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Could ALDH2*2 be the reason for low incidence and mortality of 
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ABSTRACT
It is curious that East Asian women have a low incidence and mortality of ovarian 

cancer in various epidemiological studies. Although different explanations were given, 
they appear unsubstantial. We notice that East Asian population usually are inactive 
aldehyde dehydrogenase 2 mutation (ALDH2*2) carriers, and ALDH plays an important 
role in the resistance of ovarian cancer to chemotherapeutics, especially in ovarian 
cancer stem cells. Therefore, we hypothesize whether ALDH2 mutation is the major 
reason for low incidence and mortality of ovarian cancer in East Asian women, and 
use the evidence from literature, transcriptomic data with average 5-year overall 
survival to confirm our hypothesis.

INTRODUCTION

Ovarian cancer is the seventh most common cancer 
in women and is the eighth most frequent cause of cancer 
death among women [1]. The occurrence of ovarian 
cancer has been related to many factors, for example, age 
of menarche [2, 3], short or irregular cycles [2–6], age 
of menopause [7, 8], age of the first birth [2, 3, 9, 10], 
age of last pregnancy [7, 10, 11], the number of children 
[2, 3, 7, 10, 11], period of breastfeeding [12–16], oral 
contraceptives [17–21], intake of phytochemicals [22], 
genes BRCA1 or BRCA2 [23], etc.

As many diseases show clear patterns in their 
geographic and race distributions, ovarian cancer also has 
preference in these regards, for example, the women from 
East Asia have a very low incidence rate and the lowest 
mortality rate [1, 24]. Death due to ovarian cancer is more 
common in North America and Europe than in Africa 
and Asia [1]. High rates of epithelial ovarian cancer are 
reported in industrialized nations with the exception of 
Japan [24], which may be due to diet in those countries.

Ovarian cancer and its stem cell

As ovarian cancer is a high death-to-incidence 
disease, the role of cancer stem cells in ovarian cancer 
cannot be ignored because cancer stem cells are frequently 

resistant to chemotherapeutic and radiation treatments 
[25]. For example, drug resistance is due to the fact that 
specific therapies enrich cancer stem cells in residual 
pancreatic cancer treated with gemcitabine [26], colorectal 
cancer treated with cyclophosphamide [27], hepatocellular 
carcinoma treated with doxorubicin and fluorouracil [28] 
and lung cancer treated with cisplatin, doxorubicin, and 
methotrexate [29].

Ovarian cancer has a great degree of heterogeneity 
because it may arise from germ cell, stromal, or epithelial 
compartments [24]. Similarly, ovarian cancer is the best 
example of intra-tumor heterogeneity of cancer stem cell 
[30, 31]. It was hypothesized that ovarian cancer is driven 
and sustained by cancer stem cell as shown by CD44+/
CD24- [32, 33], CD117 and CD133 [34, 35], especially 
ALDH1A1 [36–38]. Indeed, ALDH+/CD133+ ovarian 
cancer primary cells were defined as the top of hierarchical 
structure in ovarian cancer and as stem cell markers. This 
combination is a more multipotent phenotype than others 
including ALDH-/CD133+ [39]. Furthermore, it was 
reported that ALDH1 is better than CD133 in terms of 
identification of primary ovarian carcinoma-derived cells, 
which express stemness genes and are capable of self-
renewal and tumor initiation [40].

As a marker of stem cells in both normal tissues 
and cancers [41], ALDH1 plays an extremely important 
role in ovarian cancer stem cells [25, 42] because 
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studies show that ALDH1 activity is directly related 
to a subpopulation of ovarian cancer cells with cancer 
stem cell-like properties [36, 37, 39, 43–45]. Of ALDH1 
isozymes (ALDH1A1, ALDH1A2 and ALDH1A3), 
expression of ALDH1A1 is prominent in cancer stem 
cell [42], for instance, in human breast cancer cell lines 
[46]. The role of ALDH1A1 in ovarian cancer stem cells, 
although it is not fully clear, is not far from its nominal 
role, i.e. its detoxifying role in terms of preventing the 
accumulation of reactive oxygen species and of reactive 
aldehydes. Additional role of ALDH1A1 is its regulatory 
function on ATP-binding cassette (ABC) drug transporters, 
which in turn leads to the resistance of ovarian cancer to 
chemotherapeutics [47].

It was found that ovarian cancer patients, who have 
high levels of type I receptor tyrosine kinase-like orphan 
receptor (ROR1), have stem cell-like gene-expression 
signatures, and their relapse rate and median survival are 
higher and shorter than other patients. The importance 
is that ROR1-positive (ROR1+) cells also expressed 
ALDH1 [48]. In ovarian cancer stem cells, ALDH1 have 
relatively high enzymatic activity [38, 49, 50], which no 
doubt intensifies detoxification of intracellular aldehydes 
as well as cytotoxic drugs [41, 51]. Accordingly, ALDH1 
offers resistance to chemotherapeutics and radiation 
therapy [45]. Such role was confirmed by the finding that 
the knockdown of ALDH1A1 gene in ovarian cancer cell 
lines can restore the ovarian cancer cells’ sensitivity to 
chemotherapy in vitro [47] and xenograft models in mouse 
[38]. Therefore, the role of ALDH1 in ovarian cancer stem 
cells is far beyond the detoxification.

Regulation of ALDH1A1 in ovarian cancer stem 
cells is suggested at the transcriptional level through Wnt/
β-catenin pathway [52]. Knockdown of ALDH1A1 in 
ovarian cancer cell line A2780 decreases regulators KLF4 
and p21, which are the cell cycle checkpoints, and leads to 
an enhanced cell proliferation. This is the anti-proliferative 
role of ALDH1A1 because actively proliferating cells are 
more subject to cytotoxic drugs and so loss of ALDH1A1 
contributes to the sensitization of ovarian carcinoma 
cells to chemotherapy [53] although a study showed 
the difference due to interplay between ALDH1A1 and 
the stemness-associated gene SOX2 [40]. Also, loss 
of ALDH1A1 triggered DNA damage suggesting that 
ALDH1A1 plays a genome-protecting role in ovarian 
cancer stem cells [53]. As a result, it is suggested that 
ALDH1A1 could be potential therapeutic target because 
a small-molecule ALDH1A1 inhibitor abolished sphere 
formation in ovarian cancer [52]. 

ALDH2

Apart from research in ALDH1 (ALDH1A1) in 
cancer stem cells, in fact, research interests in ALDH have 
been greatly increased recently [54], especially, ALDH2 
[55], because ALDH2 is the most efficient enzyme for 

the metabolism of ethanol-derived acetaldehyde with 
the lowest Km [56]. ALDH has three different classes 
in mammals: class 1 (low Km, cytosolic), class 2 (low 
Km, mitochondrial), and class 3 (high Km, such as those 
expressed in tumors, stomach, and cornea). In all three 
classes, constitutive and inducible forms exist. ALDH1 
and ALDH2 are the most important enzymes for aldehyde 
oxidation, and both are tetrameric enzymes composed of 
54 kDa subunits. 

The enzymatic reaction catalyzed by ALDH seems 
to be simple in humans, i.e. alcohol dehydrogenase 
(ADH) catalyzes ingested ethanol to acetaldehyde, and 
ALDH, mainly mitochondrial enzyme ALDH2, catalyzes 
acetaldehyde into acetate. Therefore, a single point 
mutation in ALDH2, termed ALDH2*2, wherein a lysine 
residue replaces a glutamate in the active site at position 
487 of ALDH2 [57], causes facial flushing, headaches, 
nausea, dizziness, and cardiac palpitations in humans after 
alcohol consumption [58–61] because aldehydes cannot 
be fully detoxified [62]. Homozygous individuals with the 
mutant allele have almost no ALDH2 activity, and those 
heterozygous for the mutation have reduced activity. Thus, 
the mutation is partially dominant.

What is less known is that ALDH2 metabolizes 
numerous short-chain aliphatic aldehydes, aromatic and 
polycyclic aldehydes [63], environmental aldehydes such 
as acrolein in tobacco smoke and in car exhaust, and 
particularly endogenous aldehydic products from lipid 
peroxidation under oxidative stress, such as 4-hydroxy-2-
nonenal (4-HNE) and malondialdehyde (MDA) [64, 65].

Consequently, many diseases and health problems 
can be related to ALDH2 mutation, whose carriers 
were associated to myocardial infarction [66], impaired 
myocardial function in rodents and humans [65, 67, 
68], hypertension [69], blood pressure variation in East 
Asians [70], non-insulin-dependent diabetes mellitus due 
to the maternal ALDH2 [71, 72], a higher incidence of 
Alzheimer’s disease in Asian patients with the inactivating 
ALDH2*2 mutation [73–75], increase of esophageal cancer 
risk no matter of alcoholic beverage drinkers or not [76].

Intriguingly, the ALDH2*2 mutation exists mainly 
in 560 million East Asians [61, 77, 78] rather than 
the rest parts of the world [79]. This is because most 
Caucasians have both active ALDH1 and ADLH2, while 
approximately 50% of East Asians have active ALDH1 
but not active ALDH2 due to its mutation. Therefore, 
flushing symptom is more popular for East Asians than for 
Caucasians, and the increased exposure to acetaldehyde 
in individual may be more susceptible to many types of 
cancer [55]. Many other studies from Japan, Taiwan, and 
China have overwhelmingly confirmed the significant 
association between ALDH2 enzyme deficiency and upper 
aerodigestive track (oropharyngolaryngeal, esophageal, 
stomach, colon and lung) cancer risk [80–86].

In broader sense, high ALDH expression is 
associated with a poor prognosis in acute myeloid 
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leukaemia [87, 88], breast cancer [46, 89–91], early-stage 
lung cancer [92], head and neck squamous cell carcinoma 
[93], pancreas cancer [94], and prostate cancer [95]. 
Although ALDH2*2 mutation is associated with various 
diseases [55], there are exceptions, for example, liver 
cancer [96], Parkinson’s disease [97], and stroke [98, 99].

To go further, one can find the difference between 
male and female ALDH2*2 carriers with respect to 
different diseases. Chinese male ALDH2*2 carriers 
have a significantly higher incidence of acute coronary 
syndrome than noncarriers [100]. Also it demonstrated 
that the ALDH2*2 genotype is a risk factor for myocardial 
infarction in Japanese men [101]. On the other hand, 
ALDH2*2 genotype seemed to be a risk factor for non-
insulin-dependent diabetes mellitus in women, but not 
in men [102]. Premenopausal females have a lower risk 
for cardiovascular disease, because female hearts have 
increased phosphorylation and activity of ALDH2 in 
ischemia and reperfusion injury, so ALDH2 activator is 
more effective in males than in females, and inhibition 
blocks the phosphorylation of ALDH2 in females, but 
had no effect in males [103]. A study including 2,200-plus 
Japanese between 40 and 70 years showed a clear higher 
level of serum lipid peroxides in female ALDH2*2 carriers 
after exclusion of alcohol drinking behavior [104].

If this ALDH2*2 mutation is considered so harmful 
[55], why it has been so popular in East Asia existing for 
2000–3000 years [105]. What is the advantage in evolution 
to keep this mutation although unanswered hypotheses 
have been given [106, 107] ? In the past, ALDH2 mutation 
was considered as benign because it is a limiting factor 
for over drinking of alcoholic beverage [61, 108–110]. 
Another piece of evidence that shows the positive aspect 
of ALDH2 with clear difference between males and 
females is the ALDH2*2 genotype was associated with 
a longer life for male Koreans [111]. In addition, there 
is difference in ALDS2*2 carriers with certain disease in 
East Asia with respect to locality, for example, the number 
of Fanconi anemia patients with ALDH2*2 in Japan and 
Korea [112, 113] is far higher than in China or Taiwan, 
where the percentage of ALDH2*2 carriers is higher i.e., 
> 40% in Taiwan.

Over here, comparison between East Asian women 
with East Asian men is to indicate that ALDH2 plays 
different roles in East Asian women and men with respect 
to different diseases, so we could not simply say ALDH2 
bad or good. On the other hand, one may wonder why we 
do not refer studies on East Asian women with Caucasian 
women. Actually, our theme begins to mention that East 
Asian women have a low incidence and mortality of 
ovarian cancers, which is the comparison between East 
Asian women with Caucasian women as well as women 
from the rest parts of world. Although a huge amount 
studies have been done to compare East Asian women 
with Caucasian women with respect to various diseases, 
there is no study conducted on ovarian cancer with respect 

to ALDH2. This is why we cannot conduct a meta-analysis 
to combine such studies from all the centers, whereas we 
can only propose a deduced hypothesis. Furthermore, 
one may also wonder who will conduct such a study to 
compare East Asian women with Caucasian women on 
ALDH2, simply because East Asian women generally do 
not have ALDH2.

Very interestingly and curiously, the relationship 
between ALDH2 and ovarian cancer has drawn little 
attention. Indeed, in transgenic mouse, the ALDH2*2 
mutant subunits overexpressed particularly notably in 
cardiac and skeletal muscles [114] rather than ovary. 
Alcohol consumption does not appear to be related to 
ovarian cancer [115].

Taken all the references together, it is highly likely 
that the very low incidence rate and the lowest mortality 
rate of ovarian cancer in East Asian women is mainly due 
to the fact that many East Asian women are ALDH2*2 
carriers. Therefore the ovarian stem cancer cells in East 
Asian women are more susceptible to environmental 
and endogenous aldehydic products at early stage of 
ovarian cancer and to chemotherapy at later stage of 
ovarian cancer, and these “toxic” substances could kill 
cancer stem cells readily. These are reasonable because 
ALDH cannot actively detoxify these substances in East 
Asian women who carry ALDH2*2. Indeed, although 
4-HNE is capable to covalently bind to DNA as an 
important factor of carcinogenesis, it is also cytotoxic for 
cancer cells and can modulate their growth [116]. Thus 
ALDH1A1 inhibitor [41, 52] and eradication of ALDH 
high expression cells [117–121] were advocated although 
ALDH2 was not mention. From laboratory viewpoint, 
the determination of ALDH1A1 activity in live cells and 
of isolating ALDH1-positive cells with a fluorescence-
based assay [122] is perhaps easier than determination 
of ALDH2, which is located in mitochondria although it 
is more active than ALDH1. Very strictly speaking, the 
study should be conducted in such a way that includes 
only East Asian women with ALDH2*2 versus ALDH2 
with respect to their incidence and mortality of ovarian 
cancer. Therefore, we do not have direct experimental 
evidence to connect ALDH2 with ovarian cancer, but we 
can only deduce such a relationship using various pieces 
of knowledge in literature, which is the reason of why 
we propose our hypothesis and hope such hypothesis can 
stimulate more discussions and experiments. Fortunately, 
the transcriptomic data can provide experimental evidence 
for ALDH2 activity in cancer patients, which provide 
additional support for our literature evidence in the next 
section.

Another piece of evidence to support ALDH2’s role 
in ovarian cancer is that the risk of ovarian cancer goes 
up with age, and ALDH2*2 homozygous genotype was 
significantly reduced in females in the 60–70s age group 
versus 40–50s group in a study with more than 2,200 
Japanese [104].
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One may argue that our guess based on several 
paragraphs, however Newton’s guess on gravity was only 
based on the fact that an apple falls from tree. Therefore, 
the importance of guess is not dependent on how many 
paragraphs but on deduction. Moreover our guess is 
supported by fully referenced literature, which shows 
the ALDH’s role in cancer stem cells, as a component of 
ALDH, ALDH2 should play the same role as ALDH does 
although it was not on clinical routine screening now.

Evidence from cancer stem cells

Ideally the best way to test our reasoning and 
rationale is to compare the ALDH2 activity in ovarian 
cancer stem cells with the killing rate of chemotherapy 
for ovarian cancer stem cells or compare the ALDH2 
activity in ovarian stem cells with the ovarian cancer 
incidence. Currently, this could be impossible. To take 
a step back, we analyze all the available transcriptomic 
data (GSE19713 [123], GSE23806 [124–126], GSE28799 
[127], GSE35603 [128], GSE67966) of different cancer 
stem cells in Gene Expression Omnibus (GEO) [129, 
130] using platform GPL570 [131] with ALDH1A1 and 
ALDH2 expression against 5-year overall survival data in 
different cancers documented in literature (Supplementary 
Table 1), if we consider ALDH1A1 and ALDH2 
expression somewhat similar to their activities.

Figure 1 shows this analysis. In this figure, samples 
of eight types of cancers are further divided into parental 

tumor cell (PTC) and tumor stem-like cell (TSC), so 
there are 16 labels along x-axis. ALDH1A1 and ALDH2 
expressions are presented as circles and triangles. As can 
be seen, the expression of ALDH1A1 and ALDH2 vary in 
different cancers, as well as between ovarian cancer PTC 
and TSC. ALDH expressions, especially the expression of 
ALDH1A1, are low in atypical teratoid/rhabdoid tumour 
and cancers from head and neck, breast, and prostate, but 
high in the rest of cancers. Moreover, the average 5-year 
overall survival (OS) is presented in this figure as square 
symbol for 8 different cancers because OS does not 
distinguish PTC from TSC.

A general trend can be found in Figure 1, that is, OS 
is higher when the expressions of ALDH1A1 and ALDH2 
are lower, whereas OS is lower when the expressions of 
ALDH1A1 and ALDH2 are higher. This feature is consistent 
with previous studies [46, 87, 88, 89–95] and can suggest 
the detoxification of ALDH on chemotherapy. Although 
prostate cancer has high ALDH2 expression with high 
OS, its ALDH1A1 expression is indeed very low. Because 
ALDH1A1 has an anti-proliferative role, a low activity of 
ALDH1A1 can promote cell proliferation and increase 
the sensitivity of cancer cells to chemotherapy [53]. Yet, 
great caution should be paid to OS because we could not 
stratify OS according to the treatments of chemotherapy, 
radiotherapy and surgery. Also the baseline of OS is unknown 
so OS in ovarian cancer apparently is relatively high.

Comparing the expression between ALDH1A1 and 
ALDH2, stronger ALDH2 expression can be found in the 

Figure 1: ALDH1A1 and ALDH2 expression of parental tumor cells and tumor stem-like cells, and 5-year overall 
survival in different cancers. ALDH1A1 and ALDH2 are presented by standardized (mean = 0, SD = 1) log base 2 expression values 
at the left axis. The data were calculated from the Series GSE19713, GSE23806, GSE28799, GSE35603 and GSE67966, and their sample 
numbers are listed above the x-axis. Average 5-year overall survival (OS) data are obtained from the literatures listed in Supplementary 
Table 1 and presented at the right axis. PTC: parental tumor cell, TSC: tumor stem-like cell, AT/RT: Atypical teratoid/rhabdoid tumour, 
GBM: glioblastoma, H & N: head and neck.
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tumor stem-like cells of atypical teratoid/rhabdoid tumour 
(TSC-AT/RT), and in both parental and stem-like tumor 
cells of breast cancer, prostate cancer, ovarian cancer 
and glioblastoma (GBM). This observation is in good 
agreement with the knowledge that ALDH2 plays a more 
important role on detoxification [56]. It is notable to see 
that ALDH2 expression is at very high level in stem-like 
tumor cells of ovarian cancer, indicating that a high ALDH2 
activity of stem cells renders significant influence on the 
morbidity and mortality of ovarian cancer. Therefore the 
population who lack ALDH2 would be more sensitive to 
chemotherapy and internal toxic substances such as 4-HNE. 
Along this thought of line, we would have expected to see a 
high OS in East Asian women with ovarian cancer because 
their ALDH2 activity would be zero in ALDH2 mutation 
carriers. Therefore, our hypothesis is supported by all the 
available transcriptomic data on ovarian cancer stem cells.

Final remark

In this review, we use the evidence from literature, 
transcriptomic data with average 5-year overall survival 
to suggest that the key factor that determines the low 
incidence and mortality of ovarian cancer in East Asian 
women is the ALDH2 mutation.

Interestingly, East Asia with its ALDH2*2 mutation 
seems to be the most economically active place in the 
world for quite a considerable periods in human history. 
This leads to the question of whether ALDH2*2 mutation 
is helpful to intelligent development.
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