions [35,36]. Lysosomes fuse
with phagosomes to degrade their contents, contributing to lysosomal membrane perme-
abilization [37,38]. Autophagy is involved in renal diseases including acute kidney injury,
glomerular diseases, and TIF [22]. Despite emerging evidence suggesting that autophagy
occurs during renal TIF, the role of autophagy activation in fibrosis and the mechanism by
which autophagy influences fibrosis remain controversial.

Transcription factor EB (TFEB) is a master regulator of autophagy-related gene tran-
scription, lysosome biogenesis, and autophagosome formations [39—-42]. TFEB levels in-
crease during inflammation and fibrosis [34,43]. Previous studies have reported increased
autophagic activity in tubular cells in human biopsy samples from transplanted kidneys [44]
and patients with renal disease [45]. These findings suggest the role of the TFEB-autophagy
signaling pathway in the pathogenesis of renal tubular injuries and CKD in humans. How-
ever, the pathophysiological roles of TFEB in modulating autophagy and tubulointerstitial
injury in CKD remain controversial, and whether autophagy inhibition has a therapeutic
effect on renal injury is unclear. Thus, it is necessary to examine the effect of autophagy
inhibition and its underlying mechanism in an animal model of renal injury.

Synthesized TFEB decoy oligonucleotides (ODNs) block the transcription factors of a
specific gene that can recognize their consensus-binding sequences. Previous studies [46—48]
have demonstrated that decoy ODNs substantially down-regulate the functions of transcription
factors in several disorders. Lee et al. [49] reported the efficacy of synthetic decoy ODNs in an
animal atherosclerosis model. Additionally, the unilateral ureteral obstruction (UUO) mouse
model is a representative animal model of obstructive nephropathy and is characterized by
progressive TIF [50]. In the kidneys of UUO mice, autophagy is accompanied by increased renal
tubular injury and fibrosis [51]. Therefore, UUO is a suitable model that is believed to mimic
human chronic obstructive nephropathy.

This study aimed to investigate the association between kidney function and au-
tophagy using synthetic TFEB decoy ODNs, which were designed to inhibit TFEB tran-
scription factors in UUO kidneys, to determine the role of TFEB-mediated autophagy in
CKD-related fibrosis and its underlying mechanism.
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2. Results
2.1. TFEB Decoy ODN Attenuats Morphological Changes in UUO-induced Renal Fibrosis

Thirty-five mice were randomly divided into five groups: the NC group, the TFEB
group that was injected with TFEB decoy ODNSs, the UUO group that underwent a UUO
surgery, the Scr group that included mice that underwent UUO surgery and were injected
with Scr ODNs, and the UUO + TFEB group comprising mice that underwent UUO surgery
and were injected with TFEB decoy ODNs .

We evaluated the histologic effect of TFEB decoy ODNSs on renal TIF in UUO mouse
kidneys using H&E (Figure 1A) and Masson’s trichrome staining (Figure 1B). The NC
and TFEB groups showed unremarkable histologic changes. However, features of severe
tubular interstitial injury, including tubular atrophy and TIF, were observed in the UUO
and Scr groups. Compared to the UUO group, the UUO + TFEB group showed reduced
histologic change in renal damage. Masson’s trichrome staining showed increased collagen
accumulation in the UUO and Scr groups, whereas the expression of collagen was clearly
decreased in the UUO + TFEB group (Figure 1B). Western blot analysis revealed increased
expression of fibronectin and collagen I in the UUO-induced Scr group, which was greater
than that in the NC and TFEB groups (Figure 2). Thus, these results show that TFEB decoy
ODN:s affect renal interstitial injury and fibrosis in a UUO mouse model.
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Figure 1. TFEB decoy ODN attenuated morphological changes and tubular injury in UUO-induced re-
nal fibrosis in mice. (A) Paraffin-embedded kidney section stained with hematoxylin and eosin (H&E);
(B) Masson’s trichrome staining; immunohistochemical staining showing the protein expression of
(C) NGAL and (D) Kim-1 protein; (E) quantification of collagen, NGAL, and Kim-1 expressions.
Quantitative analysis of collagen or protein expression area of each group (1 = 3; 400X magnification).
Original scale bar = 20 um. The results are expressed as mean =+ SE of three independent experiments.
*p <0.05 vs. the NC group. t p < 0.05 vs. the TFEB group. f p < 0.05 vs. the UUO or Scr group.
NC, normal control group; TFEB, TFEB decoy injection in the normal control group; UUO, UUO
surgery group; Scr, scramble ODN injection in the UUO surgery group; UUO + TFEB, TFEB decoy
ODN injection in the UUO surgery group; UUO, unilateral ureteral obstruction; decoy ODNSs, decoy
oligonucleotides; TFEB, Transcription factor EB; Scr, scrambled.
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Figure 2. Synthetic TFEB decoy ODN significantly suppressed renal inflammation, fibrosis, and
collagen deposition in UUO mice. (A) Western blotting showing NGAL, inflammatory cytokines
(IL-1B3, TNF-w), fibronectin, and collagen I expression in kidney tissue; (B) quantification of the
protein expression levels of the Western blot images using Image J program. The results are expressed
as mean + SE of three independent experiments. * p < 0.05 vs. the NC group. t p < 0.05 vs. the
TFEB group. f p < 0.05 vs. the UUO or Scr group. NC, normal control group; TFEB, TFEB decoy
injection in the normal control group; UUO, UUO surgery group; Scr, scramble ODN injection in the
UUO surgery group; UUO + TFEB, TFEB decoy ODN injection in the UUO surgery group; UUO,
unilateral ureteral obstruction; decoy ODNSs, decoy oligonucleotides; TFEB, Transcription factor EB;
Scr, scrambled; IL-1§3, interleukin-13; tumor necrosis factor-o (TNF-«).

2.2. TFEB Synthetic ODN Attenuates UUO-Induced Tubular Injury in Kidney

To investigate the effects of TFEB synthetic ODN on UUO-induced tubular injury,
IHC staining was performed to observe the expression of the biomarkers of tubular injury,
NGAL, and Kim-1. Figure 1C shows that UUO surgery resulted in significantly increased
NGAL deposition in the distal tubules, which was suppressed by TFEB ODN administra-
tion. In addition, Kim-1 expression in renal tissues was evaluated using IHC staining. As
shown in Figure 1D, Kim-1 expression was markedly increased in the UUO and UUO + Scr
groups but inhibited in the UUO + TFEB group. Additionally, we measured NGAL ex-
pression using Western blot analysis, which revealed that UUO surgery with Scr ODN
administration up-regulated NGAL levels (Figure 2). These findings suggest that TFEB
ODN mitigated UUO-induced kidney damage in mice.

2.3. TFEB ODN Attenuates Inflammation in a UUO-induced Mouse Model

To investigate the effects of TFEB ODN on the expression of inflammatory cytokines,
we examined the levels of inflammatory cytokines during kidney fibrosis using Western
blot analysis. UUO surgery increased interleukin (IL)-1 and TNF-« levels in UUO and
UUO + Scr mice (Figure 2). In contrast, the TFEB ODN treatment significantly inhibited the
secretion of IL-1p and TNF-a. These results show that TFEB ODN markedly inhibited the
secretion of inflammatory cytokines.

2.4. TFEB Decoy ODN Decreases Autophagic Activity in UUO-Induced Renal Injury

We performed immunohistochemical staining and Western blot analysis to investigate
the regulatory effects of TFEB transcription factors on UUO-induced renal fibrosis. As
shown in Figure 3A, B, the expression of hypoxia-inducible factor-1oc (HIF-1), Beclin-1, and
LC3 were significantly increased in UUO-induced renal fibrosis. In addition, in the UUO



Int. . Mol. Sci. 2022, 23, 8138

5o0f 14

group, conversion of the cytoplasmic form of LC3 (LC3-I) to the pre-autophagosomal and
autophagosomal membrane-bound form of LC3 (LC3-1I) increased, indicating an increase
in autophagic activity. In contrast, HIF-1«, Beclin1, and LC3 expression was reduced, and
the conversion of LC3-I to LC3-1I was increased in the UUO + TFEB group. These results
indicate that TFEB suppression can modulate autophagic activity in UUO-induced renal
fibrosis, thereby suggesting that TFEB decoy ODN administration suppresses autophagy
which is induced by UUO-induced renal injury, resulting in decreased renal fibrosis.
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Figure 3. TFEB decoy ODNs decreased the expression of autophagic markers in UUO-induced renal
injury. TFEB decoy ODN inhibits the expression of autophagy genes in UUO-induced renal fibrosis.
(A) Immunohistochemical staining shows that the expressions of LC3 and Beclinl proteins were
reduced via TFEB decoy ODN administration in UUO-induced renal fibrosis mice. Original scale
bar = 20 um. (B) Western blot analysis shows that TFEB decoy ODN decreased the expression of
HIF-1«, Beclinl, and LC3. (C) Quantification of the protein expression levels of the Western blot
images using the Image ] program. The results are expressed as mean + SE of three independent
experiments. * p < 0.05 vs. the NC group. t p < 0.05 vs. the TFEB group. 1 p < 0.05 vs. the UUO or Scr
group. NC, normal control group; TFEB, TFEB decoy injection in the normal control group; UUO,
UUO surgery group; Scr, scramble ODN injection in the UUO surgery group; UUO + TFEB, TFEB
decoy ODN injection in the UUO surgery group; LC3, microtubule-associated protein light chain
3; HIF-1«, hypoxia-inducible factor-1«; UUO, unilateral ureteral obstruction; decoy ODNSs, decoy
oligonucleotides; TFEB, Transcription factor EB; Scr, scrambled.

To assess the molecular mechanism of TFEB decoy ODN in UUO-induced renal injury,
we examined the expression of TFEB using immunofluorescence assays (Figure 4A). UUO
with Scr ODN administration increased the expression of TFEB (green) in renal tissues,
whereas TFEB ODN treatment suppressed it. TFEB was expressed in the cytosol and
increased in the nucleus in the UUO + Scr ODN group. In contrast, TFEB expression
decreased in the UUO + TFEB decoy ODN mice. We also measured TFEB expression
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using Western blot analysis, which revealed that UUO + Scr ODN upregulated TFEB
expression, whereas TFEB decoy ODN treatment decreased it during UUO-induced renal
injury (Figure 4B, C). These results suggest that synthetic TFEB decoy ODN may protect
the kidneys during UUO through suppression of the TFEB signaling pathway.
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Figure 4. The effect of TFEB ODN on TFEB expression in UUO mice. (A) Immunofluorescence
staining for TFEB (green). Cells were counterstained with Hoechst 33342 (blue). Original scale
bar = 20 um. (B) Western blot analysis shows that TFEB decoy ODN decreased TFEB expression.
(O) Quantitative analysis of TFEB expression in each group, performed at a magnification of 400x.
Data are presented as mean + SEM (1 = 3). Tukey’s multiple comparison test, * p < 0.05 vs. the NC
group. T p <0.05 vs. the TFEB group. } p < 0.05 vs. the UUO or Scr group. NC, normal control group;
TFEB, TFEB decoy injection in the normal control group; UUO, UUO surgery group; Scr, scramble
ODN injection in the UUO surgery group; UUO + TFEB, TFEB decoy ODN injection in the UUO
surgery group; DAP], 40, 6-diamidino-2-phenylindole; UUQO, unilateral ureteral obstruction; decoy
ODNs, decoy oligonucleotides; TFEB, Transcription factor EB; Scr, scrambled.

3. Discussion

Many cellular and molecular events occur during renal fibrosis, such as the activation of
interstitial myofibroblasts, EMT and/or endothelial-mesenchymal transition, ECM deposition
and microvascular dysfunction [52,53]. Notably, autophagy can also cause renal fibrosis after
injury [54]. Dysregulation or failure of the autophagy pathway or mutations in autophagy-
related genes result in various human pathologies, including cancer, neurodegenerative
diseases, chronic inflammatory diseases, and cardiac failure [55-57].

Autophagy has renal protective effects on renal tubular cells during AKI [58], and
helps repair and regenerate cells and tissues [59]. Therefore, impaired autophagy in the
kidneys results in inflammation and TIF in CKD models [59]. Xu et al. [60] reported that
defects in autophagy can lead to excessive deposition of ECM and renal fibrosis. In contrast,
some studies have indicated that autophagy is involved in promoting fibrosis [61-63]. The
actual function of autophagy may depend on the specific type and stage of the fibrotic
disease. It has also been established that autophagy in tubules protects against AKI and
cell death [64,65], and pharmacological inhibition of autophagy is used to understand the
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role of autophagy in kidney IRI injury [66]. The cisplatin-treated AKI model revealed that
the inhibition of autophagy enhanced kidney injury remarkably, whereas the activation
of autophagy protected proximal tubules from injury [67]. Wang et al. [68] demonstrated
that TFEB promoted autophagy and attenuated IRI by reducing inflammation and kidney
injury. In our study, we suppressed the function of TFEB using synthetic decoy ODN to
evaluate autophagic activity in the process of renal injury, which prevented renal fibrosis.

Autophagy serves a dual purpose: it may play a cytoprotective role in the body [69]
or promote cell injury and the development of CKD [70]. The role of autophagy in TIF is
complex and inconsistent. A previous study [61] reported that autophagy in the proximal
tubules may promote fibrosis by coordinately activating tubular cell death, interstitial
inflammation, and, in particular, the production of pro-fibrotic factors such as fibronectin.
Kim et al. [70] indicated that renal fibrosis is accompanied by the up-regulation of au-
tophagy, whereas another study suggested that the downregulation of autophagy occurs
in diabetic nephropathy [71]. These differences may be associated with the duration and
stage of renal disease; autophagic down-regulation is mainly observed in the early stages
of diabetes, and enhanced autophagy is often observed in the late stages of diabetes and is
associated with diabetic kidney fibrosis [71]. In our study, TFEB down-regulation resulted
in decreased autophagy and a subsequent decrease in renal fibrosis. Therefore, our results
suggest that autophagy is closely related to renal fibrosis. However, further studies are
needed to better understand its pathogenesis.

To determine the role of autophagy in renal fibrosis, most studies have used the
UUO model [72], which exhibits time-dependent induction of autophagy accompanied by
leukocytic infiltration, tubular cell death, tubular atrophy, and TIF [73,74]. Peng et al. [75]
found that autophagy deficiency in proximal tubular epithelial cells resulted in dramatically
increased leukocyte infiltration and proinflammatory cytokines expression in UUO kidneys.
We also noted increased cytokine expression in our UUO mouse model. However, some
studies have shown results that contradict our findings. Lu et al. [76] suggested that TFEB
is a protective transcription factor against endothelial cell inflammation. A possibility of
passive consequence of reduced fibrosis could be considered for the anti-inflammatory
effect of TFEB inhibition, because less fibrosis and debris reduces macrophage activation.
Further studies are mandatory.

Transcription factors are nuclear proteins that play an important role in the regulation
of gene transcription. Synthetic decoy ODNs are repressors of transcription that bind to
transcription factors and inhibit gene expression by occupying the DNA-binding site of the
transcription factor in the nucleus [77]. In this study, the expression of TFEB transcription
factors was suppressed using synthetic TFEB decoy ODNSs injected into the tail vein of
UUO mice, and the inhibition of autophagy in UUO-induced renal fibrosis was confirmed.

A previous study [78] demonstrated an elevation in activated autophagy biomarkers,
such as LC3, Atg3, Atgb, Atg7, Atgl2, and Atglé, in the renal tissues of UUO mice,
suggesting that autophagic activation may be associated with renal tissue injury and
fibrosis. LC3 and Beclin-1 are important and dependable markers of autophagy [79]. LC3
is the most widely used autophagic marker, and its conversion from the cytosolic form
(LC3-]) to the lipidated form (LC3-II) is a marker of autophagosome formation [80]. Beclinl
is essential for the recruitment of other autophagy-related proteins that play a role in the
expansion of autophagosomal membranes and structures [81]. In our study, LC3 and
Beclin-1 were used as biological markers of autophagy. We used immunological detection
methods to evaluate chemical mediators, such as HIF-1x, TNF-«, IL-13, NGAL, Kim-1,
collagen I, and fibronectin, to observe changes in UUO-induced renal injury. We observed
a decrease in the expression of the autophagic markers, LC3-1/1I and beclin-1, following
TFEB suppression with decoy ODN injection. These results suggest that TFEB could be a
promising therapeutic target for preventing renal fibrosis following injury.

TFEB plays a pivotal role in regulating the process of autophagy [39,41] by binding
to the promoter regions of numerous autophagy genes and inducing autophagosome
biogenesis and autophagosome-lysosome fusion [41]. Under normal conditions, TFEB
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is localized in the cytoplasm in its inactivated form. Under conditions of starvation or
oxidative stimulation, TFEB is dephosphorylated, translocates to the nucleus, and promotes
the transcription of genes related to autophagy and lysosome biogenesis [82]. In our study,
TFEB was increased in UUO kidneys and translocated to the nucleus. These findings
suggest that the injurious role of TFEB in UUO-induced renal damage is associated with
excessive autophagy, consequent cell death and inflammation.

In summary, we designed a novel synthetic noncoding RNA targeting TFEB, a tran-
scription factor known to induce fibrosis and inflammatory responses. We confirmed that
TFEB decoy ODN administration in a UUO mouse model reduced fibrosis and autophagy
(Figure 5). The TFEB decoy ODNs also showed anti-inflammatory effects. Collectively,
our results suggest that TFEB may be involved in the regulation of autophagy and fibrosis
and that regulating TFEB activity may be a promising therapeutic strategy against kid-
ney diseases. However, further studies are needed to better understand the function and
mechanism of TFEB in the treatment of CKD.
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Figure 5. Schematic diagram of the molecular pathway for TFEB transcription factor and inhibitory
effects of synthetic decoy ODNs on autophagy in renal injury UUO, unilateral ureteral obstruction;
decoy ODNs, decoy oligonucleotides; TFEB, Transcription factor EB; IL-1f3, interleukin-13; TNF-c,
tumor necrosis factor-o; LC3, microtubule-associated protein light chain 3; HIF-1«, hypoxia inducible
factor-1c.

4. Materials and Methods
4.1. Synthesis of Ring-type TFEB Decoy ODNs and Scrambled ODNs

Decoy ODNSs were designed in our laboratory and synthesized by Macrogen Co. Ltd.
(Seoul, Korea). We designed a hair-pin-shaped ring-type structure TFEB decoy ODN and
synthesized a double-stranded decoy ODN that contained a sequence of the TFEB-binding
elements (Figure 6). The consensus sequences of the TFEB decoy ODNs and scrambled (Scr)
ODNs used in this study are detailed in Table 1 (the target sites of consensus sequences
are bolded and underlined). After denaturing at 95 °C for 3 min, the ODNs were annealed
for 6 h, and the temperature was gradually reduced from 85 °C to 25 °C. Following the
addition of T4 ligase (1U; Takara Inc., Kusatsu, Japan), the ODNs were incubated at 16 °C,
for 16 h, to generate covalently ligated ring-type decoy molecules.
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A A
A GCCACGTGGTCGGGGAATTCCCGCCACGTGGTC
A CGGTGCACCAGCCCCTTAAGGGCGGTGCACCAG
A

A
\ TFEB binding element

Figure 6. Synthesis of TFEB decoy oligodeoxynucleotide (ODN). The design of ring-type TFEB
decoy ODN s including GCCACGTGGTC (underlined), which is the consensus sequence for the
TFEB-binding element.

Table 1. Sequences of the ODNs used in this study. The target site of the synthesized TFEB decoy
ODN sequence is underlined.

Decoy Sequence

Scr 5'-GAATTCAATTCAGGGTACGGCAAAAAATTGCCGTACCCTGAATT-3'
TFEB 5'-GAATTCCCGCCACGTGGTCAAAAGACCACGTGGCGGGAA
TTCCCCGACCACGTGGC AAAAGCCACGTGGTCGGG-3'

TFEB, transcription factor EB; Scr, scrambled; ODNS, oligonucleotides.

4.2. Animal Model

Male C57BL/6N mice (6 weeks old, 2022 g; Samtako, Korea) were housed individu-
ally in humid cages and maintained at a set temperature, with a 12 h light-dark cycle. One
week after acclimatization, a total of 35 mice were randomly divided into five groups, with
5 mice per group. The first group was the normal control (NC) group, and the second group
was injected with TFEB decoy ODNs (TFEB group). The third group underwent UUO
surgery (UUO group). The fourth group included mice that underwent UUO surgery and
were injected with Scr ODNs (Scr group). The fifth group comprised mice that underwent
UUO surgery and were injected with TFEB decoy ODNs (UUO + TFEB group).

For the UUO surgery, each mouse was anesthetized, its flank was incised, and the left
ureter was isolated and ligated with a 5-0 silk suture at both proximal and distal locations.
The TFEB ODNSs (10 pg/pL) and Scr ODNs (10 ug/uL) were injected three times into
the tail veins 2 days before ureteral ligation, and 2 and 5 days after UUO. The ODNs
were transferred via tail vein injection, using an in vivo gene-delivery system (Mirus Bio,
Madison, WI, USA). Seven days after UUO, both kidneys of each mouse were harvested
and prepared for the study as described below. The animal protocols were approved by the
Institutional Review Board of the Catholic University of Daegu, Korea (EXP-IRB number
and protocol code: DCIAFCR-210503-02-Y, approval date: 3 May 2021).

4.3. Histological Analysis

All harvested kidney specimens were fixed in a 10% formalin solution for 24 h at room
temperature. The fixed tissues were dehydrated with ethanol, removed with xylene, and
embedded in paraffin. Paraffin-embedded tissues were cut into 4 um sections and the
sections were stained with hematoxylin and eosin (H&E) and Masson’s trichrome stains
according to standard protocols. All the slides were inspected with the scanned images
using a Pannoramic® MIDI slide scanner (3DHISTECH Ltd., Budapest, Hungary).

4.4. Immunofluorescence Staining

The paraffin-embedded kidney tissue sections were placed in a blocking serum (5%
bovine serum albumin (BSA) in phosphate-buffered saline) for 1 h at room temperature.
Tissue sections were incubated with anti-TFEB (1:200 dilution; H00007942-M01, Novus
Biologicals, Littleton, CO, USA) for 2 h at room temperature. Goat anti-mouse secondary
antibody was conjugated to Alexa Fluor 488 (Invitrogen, Waltham, MA, USA). Tissue
sections were stained with the nucleic acid stain Hoechst 33342. The slides were mounted
using a mounting medium (DAKO, Agilent, Santa Clara, CA, USA). The stained slides
were examined under a confocal fluorescence microscope (Nikon, Tokyo, Japan).
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4.5. Immunohistochemical (IHC) Staining

Paraffin-embedded tissue sections of 4-um thicknesses were deparaffinized with
xylene, dehydrated to gradually decreasing concentrations of ethanol, and incubated with
3% hydrogen peroxidase in methanol for 10 min to block endogenous peroxidase activity.
The tissue sections were immersed in a 10 mM sodium citrate buffer (pH 6.0) for 5 min
at 95 °C. The last step was repeated with a 10 mM sodium citrate solution (pH 6.0). The
sections were kept in the same solution while cooling for 20 min, after which they were
rinsed in PBS. The sections were then treated with a primary antibody (1:100 dilution)
for 1 h at 37 °C. The following primary antibodies were used: anti-neutrophil gelatinase-
associated lipocalin (NGAL, 1:500 dilution; Santa Cruz Biotechnology, Dallas, TX, USA),
anti-kidney injury molecule-1 (Kim-1, formerly called Tim-1, 1:3000 dilution; Abcam,
Cambridge, UK), microtubule-associated protein light chain 3 (LC3)A /B (1:300 dilution;
Cell Signaling Technology, Inc., Danvers, MA, USA), and Beclinl (1:600 dilution; Cell
Signaling Technology). The signal was visualized using an Envision System (DAKO,
Agilent) for 30 min at 37 °C. 3,3/-Diaminobenzidine tetrahydrochloride (DAB) was used
as the coloring reagent, and hematoxylin was used as the counter-stain. The slides were
examined using a slide scanner (Pannoramic MIDI) and analyzed using iSolution DT
software (IMTechnology, Vancouver, BC, Canada).

4.6. Western Blot Analysis

Kidney protein samples were extracted using lysis buffer (CelLytic™ MT, Sigma-Aldrich,
St Louis, MI, USA) and centrifuged at 13,000 rpm, at 4 °C, for 10 min after incubation on
ice for 30 min. The supernatant was collected and the protein concentration was measured
using a Bio-Rad Bradford kit (Bio-Rad Laboratories, Hercules, CA, USA) at 595 nm using a
spectrophotometer. The samples were boiled for 10 min, and equal volumes were loaded
on precast gradient polyacrylamide gels (Bolt™ 4-12% Bis-Tris Plus Gels; Thermo Fisher
Scientific, Waltham, MA, USA) before being transferred to a nitrocellulose membrane (GE
Healthcare, Chicago, IL, USA). The membrane was blocked for 2 h at room temperature
in 5% BSA and incubated with primary antibodies (1:1000) overnight, at 4 °C. Horseradish
peroxidase-conjugated secondary antibodies (1:1000 dilution) were used in this study. The sig-
nal intensity was detected using an image analyzer (ChemiDoc™XRS+, Bio-Rad Laboratories)
and quantified using the Image Lab software (Bio-Rad Laboratories). The primary antibodies
used in this study were: anti-LC3B, anti-Beclin1, and anti-« tubulin (Cell Signaling Technol-
ogy, Inc.); anti-fibronectin, anti-TNF-«, anti-Kim-1, and anti-collagen I (Abcam); anti-IL-1f3,
anti-HIF-1«, and anti-NGAL (Santa Cruz Biotechnology Inc., USA); anti-TFEB (Novus Bio,
Littleton, CO, USA).

4.7. Statistical Analysis

All data are presented as mean =+ standard error. Statistical significance was deter-
mined via one-way ANOVA with Turkey’s multiple comparison test using GraphPad Prism
5.0 (GraphPad Software, Inc., San Diego, CA, USA). Turkey’s multiple tests were conducted
only when F achieved p < 0.05 and when there was no significant variance inhomogeneity.
Statistical significance was set as p < 0.05.
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