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Abstract

The interferon (IFN) system represents the first line of defense against a wide range of

viruses. Virus infection rapidly triggers the transcriptional induction of IFN-β and IFN Stimu-

lated Genes (ISGs), whose protein products act as viral restriction factors by interfering with

specific stages of virus life cycle, such as entry, transcription, translation, genome replica-

tion, assembly and egress. Here, we report a new mode of action of an ISG, IFN-induced

TDRD7 (tudor domain containing 7) inhibited paramyxovirus replication by inhibiting autop-

hagy. TDRD7 was identified as an antiviral gene by a high throughput screen of an ISG

shRNA library for blocking IFN’s protective effect against Sendai virus (SeV) replication.

The antiviral activity of TDRD7 against SeV, human parainfluenza virus 3 and respiratory

syncytial virus was confirmed by its genetic ablation or ectopic expression in several types

of mouse and human cells. TDRD7’s antiviral action was mediated by its ability to inhibit

autophagy, a cellular catabolic process which was robustly induced by SeV infection and

required for its replication. Mechanistic investigation revealed that TDRD7 interfered with

the activation of AMP-dependent kinase (AMPK), an enzyme required for initiating autop-

hagy. AMPK activity was required for efficient replication of several paramyxoviruses, as

demonstrated by its genetic ablation or inhibition of its activity by TDRD7 or chemical inhibi-

tors. Therefore, our study has identified a new antiviral ISG with a new mode of action.

Author summary

The antiviral functions of interferons (IFNs) are mediated by the IFN-induced proteins,

encoded by the IFN Stimulated Genes (ISGs). Because ISGs are virus-specific, we per-

formed a high throughput genetic screen to identify novel antiviral ISGs against Sendai

virus (SeV), a respirovirus of the Paramyxoviridae family. Our screen isolated a small
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subset of anti-SeV ISGs, among which we focused on a novel ISG, Tudor domain contain-

ing 7 (TDRD7). The antiviral activity of TDRD7 was confirmed by genetic ablation of the

endogenous, and the ectopic expression of the exogenous, TDRD7 in human and mouse

cell types. Investigation of the mechanism of antiviral action revealed that TDRD7 inhib-

ited ‘virus-induced autophagy’, which was required for the replication of SeV. Autophagy,

a cellular catabolic process, was robustly induced by SeV infection, and was inhibited by

TDRD7. TDRD7 interfered with the ‘induction’ step of autophagy by inhibiting the acti-

vation of AMP-dependent Kinase (AMPK). AMPK is a multifunctional metabolic kinase,

which was activated by SeV infection, and its activity was required for virus replication.

Genetic ablation and inhibition of AMPK activity by physiological (TDRD7) or chemical

(Compound C) inhibitors strongly attenuated SeV replication. The anti-AMPK activity of

TDRD7 was capable of inhibiting other members of Paramyxoviridae family, human para-

influenza virus type 3 and respiratory syncytial virus. Therefore, our study uncovered a

new antiviral mechanism of IFN by inhibiting the activation of autophagy-inducing

kinase AMPK.

Introduction

Interferon (IFN) system provides the first line of immune defense against viral infections in

vertebrates [1–3]. It is designed to inhibit viral infection by blocking virus replication and

eliminating the virus-infected cells. The Pattern Recognition Receptors (PRRs), e.g. Toll Like

Receptors (TLRs), RIG-I Like Receptors (RLRs) and cyclic AMP-GMP synthase (cGAS)/stim-

ulator of IFN genes (STING), are located in distinct cellular compartments, to sense specific

viral components, such as the viral nucleic acids [4–9]. Upon ligand stimulation, the PRRs trig-

ger rapid downstream signaling pathways via respective adaptor proteins to activate the tran-

scription factors, e.g. Interferon Regulatory Factors (IRFs) and Nuclear Factor-κB (NF-κB).

The co-operative action of these transcription factors triggers the synthesis of Type-I interfer-

ons e.g. IFN-β, an extensively studied antiviral cytokine. After synthesis in the infected cells,

IFN-β is secreted and acts on the infected as well as yet uninfected cells via Janus Kinase

(JAK)/Signal Transducer of Transcription (STAT) signaling pathways to trigger the synthesis

of a number of antiviral genes.

All biological effects of IFN are executed by the induced proteins, encoded by Interferon

Stimulated Genes (ISGs), which are either not present or expressed at a low level in untreated

cells, but can be transcriptionally upregulated by IFN-action [3, 10, 11]. Most ISGs can also be

induced directly in the virus-infected cells without IFN-action [12]. The ISGs perform all phys-

iological and pathological, including viral and non-viral, functions of IFNs. The ISGs function

singly or in combination with other ISGs to inhibit virus replication. The antiviral activities

of only a handful of these ISGs have so far been identified. Among them, Protein Kinase R

(PKR), 2’5’ Oligoadenylate Synthetase (OAS), Mx1, IFN-induced protein with tetratricopep-

tide repeats (IFIT), tripartite motif (TRIM) family are most well-known for their antiviral

activities against a wide spectrum of viruses in vitro and in vivo [13–20]. PKR, upon binding to

viral double-stranded RNA (dsRNA), is activated and phosphorylates eukaryotic initiation fac-

tor (eIF2α), leading to the translational inhibition of cellular and viral mRNAs [21]. Mx1 is a

broad antiviral ISG that acts at an early stage of virus replication, by sequestering the viral

components from the desired destination within the cells [18]. OAS recognizes dsRNA and

produces 2’,5’-oligoadenylates, which activate the latent ribonuclease, RNase L that degrades

both cellular and viral RNAs [14]. The IFIT family of ISGs recognizes viral mRNAs and
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thereby inhibiting their translation [17, 19]. IFIT proteins also directly modulate cellular trans-

lation machinery by inhibiting eIF3 activities [22]. The TRIM family of proteins, which pos-

sesses E3 ubiquitin ligase activity, has diverse cellular functions [20]. In addition to directly

interfering with virus life cycle, the ISGs often exert their antiviral actions by amplifying the

cellular IFN responses [10]. Many of the ISGs also serve as PRRs or signaling intermediates,

which are expressed at low levels and are transcriptionally induced by IFN signaling.

IFN can inhibit many stages of virus replication: viral entry, transcription, replication,

translation, assembly or egress. IFN induced transmembrane proteins (IFITM) mediate antivi-

ral resistance to a wide range of viruses [23]. IFITM proteins target the attachment and uncoat-

ing, two very early stages of viral entry, of several enveloped viruses [24]. Viperin inhibits

Hepatitis C Virus (HCV) replication by localizing to the cellular lipid droplets, the site of viral

replication [25]. Viperin also inhibits the budding and release of Influenza A virus by disrupt-

ing lipid rafts [26]. Tetherin (BST2) prevents the release of human immunodeficiency virus

(HIV-1) by tethering HIV-1 virion particles to the cell surface [27]. In addition to targeting

individual steps, multiple ISGs may target different steps of virus replication and elicit a large

cumulative antiviral effect [3]. A single ISG can also function in cell type-specific manner to

exhibit antiviral defense against multiple viruses. Ifit2 provides protection against a wide range

of viruses in specific cells and tissues [17].

Viruses take advantage of cellular machineries or their components to achieve productive

replication in the infected cells. Autophagy is an evolutionary conserved cellular degradation

pathway, which has numerous physiological functions, including maintenance of cellular

homeostasis and host defense [28–30]. Autophagy is induced by various cellular stresses, such

as nutrient deprivation or microbial infection. Autophagy generates double-membranous

cytoplasmic structure, known as autophagosome, which fuses with the lysosome, leading to

the degradation of undesired cellular contents [31]. Adenosine monophosphate (AMP)-

dependent Kinase (AMPK) directly phosphorylates the critical Ser/Thr residues of Unc-51 like

autophagy activating kinase 1 (ULK1) to initiate the autophagy pathway [32]. Autophagy is

regulated by class III PI3 Kinase (PI3K III) and mammalian target of rapamycin (mTOR) [33,

34]. How autophagy regulates virus replication is not clear; however, many viruses utilize

autophagy or its components to promote their replication. Autophagy induced by virus infec-

tion can have both pro- or anti-viral effects [35–37]. Hepatitis C Virus (HCV), Dengue virus

and Poliovirus use autophagosome membranes for their replication [38–40]. Human parain-

fluenza virus 3 (HPIV3) triggers autophagy in the infected cells and the viral P protein blocks

the degradation of autophagosome, to enhance the intracellular virus yield [41]. Measles virus

sequesters RIG-I within autophagosome, to evade the antiviral action of IFN [42]. In dendritic

cells, Respiratory Syncytial Virus (RSV) induces autophagy, which regulates the adaptive

immune responses [43]. How the IFN system regulates ‘virus-induced autophagy’ is unclear.

Paramyxoviruses are strong inducers of IFN and ISGs in the infected cells. To identify the

ISGs that can inhibit their replication, we performed a high throughput genetic screen of indi-

vidual ISGs for their ability to inhibit the replication of Sendai virus (SeV) (family: Paramyxo-
viridae, sub-family: Paramyxovirinae, genus: Respirovirus). Our screen identified a small

subset of antiviral ISGs, including Tudor domain containing 7 (TDRD7), which strongly

inhibited the replication of SeV in human and mouse cells. The TDRD family of proteins con-

tains multiple Tudor domains and have roles in cellular RNA metabolism. Tdrd7-/- mice show

defects in lens development and spermatogenesis, which are related to the deficiency in

Tdrd7-associated mRNAs [44, 45]. Our results demonstrate that TDRD7 inhibits the replica-

tion of not only SeV, but also other paramyxoviruses, in multiple cell types. In-depth mecha-

nistic studies revealed that the antiviral effect of TDRD7 is mediated by its ability to inhibit

‘virus-induced autophagy’, which is required for paramyxovirus replication.

Tdrd7 targets autophagy to inhibit virus replication
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Results

Identification of anti-SeV ISGs by a high throughput genetic screen

To identify the ISGs that block SeV replication, we set up an unbiased genetic screen using a

shRNA library against human ISGs (GIPZ lentiviral shRNAmir, Open Biosystems) in HeLa

cells. The library is a 96-well formatted commercial system, which packages lentiviruses encod-

ing individual ISG shRNA, a GFP reporter, and a puromycin selection cassette [46]. The GFP

expression allowed a flow cytometry-based screen, in which lentivirus-transduced cells were

tracked by GFP. The SeV-infected cells were stained with an antibody against the whole virion.

In each well of cells, all ISGs were induced by IFN-β-pretreatment but the expression of only

one of them was prevented by transduction of the cognate shRNA; the cells were then infected

with SeV and the degree of virus replication was measured. Reversal of IFN-mediated inhibi-

tion of virus replication in a specific well indicated that the corresponding ISG was responsible

for inhibiting SeV replication. We optimized the assay by knocking down the expression of

genes required for IFN signaling and, therefore, would exhibit a phenotype. In HeLa cells, the

knockdown of IRF9 enhanced the expression of viral protein (SeV C) in comparison to the NT

control (Fig 1A, lanes 1, 3, 5). Moreover, IRF9 knockdown cells reversed the IFN-β-mediated

inhibition of SeV C protein expression (Fig 1A, lanes 2, 4, 6). We used these cells to develop a

flow cytometry-based quantitative assay to measure SeV replication as percent of SeV-positive

cells within the GFP-expressing cell population (Fig 1B). The results indicate that knockdown

of IRF9 reversed the IFN-β-mediated inhibition of SeV replication (Fig 1B). We quantified the

GFP-expressing SeV-antigen positive cells (% infectivity) by flow cytometry (Fig 1C). IRF9

knockdown led to enhanced SeV replication (% infectivity) in both untreated and IFN-β-

treated cells (Fig 1D). We screened the shRNA library, which consists of 814 lentiviral con-

structs (multiple targets for each ISG) expressing shRNA against more than 300 human ISGs.

The shRNA library was lentivirally expressed in HeLa cells, using the strategy outlined in Fig

1E. A shRNA against IRF9 was used as an internal control to validate the effect of IFN-β (as in

Fig 1D) for each screening experiment. Percent infectivity was quantified for each shRNA (as

described in Fig 1C), and was used to calculate z-score for the individual shRNAs and normal-

ized to that of IRF9 (Fig 2A and S1 Table) [47]. A set of 25 primary shRNA hits were short-

listed on the basis of high z-scores (>1.9, Fig 2B), and used for secondary validation. The

primary hits consisted of both known, as well as some novel, antiviral ISGs. In order to further

validate these primary hits, stable HeLa cell lines expressing the individual ISG shRNAs were

generated. In the ISG shRNA-expressing cells, the reversal of IFN-β-mediated inhibition of

SeV C protein expression was measured. As a control, we used IRF9-specific shRNA express-

ing cells, which alleviated the IFN-β-mediated suppression of SeV C protein level (Fig 2C, left).

From the secondary validation assay, we narrowed down to a small subset of five ISGs, the

knockdown of which reversed IFN-β-mediated inhibition of SeV C protein expression (Fig 2C

and 2D). Importantly, individual knockdown of any of these five ISGs, elevated the level of

SeV replication in IFN-β-treated cells (S1 Fig).

TDRD7 is induced by SeV infection

Among the five anti-SeV ISGs identified by our screen, we focused on TDRD7 (in human and

Tdrd7 in mouse) because: (a) it is a cytosolic protein and, therefore, is a potential candidate to

inhibit paramyxoviruses, which replicate in the cytosol, (b) it has defined functional domains,

which may be required for its antiviral action, (c) it has no known functions as an ISG or a

viral restriction factor and (d) our previous microarray results indicated its robust transcrip-

tional induction by virus infection [48]. In HeLa cells, our screening system, TDRD7 was
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transcriptionally induced by IFN treatment (S2A Fig) and the stable knockdown of TDRD7

(S2A Fig) had no impact on the cell viability (S2B Fig). We further examined the inducibility

of Tdrd7 in various mouse cells. In RAW264.7 cells, Tdrd7 mRNA was induced, as expected,

by IFN-β; it was also induced by adding poly(I:C) to the medium to activate the TLR3 signaling

pathway or transfecting poly(I:C) to activate the RLR pathway (Fig 3A). SeV infection, which

activates the RLR pathway, induced Tdrd7 mRNA as well (Fig 3A). Similar induction by two

strains of SeV was observed in mouse primary bone marrow-derived macrophages (BMDMs)

and mouse embryonic fibroblasts (MEFs) (S2C–S2E Fig). The viral induction of Tdrd7 in

MEFs was triggered by IRF3-mediated induction of IFN, because it was not observed in Irf3-/-

or Stat1-/- cells (S2D and S2E Fig). Importantly, Tdrd7 mRNA was strongly induced in SeV-

infected mouse lungs (Fig 3B). These results clearly demonstrate that Tdrd7, an ISG, is

induced in virus-infected cells and tissues.

SeV replication is inhibited by Tdrd7

To investigate the antiviral action of TDRD7, we took two approaches: knockdown or knock-

out of the endogenous TDRD7 gene and ectopic expression of exogenous TDRD7 in multiple

Fig 1. Setting up of high throughput genetic screen of human ISG shRNA library to identify anti-SeV ISGs. (A) HeLa cells stably expressing shRNA against IRF9

or a non-targeting (NT) control were pre-treated with human IFN-β for 16 h, when the cells were infected with SeV (moi:10). SeV C protein expression was analyzed

by immunoblot at 16 hpi. (B) HeLa cells stably expressing shRNA against IRF9 or NT, were pre-treated with IFN-β for 16 h, when the cells were infected with SeV; 16

h later flow cytometric analyses were performed after immunostaining the cells with anti-SeV antibody. (C) A strategy to quantify percent SeV infectivity using flow

cytometric procedure, as described in (B). The numbers indicate each quadrant and their respective cell population. (D) Percent SeV infectivity in NT or IRF9

shRNA-expressing HeLa, infected with SeV in the absence or the presence of IFN-β pre-treatment. (E) Our strategy to screen the human ISG shRNA library to isolate

anti-SeV ISGs.

https://doi.org/10.1371/journal.ppat.1006877.g001
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human and mouse cell types. In our test cells, we examined the endogenous levels of TDRD7

and as expected, the protein expression of TDRD7 varied between various cell types (S2F Fig).

In mouse lung epithelial cells, LA4, the natural target cells of respiratory viruses, knockdown

of endogenous Tdrd7 mRNA by two independent shRNAs enhanced the expression of SeV C

protein (Fig 3C, S3A Fig). In human retinal epithelial cells, ARPE19, which express relatively

higher levels of endogenous TDRD7 compared to LA4, knockdown of TDRD7 (Fig 3D, lower

panel) elevated the expression of SeV C protein (Fig 3D). We confirmed these results in mouse

fibroblasts, L929, in which the knockdown of endogenous Tdrd7 (S3B Fig) also enhanced

SeV C protein expression (S3C Fig). Similar to HeLa, the stable knockdown of Tdrd7 in

L929 cells had no impact on the cell viability (S3D Fig). We further examined the antiviral

activity of Tdrd7 in non-transformed immortalized MEFs, in which Tdrd7 was transcription-

ally induced by IFN-treatment (S3E Fig) and its stable knockdown (S3E Fig) enhanced the

SeV C protein expression (S3F Fig). Using CRISPR/Cas9 system, we generated TDRD7 knock-

out (TDRD7-/-) human HT1080 cells (Fig 3E, lower panel and S3G Fig). SeV C protein ex-

pression was elevated in TDRD7-/- cells (Fig 3E, upper panel). In the reciprocal strategy, we

ectopically expressed TDRD7 (untagged or V5-tagged) in cells that express low levels of

Fig 2. Secondary validation of the primary screen results to identify the most effective anti-SeV ISGs. (A) The z-scores of all the ISG shRNAs based on their

anti-SeV activities; all z-scores were normalized to that of shIRF9. (B) The z-scores of the top 25 primary hits that were used for secondary validation. (C) HeLa cells,

stably expressing the shRNAs against specific ISGs (indicated above by the numbers, 1–25) were treated with IFN-β for 16 h, when the cells were infected with SeV

and analyzed for SeV C protein by immunoblot at 16 hpi. (D) The secondary validated anti-SeV ISGs, their z-scores and known functions.

https://doi.org/10.1371/journal.ppat.1006877.g002
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endogenous TDRD7, a scenario that mimics IFN-β-induced synthesis of ISGs. TDRD7 was

ectopically expressed in HEK293T cells and confocal analyses showed its cytoplasmic distribu-

tion in uninfected cells (S3H Fig). In these cells, TDRD7 strongly inhibited viral protein (SeV

C) (Fig 3F) and mRNA (SeV P mRNA, S3I Fig) expression. Similarly, ectopic expression of

Tdrd7 inhibited viral protein (SeV C) expression in mouse L929 (S3J Fig) and LA4 (S3K Fig)

cells. We investigated whether the TDRD7-mediated inhibition of viral mRNA and protein

leads to the reduction of infectious virion production. Indeed, the production of infectious

virus particles was inhibited by ectopic expression of Tdrd7 in L929 cells (Fig 3G). In subse-

quent experiments, we investigated the mechanism of anti-SeV action of Tdrd7.

SeV induces autophagy, which is required for its replication

Because the role of autophagy in SeV replication was not clear, we examined various stages of

the autophagy pathway (Fig 4A) in SeV-infected cells. In L929 cells, SeV infection triggered

robust induction of autophagy, which was analyzed by the degradation of p62 (Fig 4B, upper

panel) and the generation of LC3-II (Fig 4C), the indicators of two late stages of the autophagy

pathway. The induction of autophagy was correlated with the expression of viral protein (SeV

Fig 3. TDRD7 inhibits SeV replication in human and mouse cells. (A) QRT-PCR analyses of Tdrd7 induction by various treatments or SeV infection in mouse

macrophages (RAW264.7). Treatments: IFN-β: 1000 U/ml, SeV (moi:10), polyI:C+LF: poly(I:C) transfected with Lipofectamine 2000 (LF) or naked poly(I:C). (B)

QRT-PCR analyses of Tdrd7 mRNA levels in the lungs of mock-infected (NT, PBS-treated) or SeV (52 strain) infected mice after 2 days of infection. (C) LA4 cells

stably expressing two different Tdrd7 shRNAs (#1 and #2), were infected with SeV for the indicated time, when the SeV C protein levels were analyzed by

immunoblot. (D) ARPE19 cells stably expressing TDRD7-specific shRNA, were analyzed for SeV C protein expression after SeV infection. Lower panel shows the

TDRD7 expression by immunoblot. (E) HT1080 (Wt) or TDRD7 knockout (TDRD7-/-) cells were infected with SeV and analyzed for SeV C protein expression by

immunoblot (upper panel). TDRD7 protein expression is shown in the lower panel by immunoblot. (F) HEK293T cells, stably expressing V5.TDRD7 (lower panel),

were analyzed for SeV C expression (upper panel) by immunoblot after SeV infection. TDRD7 protein expression is shown in the lower panel by immunoblot. (G)

L929 cells stably expressing Tdrd7, were analyzed for infectious SeV production at the indicated time post SeV infection. NT, non-targeting, EV, empty vector, �
indicates p<0.05. The results presented here are representatives of at least three biological repeats.

https://doi.org/10.1371/journal.ppat.1006877.g003
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C, Fig 4B, middle panel). In another cell type (LA4), SeV infection similarly triggered autop-

hagy pathway, which was examined by LC3-II generation and p62 degradation (S4A Fig). The

molecular signatures of the early stages of autophagy, the dephosphorylation of Ser757 and

phosphorylation of Ser317 of ULK1, were also detected in SeV-infected cells (Fig 4D). These

results clearly indicate that SeV infection triggers different stages of the autophagy pathway in

multiple cell types. To investigate whether ‘virus-induced autophagy’ is required for SeV repli-

cation, we took pharmacological and genetic approaches. A chemical inhibitor of autophagy,

3-MA, inhibited, whereas an activator of autophagy, rapamycin, promoted SeV mRNA synthe-

sis (Fig 4E). Furthermore, chemical inhibitors of various stages of autophagy also significantly

suppressed the expression of SeV C protein (S4B Fig). Similarly, knockdown of ATG5 (Fig 4F,

lower panel), a key component of autophagy pathway, significantly reduced viral protein

expression in human cells (SeV C, Fig 4F). As expected, the SeV-induced autophagy, examined

by p62 degradation, was inhibited in these cells (Fig 4F, p62 levels). Collectively, our results

clearly indicate that SeV-induced autophagy pathway is required for its replication.

TDRD7 inhibits autophagy

The above results led to the hypothesis that TDRD7 might interfere with ‘virus-induced autop-

hagy’ to inhibit SeV replication. To test this, we examined various stages of SeV-induced

autophagy in cells, in which TDRD7 expression had been modulated either by ectopically

expressing exogenous TDRD7 or by ablating the endogenous TDRD7 levels. In L929 cells,

ectopic expression of Tdrd7 strongly inhibited the degradation of p62 (Fig 5A), and the accu-

mulation of LC3-II (Fig 5B). As expected, the knockdown of endogenous TDRD7 in ARPE19

Fig 4. SeV triggers various stages of autophagy to support virus replication. (A) Various stages and molecular markers of cellular autophagy. (B-D) L929 cells

were infected with SeV Cantell (moi: 10) for the indicated time, when the cell lysates were analyzed for p62, SeV C (B), LC3 (C), phospho ULK1 (Ser757 or Ser317)

(D) by immunoblot. (E) L929 cells were pre-treated with 3-MA (1 mM) or rapamycin (2 μM) and infected with SeV Cantell (moi:10); SeV P mRNA levels were

analyzed by qRT-PCR at the indicated time post infection. (F) HT1080 cells, stably expressing ATG5-specific shRNA, were infected with SeV for the indicated time,

when SeV C (upper panel) or p62 (middle panel) were analyzed by immunoblot. Lower panel shows the ATG5 levels in these cells by immunoblot. NT, non-
targeting, � indicates p<0.05. The results presented here are representatives of at least three biological repeats.

https://doi.org/10.1371/journal.ppat.1006877.g004
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cells, triggered increased accumulation of LC3-II (S4C Fig). Similar results were also obtained

in Tdrd7-ablated murine macrophages (RAW264.7) (S4D and S4E Fig). In these cells, Tdrd7

knockdown also elevated SeV C expression (S4E Fig, middle panel). We further investigated

whether the antiviral action of TDRD7 is mediated by direct inhibition of autophagy or its

ability to modulate IFN and ISG induction. The inhibition of autophagy pathway by knock-

down of ATG5 in TDRD7-/- cells suppressed SeV C protein expression (Fig 5C). As expected,

these cells restored the ability of IFN to inhibit SeV C expression (Fig 5C). Furthermore,

Tdrd7 knockdown cells did not exhibit any significant difference in induction of IFN by SeV

(S4F Fig) and ISG (Ifit1) by IFN (S4G Fig). These results demonstrated that the antiviral ISG,

TDRD7, inhibits ‘virus-induced autophagy’ to control SeV replication.

Because autophagy is required for normal cellular homeostasis, it is also induced in

response to many cellular stresses, other than virus infection. In the next series of experiments,

we examined whether TDRD7 could inhibit autophagy induced by nutrient deprivation (e.g.

serum starvation, SS and Hank’s Balanced Salt Solution, HBSS) or rapamycin, known activa-

tors of the autophagy pathway. As indicated by the LC3-II level, SS-induced autophagy was

inhibited by ectopic expression of TDRD7 in human HEK293T cells (Fig 5D). Similarly, in

mouse L929 cells, ectopic expression of Tdrd7 inhibited degradation of p62 (Fig 5E) and

enhancement of LC3-II levels (S5A Fig). Accumulated LC3-II produces cytoplasmic puncta,

which we analyzed by expressing a GFP-LC3 fusion protein in L929 cells. The cytoplasmic

puncta formation by LC3-II was significantly reduced in Tdrd7-expressing cells (Fig 5F). Simi-

larly, rapamycin-induced LC3-II formation in L929 cells was inhibited by Tdrd7 (Fig 5G). In

Tdrd7-knockdown RAW264.7 cells, rapamycin induced a faster degradation of p62 (S5B Fig)

and increased accumulation of LC3-II (S5C Fig). These results demonstrated that Tdrd7 can

inhibit autophagy, induced by both viral and non-viral agents, in various human and mouse

cell types.

Fig 5. TDRD7 inhibits autophagy induced by viral and non-viral stimuli, to control SeV replication. (A, B) L929 cells, stably expressing V5.Tdrd7, were infected

with SeV Cantell (moi:10), and analyzed for p62 (A) and LC3 (B) by immunoblot. LC3-II/Actin levels were quantified by Image J. (C) TDRD7-/- human cells expressing

ATG5-specific shRNA were left untreated or treated with hIFN-β for 16 h, when the cells were infected with SeV and SeV C protein expression was analyzed by

immunoblot. ATG5 protein expression is shown in lower panel by immunoblot. (D) HEK293T cells stably expressing V5.TDRD7 were serum-starved (SS) and LC3

levels were analyzed after 16 h by immunoblot. LC3-II/Actin ratio are indicated below the Actin panel. (E) L929 cells stably expressing V5.Tdrd7 were serum-starved

(SS) for the indicated time, when p62 levels were analyzed by immunoblot. (F) L929 cells stably expressing V5.Tdrd7 were transfected with GFP-LC3 and serum-starved

(SS) for 8 h, when the cells were fixed and analyzed by confocal microscopy. The cytoplasmic puncta structures are shown by arrows. (G) L929 cells stably expressing V5.

Tdrd7 were treated with Rapamycin (Rapa) for the indicated time, when LC3-II levels were analyzed by immunoblot. NT, non-targeting, EV, empty vector, � indicates
p<0.05. The results presented here are representatives of at least three biological repeats.

https://doi.org/10.1371/journal.ppat.1006877.g005
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TDRD7 inhibits an early stage of the autophagy pathway

Next, to identify the specific target of Tdrd7, we biochemically analyzed the four stages of the

autophagy pathway (Fig 4A); for this purpose we used SS of L929 cells to induce autophagy.

Because we already knew that the ‘fusion’ (p62 degradation) and the ‘elongation’ (LC3-II lev-

els) steps of the autophagy pathway were inhibited by Tdrd7, we focused our attention to the

further upstream pre-elongation steps of the autophagy pathway. As a readout of the ‘nucle-

ation’ step, we analyzed PI3 kinase III activity by direct measurement of PI(3)P produced in

virus-infected cells and by the generation of NADPH Oxidase (phox) [49, 50]. In SeV-infected

L929 cells, PI3K III was rapidly activated and its activity was inhibited by Tdrd7 expression

(Fig 6A, S5D Fig). We further expressed a GFP-conjugated p40 subunit of phox in L929 cells,

which produced puncta structures upon autophagy stimulation [49]. Ectopic expression of

Tdrd7 decreased the number of phox puncta structures (Fig 6B, left panel), which was quanti-

fied by counting the number of puncta structures per GFP-expressing cell (Fig 6B, right

panel). These results established that the Tdrd7-mediated block is at the ‘nucleation’ step of

the autophagy pathway or further upstream. We examined the effects of TDRD7 on the activa-

tion of ULK1, a kinase essential for triggering of the induction stage. ULK1 is activated by

phosphorylation of multiple Ser/Thr residues, among which Ser317 is a critical residue that is

Fig 6. TDRD7 inhibits autophagy-inducing kinase AMPK, whose activity is required for SeV replication. (A) L929 cells, transfected with Flag.VPS34 and V5.

Tdrd7, were infected with SeV for the indicated time, when VPS34 was immunoprecipitated from the cell lysates and PI3K III activity was analyzed as described in

Materials and Methods. (B) L929 cells stably expressing V5.Tdrd7 were transfected with GFP.p40.phox and then serum-starved (SS) for 8 h, when the cells were fixed

and analyzed by confocal microscopy. The GFP.p40.phox puncta were counted from at least 100 cells and the results are presented on the right panel. (C) L929 cells

stably expressing V5.Tdrd7 were serum-starved for 8 h, when pULK1 (Ser317) was analyzed by immunoblot. (D) L929 cells stably expressing V5.Tdrd7 were serum-

starved for 8h, when pULK1 (Ser757) was analyzed by immunoblot. (E) HeLa cells expressing AMPK shRNA were infected with SeV and viral protein (SeV C)

expression was analyzed by immunoblot at 16 hpi. Lower panel indicates the AMPK levels in these cells. (F) L929 cells ectopically expressing HA-AMPK (lower panel)

were infected with SeV and viral protein expression was analyzed at 16 hpi by immunoblot. (G) L929 cells were pre-treated with various concentrations of Compound

C for 1h, and then infected with SeV. Viral protein (SeV C) expression and pAMPK (on Thr172) and AMPK levels were analyzed at 16 hpi by immunoblot. (H) HeLa

cells were pre-treated with various concentrations of Compound C for 1h, and then infected with SeV. Viral protein (SeV C) expression and pAMPK (on Thr172) and

AMPK levels were analyzed at 16 hpi by immunoblot. (I) L929 cells stably expressing V5.Tdrd7 were serum-starved (SS) for the indicated time, when pAMPK (Thr172)

levels were analyzed by immunoblot. (J) L929 cells stably expressing V5.Tdrd7 were infected with SeV for the indicated time, when pAMPK (Thr172) levels were

analyzed by immunoblot. EV, empty vector, NT, no treatment, � indicates p<0.05. The results presented here are representatives of at least three biological repeats.

https://doi.org/10.1371/journal.ppat.1006877.g006
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directly phosphorylated by the upstream kinase AMPK [51]. SS triggered robust phosphoryla-

tion of ULK1 on Ser317, which was inhibited by ectopic Tdrd7 expression (Fig 6C). Activated

AMPK inhibits the activity of mTOR, another Ser/Thr kinase, which phosphorylates ULK1 on

Ser757 to inhibit the autophagy pathway [51]. Therefore, dephosphoryation of Ser757 of ULK1

is a positive trigger of the autophagy pathway [51]. SS-induced dephosphorylation of ULK1

(Ser757) was also strongly inhibited by Tdrd7 (Fig 6D).

These results pointed to AMPK as the target of TDRD7. AMPK was required for SeV repli-

cation: in HeLa cells, knockdown of endogenous AMPK suppressed the expression of SeV C

protein (Fig 6E) and ectopic expression of AMPK strongly enhanced SeV C protein expression

in L929 cells (Fig 6F). To determine whether only the physical presence or the kinase activity

of AMPK is required for virus replication, we used a small molecule chemical inhibitor of

AMPK kinase activity, Compound C (CC). Treatment of cells with CC inhibited SeV C protein

expression in both human and mouse cells (Fig 6G and 6H), demonstrating that AMPK

enzyme activity is required for SeV replication. As expected, CC treatment inhibited phos-

phorylation of AMPK (on Thr172) upon SeV infection (Fig 6G and 6H). We investigated the

effect of Tdrd7 on the activation of AMPK, by monitoring the phosphorylation of its Thr172.

AMPK was rapidly phosphorylated by SS of cells, but Tdrd7 expression inhibited this phos-

phorylation (Fig 6I). Similarly, HBSS-induced phosphorylation of AMPK on Thr172 was also

inhibited by Tdrd7 (S5E Fig). Importantly, SeV infection strongly activated AMPK and this

step was inhibited by Tdrd7 (Fig 6J). Together, our results clearly demonstrated that Tdrd7 is

an inhibitor of the autophagy-inducing kinase AMPK and the antiviral action of Tdrd7 is

mediated by its ability to inhibit AMPK activation.

TDRD7 inhibits the replication of other paramyxoviruses but promotes

EMCV replication by the same mechanism

Next, we investigated whether TDRD7 can inhibit the replication of other paramyxoviruses by

inhibiting autophagy. We chose two clinically important human paramyxoviruses, HPIV3

(family: Paramyxoviridae, sub-family: Paramyxovirinae, genus: Respirovirus) and RSV (family:

Paramyxoviridae, sub-family: Pneumovirinae, genus: Pneumovirus), to examine the generality

of TDRD7 action. HPIV3 infection triggered robust autophagy in the infected cells, as exam-

ined by the increased LC3-II levels and p62 degradation (Fig 7A). In ATG5 knockdown cells,

HPIV3 replication was strongly inhibited, as manifested by the expression of virus-encoded

GFP (Fig 7B) and the viral structural protein, HN (Fig 7C). Similar to SeV and HPIV3, RSV

infection also triggered autophagy (S6A Fig) and its replication was inhibited in ATG5-knock-

down human cells (S6B Fig). To investigate whether TDRD7 inhibits the replication of HPIV3

and RSV, we used TDRD7-expressing human cells. Ectopic expression of TDRD7 inhibited

HPIV3 replication, which was examined by both GFP and viral HN expression (Fig 7D and

7E); IFN-β-treatment, a known inhibitor of HPIV3 replication, was used as a positive control.

Similar to HPIV3, ectopic expression of TDRD7 strongly inhibited RSV replication, examined

by the expression of viral proteins in the infected cells (Fig 7F). As anticipated, AMPK was

required for the replication of both HPIV3 and RSV. AMPK-knockdown cells expressed

reduced levels of HPIV3-encoded viral protein (HN) (Fig 7G) and GFP (Fig 7H). They also

exhibited reduced RSV replication, as indicated by virus-encoded red fluorescent protein

expression (Fig 7I). Similar to SeV, HPIV3 infection caused phosphorylation of AMPK and as

expected, this was inhibited by CC treatment (Fig 7J). The treatment with CC caused strong

reduction of HPIV3 HN protein expression (Fig 7J). In addition to the inhibition of viral pro-

tein expression, CC strongly inhibited the production of infectious HPIV3 particles (Fig 7K)

and infectious RSV particles (Fig 7L). Our results clearly demonstrated that the kinase activity
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of AMPK was required for the replication of paramyxoviruses and TDRD7 inhibited their rep-

lication by inhibiting AMPK activation. Finally, to examine the specificity of TDRD7 action,

we chose a member of another virus family, encephalomyocarditis virus (EMCV; family: Picor-
naviridae, genus: Cardiovirus). EMCV replication, analyzed by the expression of viral RNA

polymerase (3DPol), was not inhibited but enhanced by the ectopic expression of TDRD7 (S7

Fig). These results clearly established the specificity of antiviral action of TDRD7 against

viruses from different families.

Discussion

Here, we report a novel mechanism by which the interferon system provides an antiviral

response against paramyxoviruses (Fig 8). Using a high throughput genetic screen, we have

identified a viral restriction factor, TDRD7, which inhibited paramyxovirus-induced autop-

hagy, a critical step of viral life cycle. Our mechanistic studies revealed that TDRD7 blocks the

activation of AMPK, the enzyme that triggers autophagy. As expected, a chemical inhibitor of

AMPK’s downstream activities also restricted the replication of paramyxoviruses. Because

TDRD7 is a newly discovered viral restriction factor and its antiviral action is novel, we vali-

dated the critical results in multiple human and mouse cell types (S2 Table). We, therefore,

Fig 7. TDRD7 inhibits HPIV3 and RSV replication by anti-AMPK activity. (A) HeLa cells were infected with rgHPIV3 (moi:1) and analyzed for LC3 and p62

by immunoblot. (B, C) HT1080 cells stably expressing shRNA against ATG5 were infected with rgHPIV3 (moi:1); GFP at 24 hpi (B) and viral HN protein (C)

expression were analyzed at the indicated time. (D, E) HeLa cells expressing V5.TDRD7 were infected with rgHPIV3 (moi:1), GFP (D) and viral HN protein (E)

expression were analyzed at 24 hpi. IFN-β pre-treatment was used as a positive control. (F) HeLa cells expressing V5.TDRD7 were infected with RSV (moi:1) and

viral protein expression was analyzed at 48 hpi. Arrows indicate the polyclonal serum detecting various viral proteins. (G) HeLa cells expressing AMPK shRNA

were infected with rgHPIV3 (moi:1) and viral protein (HN) expression was analyzed by immunoblot at 24 hpi. Lower panel indicates the AMPK levels in these

cells. (H) HeLa cells expressing AMPK shRNA were infected with rgHPIV3 (moi:1) and GFP expression was analyzed by fluorescence microscopy at 24 hpi. (I)

HeLa cells expressing AMPK shRNA were infected with rrRSV and virus-encoded red fluorescent protein expression was analyzed by fluorescence microscopy at

24 hpi. (J) HeLa cells were pre-treated with various concentrations of Compound C for 1h, and then infected with rgHPIV3. Viral protein (HN) and pAMPK

(Thr172) levels were analyzed at 24 hpi by immunoblot. (K, L) HeLa cells were pre-treated with Compound C (CC, 10 μM) for 1h, and then infected with rgHPIV3

(K) or rrRSV (L). Infectious virus particle release in the culture supernatants was analyzed by fluorescence focus assay (expressed in ffu/ml). NT, non-targeting, EV,

empty vector, � indicates p<0.05. The results presented here are representatives of at least three biological repeats.

https://doi.org/10.1371/journal.ppat.1006877.g007
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present a new mechanism by which the IFN system not only provides antiviral protection, but

also controls cellular metabolic activity.

In search for a common cellular mechanism that the paramyxoviruses utilize, we uncovered

a role of autophagy, which was robustly induced in the early phase of viral life cycle and was

required for a stage prior to the transcription of viral mRNA. As a model paramyxovirus, we

used SeV, also known as mouse parainfluenza virus type I, because of its wide range of infectiv-

ity in vitro. SeV triggered a pro-viral autophagy pathway in the infected cells to facilitate its

replication. Chemical inhibitors of autophagy blocked, whereas an activator of autophagy pro-

moted, SeV replication. Genetic deficiency of the autophagy pathway significantly inhibited

SeV replication. Many RNA viruses use the autophagy pathway to promote their replication

[38–42]. Hepatitis C Virus (HCV), Dengue virus and Poliovirus directly use the autophago-

some membranes to facilitate their replication [38–40]. Measles virus triggers autophagy to

sequester RIG-I in the autophagosome, to inhibit the antiviral action of IFN [42]. In contrast,

autophagy impairs the replication of some DNA viruses. In neurons, autophagy is considered

an antiviral response against Herpes Simplex Virus (HSV-1) replication [52]. HSV-1 neuro-

virulence factor, ICP34.5 inhibits autophagy to support virus replication and pathogenesis

[53]. However, HSV-2 and Varicella Zoster Virus (VZV), two other α-herpesviruses require

basal autophagy to promote their replication [53–56]. The members of γ-herpesviruses, Kapo-

si’s Sarcoma-associated Herpesvirus (KSHV), Epstein-Barr virus (EBV) antagonize cellular

autophagy using viral homologue of Bcl-2 [57]. It will be interesting to investigate whether

these viruses can induce TDRD7 and whether TDRD7 has any effect on their replication.

Fig 8. A newly identified antiviral ISG, TDRD7 inhibits paramyxovirus-induced autophagy to control virus replication. The model shows a new mode of

action of an ISG, IFN-induced TDRD7 to control paramyxovirus replication by inhibiting cellular autophagy pathway. Paramyxoviruses trigger cellular autophagy

by activating the autophagy-inducing kinase, AMPK, by phosphorylation on Thr172. AMPK directly phosphorylates ULK1 on Ser317 to activate autophagy

pathway. Activated AMPK also inhibits mTOR, which phosphorylates ULK1 on Ser757 to inhibit autophagy. The newly identified antiviral ISG, TDRD7 inhibits

virus-induced autophagy by inhibiting the activation of AMPK, to suppress paramyxovirus replication. Autophagy, induced by nutrient starvation or rapamycin,

is also inhibited by TDRD7. Therefore, autophagy inhibition is a new mechanism of the IFN system to control virus replication.

https://doi.org/10.1371/journal.ppat.1006877.g008
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We demonstrated that AMPK, the initiator kinase of the autophagy pathway, is involved in

paramyxovirus replication. AMPK was activated by SeV and HPIV3 infection and its activity

was required for virus replication. AMPK has multiple cellular functions in addition to initiat-

ing autophagy. These include cell growth, mitochondrial biogenesis, and lipid and glucose

metabolism [34]. By activating AMPK, the paramyxoviruses may also activate the autophagy-

independent activities whose contributions to virus replication remain to be explored. How-

ever, our results clearly established that the autophagy-inducing effect of AMPK was critical

for virus replication, because ablation of downstream components of the autophagy pathway

had similar inhibitory effects. Because paramyxoviruses utilize the autophagy pathway, the

role of AMPK in virus replication may be restricted to the activation of autophagy. Whether a

specific component of the autophagy pathway, downstream of AMPK, is utilized by the para-

myxoviruses, will be investigated in the future. Previous studies have indicated a role of lipo-

phagy and macropinocytosis in promoting AMPK-induced virus replication. Dengue virus

promotes AMPK-mTOR signaling pathway to promote lipophagy, a selective autophagy that

targets lipid droplets [58]. Vaccinia virus activates AMPK to promote macropinocytosis and

actin dynamics, which are required for viral entry into the cells [59]. A kinome screen has

revealed that AMPK activity is required for HCMV replication; however, the exact mechanism

is currently unknown [60]. KSHV directly interacts with AMPK via its K1 viral protein to

promote cell survival [61]. In contrast to these, the picornavirus EMCV replication was pro-

moted in the presence of TDRD7. The exact mechanism behind this will require further

investigation.

How the IFN system regulates the autophagy pathway is largely unexplored; however, IFN

treatment of cancer cells triggers autophagy via PI3K/mTOR signaling [62]. Some ISGs, e.g.

PKR and RNase L promote autophagy in virus-infected cells as antiviral defense mechanisms

[63–65]. Several studies indicate crosstalk between autophagy and innate immune signaling

pathways; components of autophagy pathway are required for RIG-I signaling [66]. Autophagy

is required for TLR7-induced type I IFN production by VSV-infected plasmacytoid dendritic

cells [67]. Our study provides a new mechanism of IFN-mediated control of virus replication

via inhibition of the autophagy pathway.

Because TDRD7 prevents AMPK activation by non-viral stresses, such as nutrient depriva-

tion, it may have broader effects on AMPK-dependent cellular processes in uninfected cells.

For example, IFN is expressed in a low amount in uninfected immune cells, e.g. dendritic cells.

The development and biological functions of these cells may be regulated by TDRD7’s anti-

AMPK activity. Autophagy is required for cellular homeostasis and unregulated autophagy

may lead to disease conditions [68]. In these scenarios, TDRD7-mediated autophagy inhibi-

tion would be beneficial. IFN signaling has been shown to inhibit AMPK activation [69]; how-

ever, the mechanisms or the involved ISGs are unknown. Our results indicate that TDRD7 is

one of the executioner ISGs for the anti-AMPK activity of IFN. AMPK is involved in multiple

cellular functions and is activated when cellular ATP levels are low, a scenario that mimics

virus infection, which requires high metabolic activity of the infected cells. IFN signaling also

regulates the activity of mTOR, a kinase that is involved in protein synthesis. AMPK directly

inhibits the activity of mTOR by interacting with intermediate proteins [51, 70]. Therefore, the

IFN-mediated inhibition of AMPK may further activate mTOR signaling to enhance the syn-

thesis of desired proteins in the virus-infected cells. Because TDRD7 is known to interact with

cellular RNAs [44], this activity may be required for its anti-AMPK functions. AMPK can be

activated by long non-coding RNA (lncRNA) [71], and it is speculative that sequestration of

the lncRNA activator by TDRD7 may give rise to its AMPK-inhibitory action. Future investi-

gation will be required to explore this possibility.
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How paramyxoviruses activate AMPK is an interesting question. To determine whether

paramyxoviruses directly trigger AMPK activation by its interaction with viral proteins or by

activation of upstream signaling pathways, will require additional investigation. Answers to

these questions will lead to therapeutic potential by targeting the virus-AMPK interaction.

Because temporary AMPK inhibition is not toxic, the chemical inhibitor is a potential candi-

date for antiviral therapy. However, AMPK is involved in modulating the functions of both

innate immune cells, e.g. macrophages, and the adaptive immune cells, e.g. T cells [72, 73].

Therefore, the use of AMPK inhibition as an antiviral strategy will require in-depth investiga-

tion of both innate and adaptive immune responses in virus-infected host. Because type I IFN

is also involved in regulating the functions of these cells, TDRD7 may also contribute to the

regulation of immune cell functions. TDRD7 knockout mice have only been examined for its

role in lens and germ cell development [44, 45]. Because TDRD7 is not present in high amount

in majority of the cell types, the transcriptional induction by viruses or IFN exposure will

uncover its new roles in other cell types as well. Whether the previously identified functions of

TDRD7 can also be regulated by the IFN system will require further investigation.

Materials and methods

Cells, plasmids and reagents

Human cell lines HeLa, HT1080, ARPE19, HEK293T, and mouse cell lines L929, LA4, MEFs,

RAW264.7 were maintained in DMEM containing 10% FBS, penicillin and streptomycin. All

cell lines used in this study were maintained in the laboratory. Expression vectors of human

and mouse TDRD7/Tdrd7 gene (untagged) were obtained from Origene and sub-cloned into

lentiviral vector (pLVX-IRES-puro, V5-tagged). AMPK expression plasmid was obtained from

Addgene and was sub-cloned into lentiviral vector (pLVX-IRES-puro, HA-tagged AMPK) and

Flag.VPS34 plasmid was obtained from Addgene. Autophagy inhibitors (3-MA, chloroquine,

quinacrine, bafilomycin-1) or activators (rapamycin), AMPK inhibitor (Compound C) were

obtained from Sigma-Aldrich, human and mouse IFN-β were obtained from R&D, MTT was

obtained from Fisher Scientific, and Lipofectamine 2000 was obtained from Thermo Fisher

Scientific. The antibodies against the specific proteins were obtained as indicated below: anti-

SeV C: raised in the authors’ laboratory [74], anti-whole SeV antibody was a gift from John

Nudrud (Case Western Reserve University), anti-HPIV3 HN: Abcam, anti-RSV: Abcam, anti-

3DPol: Santa Cruz, anti-TDRD7: Sigma-Aldrich, anti-LC3: Cell Signaling, anti-p62: Fitzgerald,

anti-pULK1(Ser757)/anti-pULK1(Ser317)/anti-ULK1: Cell Signaling, anti-pAMPK(Thr172)/

anti-AMPK: Cell Signaling, anti-ATG5: Cell Signaling, anti-Actin: Sigma, anti-V5: Thermo

Fisher Scientific, anti-Flag: Sigma-Aldrich, anti-Flag-agarose beads: Sigma-Aldrich.

shRNA library and screening of ISGs against SeV

A custom generated, lentivirus-based shRNAmir library against human ISGs was obtained

from Open Biosystems. The seed sequences for shRNA targeting each ISG have been described

before [46]. The vector was designed to co-express the shRNA and GFP by a cytomegalovirus

(CMV) promoter. The shRNA plasmids were packaged into lentiviral vectors in 96-well plates

using the manufacturer’s instructions. HeLa cells were transduced with these lentiviruses for

48 h, when the cells were treated with 1000 U/ml of IFN-β. Twenty four hours later, the cells

were infected with SeV (Cantell) at an MOI of 10. After 16 h, cells were harvested, fixed with

1% paraformaldehyde in phosphate-buffered saline (PBS) for 10 min, permeabilized with 0.1%

(wt/vol) saponin, and incubated with an anti-SeV polyclonal antibody and an Alexa Fluor

647-conjugated goat anti-rabbit secondary antibody. Cells were analyzed using a BD LSRFor-

tessa flow cytometer (BD Biosciences) and the data were analyzed by FlowJo. Viral infection
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was determined based on the percentage of SeV-positive cells in shRNA-transduced (GFP)

populations (% infectivity, as illustrated in Fig 1C). The relative infectivity in each well was

normalized to the wells containing a shRNA against IRF9 sequence to obtain z-scores [47].

Independent lentivirus stocks were used to validate the primary screen results in three inde-

pendent replicates. Primary hits were defined as those z scores greater than 1.9.

Secondary validation of primary hits

The primary hits obtained from the high throughput screen were validated by stably express-

ing the respective ISG shRNAs (which were positive in the primary screen) in HeLa cells. We

used non-targeting (NT) and IRF9-specific shRNAs as controls. The HeLa cells, stably express-

ing the shRNAs against the shortlisted ISGs were pre-treated with IFN-β followed by infection

with SeV Cantell (moi: 10) and viral protein (SeV C) expression was analyzed by immunoblot.

Knockdown and ectopic expression

For generating stable knockdown of TDRD7/Tdrd7 genes in human and mouse cells, the

respective shRNAs [from the shRNA library, Open Biosystems (TDRD7: GATCGCAC

ATGTTTATTTA, used in all human cells of the study), (Tdrd7#1: CAGGATTTGCCTCA

GATTA, used in all mouse cells of the study) or Sigma (Tdrd7#2, SHCLNG-NM_146142,

TRCN0000102515, used only in LA4 cells)] were lentivirally expressed and the transduced

cells were selected in puromycin containing medium. The stable knockdown cells were evalu-

ated for levels of TDRD7/Tdrd7 by qRT-PCR in the absence or the presence of IFN-treatment

or immunoblot. These and the control (NT) cells were evaluated for viral replication. ATG5-

specific shRNAs (Sigma # SHCLNG-NM_004849) were stably expressed lentivirally and the

transduced cells were selected in puromycin containing medium. AMPK knockdown cells

were generated using lentiviral shRNA plasmids (Sigma # SHCLNG-NM_006251) and the

transduced cells were selected in puromycin containing medium. Stable cell lines ectopically

expressing epitope-tagged human and mouse TDRD7/Tdrd7 using lentiviral delivery systems

(pLVX-IRES-puro) and were selected in puromycin containing medium. The stable cells were

used for viral infection and other biochemical analyses. Wherever indicated, the stable cell

lines were also generated by transfecting the untagged TDRD7/Tdrd7 plasmids (from Ori-

gene) and selecting the transfected cells with puromycin. Cells ectopically expressing AMPK

were generated by lentivirally transducing HA.AMPK using pLVX-IRES-puro and selecting

the cells in puromycin containing medium.

Generation of CRISPR/Cas9-mediated TDRD7 knockout cells

HT1080 cells were transfected with either control (sc-418922) or TDRD7-specific (sc-407210)

CRISPR/Cas9 plasmids. Transfected cells were sorted for high GFP-expressers using flow

cytometry, and the GFP-expressing cells were expanded to isolate individual clones. These

clones were examined for TDRD7 mRNA levels by qRT-PCR analyses and protein levels by

immunoblot.

Virus infection

SeV Cantell (VR-907) and 52 (VR-105) strains were obtained from Charles River, and the

infection procedure has been previously described [74, 75]. Briefly, the cells were infected by

the viruses (at an MOI specified in the figure legends) in serum-free DMEM for 1.5 h, after

which the cells were washed and replaced with normal growth medium. The virus-infected

cells were analyzed at the indicated time for viral protein expression or as described in figure
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legends. For quantification of infectious SeV particles in the culture medium, standard plaque

assays were performed, as described previously [74, 75]. Recombinant RSV (rrRSV) and

HPIV3 (rgHPIV3) infections were carried out in serum-free DMEM at the indicated MOI.

Infectious rrRSV and rgHPIV3 particles were analyzed by quantification of fluorescent foci

forming units or the virus-infected cells were photographed using fluorescence microscope.

EMCV infection was carried out using previously published procedure [76], and the infected

cells were analyzed by the expression of viral protein, as indicated in the figure legends.

Analyses of autophagy induction and AMPK activation

For analyses of nutrient starvation induced autophagy, the cells were washed (three times)

with and then incubated in serum-free DMEM or HBSS (Lerner Research Institute Cell Cul-

ture Core) for the time period indicated in the figure legends. At the end of the incubation

period, the cells were harvested and the lysates were analyzed for pAMPK (Thr172), pULK1

(Ser317 and Ser757), LC3, p62. Similarly, for the analysis of puncta formation by GFP-LC3 or

GFP.p40.PHOX, the cells were transiently transfected with these plasmids and then serum

starvation was carried out. At the end of the exposure, the cells were fixed and confocal

microscopy was performed. The puncta structures were manually counted in GFP-expressing

cells from multiple fields.

Cell lysis and immunoblot

Immunoblot was performed using previously described procedures [74, 75]. Briefly, cells were

lysed in 50 mM Tris buffer, pH 7.4 containing 150 mM of NaCl, 0.1% Triton X-100, 1 mM

sodium orthovanadate, 10 mM of sodium fluoride, 10 mM of β-glycerophosphate, 5 mM

sodium pyrophosphate, protease and phosphatase inhibitors (Roche). Total protein extracts

were analyzed by SDS-PAGE followed by immunoblot. The density of protein bands on the

immunoblots was quantified using Image J program.

RNA isolation and qRT-PCR analyses

Total RNA was isolated using RNA isolation kit (Roche) and cDNA was prepared using

ImProm-II Reverse Transcription Kit (Promega). For qRT-PCR, 0.5 ng of cDNA was analyzed

using Applied Biosystem’s Power SYBR Green PCR mix in Roche LightCycler. The expression

levels of the mRNAs were normalized to 18S rRNA. To investigate in vivo gene expression,

lungs were harvested from the SeV-infected mice and quickly frozen on dry ice. Total RNA

was isolated from frozen lungs using Trizol extraction and the cDNAs were prepared using

ImProm-II Reverse Transcription Kit and then subjected to qRT-PCR analyses as described

above [74]. For the qRT-PCR analyses of the respective genes, the following primers were

used: TDRD7-fwd: CGAGCTGTTCTGCAGTCTCA, TDRD7-rev: GCCATGGCATAGCAG

GTAAT, Tdrd7-fwd: CTAAGGGCTGTCCTGCAGTC, Tdrd7-rev: AGAGTTGCCTTTGGC

TTT, SeV P-fwd: CAAAAGTGAGGGCGAAGGAGAA, SeV P-rev: CGCCCAGATCCTGAG

ATACAGA, Ifnb-fwd: CTTCTCCGTCATCTCCATAGGG, Ifnb-rev: CACAGCCCTCTCCA

TCAACT, Ifit1-fwd: CAGAAGCACACATTGAAGAA, Ifit1-rev: TGTAAGTAGCCAGAGG

AAGG, 18S-fwd: ATTGACGGAAGGGCACCACCAG, 18S-rev: CAAATCGCTCCACCAAC

TAAGAACG.

Confocal microscopy

HEK293T cells expressing V5.TDRD7 were grown on coverslips, fixed in 4% paraformalde-

hyde, permeabilized in 0.2% Triton X-100 and subjected to immunostaining by anti-V5
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antibody followed by Alexa Fluor-conjugated secondary antibody. The objects were mounted

on slides using VectaShield/DAPI and analyzed by confocal microscopy. For GFP.LC3 and

GFP.p40.PHOX analyses, the cells expressing these plasmids were analyzed by confocal

microscopy. The images were further processed and analyzed using Adobe Photoshop soft-

ware. Multiple culture fields (at least 100 cells from more than 20 fields) were analyzed to select

representative images and for quantification.

PI3K III activity assay

L929 cells, transfected with Flag.VPS34 and V5.Tdrd7, were infected with SeV for the indi-

cated time (in figure legends), when the cell lysates were immunoprecipitated with Flag-aga-

rose beads. The immunoprecipitates were analyzed for PI3K III activity by measuring the PI

(3)P levels using Class III PI3K ELISA kit (Echelon) following manufacturer’s instructions.

The PI(3)P levels in the mock-infected VPS34-expressing cells was expressed as 100 and all

other values were normalized to this.

MTT assay to measure cell viability

Cells at the density of 10,000/well were cultured in 96 well plates for 2 days followed by addi-

tion of 10μl of 5mg/ml MTT solution in PBS and additional culturing for 4 hours. The water

insoluble formazan was dissolved in DMSO and the absorbance was measured at 570nm [77].

The absorbance in control (NT) cells was expressed as 100 and all other values were normal-

ized to this.

SeV infection in mice

C57BL/6 Wt mice, obtained from Taconic, were either mock-infected (PBS) or intranasally

infected with SeV (52 strain, 120,000 pfu), as described previously [74, 78]. The lungs were har-

vested after 2 days of infection, total RNA was isolated and analyzed by qRT-PCR.

Statistical analyses

The statistical analyses were performed using GraphPad Prism 5.02 software. The ‘p’ values

were calculated using two-tailed, un-paired Student’s t tests and are shown in the relevant fig-

ures. The results presented here are the representatives of at least three biological repeats.

Supporting information

S1 Fig. Secondary validation of the anti-SeV ISGs. HeLa cells expressing non-targeting (NT),

IRF9 or the ISG-specific shRNA (numbers are indicated in Fig 2B), were left untreated or IFN-

β-treated and SeV titers were determined at 24 hpi in the culture supernatants.

(TIF)

S2 Fig. The expression and induction of TDRD7 by virus infection. (A) Stable knockdown

of TDRD7 in IFN-treated HeLa cells were analyzed by qRT-PCR. (B) Cell proliferation was

analyzed in TDRD7 knockdown HeLa cells by MTT assay. (C) Primary BMDMs from Wt

C57BL/6 mice were infected with SeV (Cantell and 52 strains) and Tdrd7 mRNA levels were

analyzed by qRT-PCR 8 hpi. (D, E) MEFs from the indicated genotypes were infected with

SeV at moi:10 and Tdrd7 mRNA levels were analyzed by qRT-PCR. (F) Endogenous TDRD7

protein expression in various human and mouse cells was analyzed by immunoblot. NT, non-
targeting.

(TIF)
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S3 Fig. TDRD7 is a newly-identified anti-SeV ISG. (A) Stable knockdown of Tdrd7 in LA4

cells by two different shRNAs (#1 and #2) was analyzed by qRT-PCR. (B) Stable knockdown

of Tdrd7 in L929 cells was analyzed by qRT-PCR. (C) L929 cells expressing Tdrd7-specific

shRNA were infected with SeV and SeV C levels were analyzed by immunoblot. (D) Cell pro-

liferation was analyzed in Tdrd7 knockdown L929 cells by MTT assay. (E) Stable knockdown

of Tdrd7 in IFN-treated MEFs was analyzed by qRT-PCR. (F) MEFs expressing Tdrd7-specific

shRNA were infected with SeV and viral protein (SeV C) levels were analyzed by immunoblot.

(G) Wt and TDRD7-/- HT1080 cells were mock-infected or infected with SeV and TDRD7

mRNA levels were analyzed by qRT-PCR. (H) HEK293T cells, stably expressing V5.TDRD7,

were immuno-stained with anti-V5 antibody and analyzed by confocal microscopy. (I)

HEK293T cells, stably expressing V5.TDRD7, were analyzed for SeV P mRNA expression by

qRT-PCR after 8h of SeV infection. (J) L929 cells ectopically expressing Tdrd7 (Origene,

untagged) were infected with SeV and SeV C levels were analyzed by immunoblot. Lower

panel indicates the ectopic expression of Tdrd7. (K) LA4 cells expressing Tdrd7 (Origene,

untagged) were infected with SeV and analyzed for SeV C levels by immunoblot. NT, non-tar-
geting, EV, empty vector.
(TIF)

S4 Fig. TDRD7 inhibits SeV-induced autophagy, which is required for virus replication,

but not IFN or ISG induction. (A) LA4 cells infected with SeV (moi:10) for the indicated

time, when LC3-II and p62 levels were analyzed by immunoblot. (B) HT1080 cells were pre-

treated with autophagy inhibitors (Q, quinacrine 10μM, CQ, chloroquine 25μM, Baf, Bafilo-

mycin 100 nM) and infected with SeV for 16h, when SeV C levels were analyzed by immuno-

blot. (C) ARPE19 cells expressing Tdrd7-specific shRNA, were infected with SeV and LC3

levels were analyzed by immunoblot. (D) RAW264.7 cells expressing Tdrd7-specific shRNA,

were treated with IFN-β and Tdrd7 mRNA levels were analyzed by qRT-PCR. (E) RAW264.7

cells expressing Tdrd7-specific shRNA were infected with SeV for the indicated time, when

LC3-II and SeV C levels were analyzed by immunoblot. (F) Ifnb induction was analyzed in

Tdrd7 knockdown L929 cells upon SeV infection by qRT-PCR. (G) Ifit1 induction was ana-

lyzed in Tdrd7 knockdown L929 cells upon mIFN-β treatment by qRT-PCR. NT, non-target-
ing.

(TIF)

S5 Fig. Tdrd7 inhibits virus infection and cellular stress-induced autophagy by inhibiting

AMPK activation. (A) L929 cells stably expressing V5.Tdrd7 were serum-starved (SS) for 16h,

when LC3-II levels were analyzed by immunoblot. LC3-II/Actin ratio are shown below the

Actin panel. (B, C) RAW264.7 cells expressing Tdrd7-specific shRNA were treated with rapa-

mycin (Rapa) for the indicated time when p62 (B) and LC3-II (C) levels were analyzed by

immunoblot. (D) Expression of Flag.VPS34 and V5.Tdrd7 was analyzed in transfected L929

cells by immunoblot. (E) L929 cells stably expressing V5.Tdrd7 were incubated in HBSS for

the indicated time, when pAMPK (on Thr172) levels were analyzed by immunoblot. NT, non-
targeting, EV, empty vector.
(TIF)

S6 Fig. RSV triggers autophagy to favor virus replication. (A) HT1080 cells, infected with

rrRSV were analyzed for LC3-II and p62 by immunoblot 24 hpi. (B) HT1080 cells expressing

non-targeting (NT) or ATG5-specific shRNA, were infected with rrRSV and analyzed for viral

protein expression at 48 hpi.

(TIF)
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S7 Fig. TDRD7 promotes EMCV replication. L929 cells ectopically expressing Tdrd7 were

infected with EMCV (moi:1) and viral RNA polymerase (3DPol) expression was analyzed by

immunoblot after 8 h. EV, empty vector.
(TIF)

S1 Table. Z-scores of ISG shRNAs from the high throughput genetic screen. The percent

SeV infectivity for each ISG shRNA (as shown in Fig 1D) was used to calculate the z-scores

and normalized to that of IRF9 shRNA. The normalized z-scores of each of the ISG shRNA in

the library are shown in the table.

(PDF)

S2 Table. Antiviral activity of TDRD7 in various human and mouse cells. The table summa-

rizes the properties of various human and mouse cell types, used in the study, with respect to

their levels of Tdrd7 mRNA and protein expression, antiviral activity and biochemical mecha-

nism. KD, knockdown by lentiviral transduction of shRNA plasmids, KO, knockout by

CRISPR/Cas9, ectopic expression by lentiviral transduction of epitope-tagged TDRD7/Tdrd7,

IB: Immunoblot.

(PDF)
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